
P
(c)

(d)

(e)

(f)

(b)(a)

(g)

CHAPTER-OPENING QUESTIONS—Guess now!
1. You revolve a ball around you in a hori-
zontal circle at constant speed on a string,
as shown here from above. Which path will
the ball follow if you let go of the string
when the ball is at point P?
2. A space station revolves around the Earth
as a satellite, 100 km above Earth’s surface.
What is the net force on an astronaut at rest
inside the space station?

(a) Equal to her weight on Earth.
(b) A little less than her weight on Earth.
(c) Less than half her weight on Earth.
(d) Zero (she is weightless).
(e) Somewhat larger than her weight on Earth.

A n object moves in a straight line if the net force on it acts along the direction
of motion, or the net force is zero. If the net force acts at an angle to the
direction of motion at any moment, then the object moves in a curved path.

An example of the latter is projectile motion, which we discussed in Chapter 3.
Another important case is that of an object moving in a circle, such as a ball at the
end of a string being swung in a circle above one’s head, or the nearly circular
motion of the Moon about the Earth.
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The astronauts in the upper left of
this photo are working on a space
shuttle. As they orbit the Earth—at
a rather high speed—they experience
apparent weightlessness. The Moon,
in the background seen against the
blackness of space, also is orbiting
the Earth at high speed. Both the
Moon and the space shuttle move 
in nearly circular orbits, and 
each undergoes a centripetal 
acceleration. What keeps the Moon
and the space shuttle (and its 
astronauts) from moving off in a
straight line away from Earth? It is
the force of gravity. Newton’s law of
universal gravitation states that all
objects attract all other objects with
a force that depends on their masses
and the square of the distance
between them.



In this Chapter, we study the circular motion of objects, and how Newton’s
laws of motion apply. We also discuss how Newton conceived of another great law
by applying the concepts of circular motion to the motion of the Moon and the
planets. This is the law of universal gravitation, which was the capstone of Newton’s
analysis of the physical world.

5–1 Kinematics of 
Uniform Circular Motion

An object that moves in a circle at constant speed v is said to experience 
uniform circular motion. The magnitude of the velocity remains constant in this
case, but the direction of the velocity continuously changes as the object moves
around the circle (Fig. 5–1). Because acceleration is defined as the rate of change
of velocity, a change in direction of velocity is an acceleration, just as a change in
its magnitude is. Thus, an object revolving in a circle is continuously accelerating,
even when the speed remains constant ( in Fig. 5–1). We now investi-
gate this acceleration quantitatively.

Acceleration is defined as

where is the change in velocity during the short time interval We will
eventually consider the situation in which approaches zero and thus obtain
the instantaneous acceleration. But for purposes of making a clear drawing,
Fig. 5–2, we consider a nonzero time interval. During the time interval the
particle in Fig. 5–2a moves from point A to point B, covering a distance 
along the arc which subtends an angle The change in the velocity vector is

and is shown in Fig. 5–2b (note that  ).
Now we let be very small, approaching zero. Then and are also 

very small, and will be almost parallel to Fig. 5–2c; will be essentially
perpendicular to them. Thus points toward the center of the circle. Since 
by definition, is in the same direction as (equation above), it too must point
toward the center of the circle. Therefore, this acceleration is called centripetal
acceleration (“center-pointing” acceleration) or radial acceleration (since it is
directed along the radius, toward the center of the circle), and we denote it by 

Now that we have determined the direction, next we find the magnitude of the
radial (centripetal) acceleration, Because the line CA in Fig. 5–2a is perpen-
dicular to and line CB is perpendicular to then the angle between CA and
CB is also the angle between and Hence the vectors and in 
Fig. 5–2b form a triangle that is geometrically similar† to triangle ACB in Fig. 5–2a.
If we take to be very small (letting be very small) and set 
because the magnitude of the velocity is assumed not to change, we can write

This is an exact equality when approaches zero, for then the arc length equals
the chord length AB. We want to find the instantaneous acceleration, so we let 
approach zero, write the above expression as an equality, and then solve for 

To get the centripetal acceleration, we divide by 

But is the linear speed, v, of the object, so the radial (centripetal)¢l�¢t

[¢t S 0]aR =
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=
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r
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†Appendix A contains a review of geometry.
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FIGURE 5;2 Determining the
change in velocity, for a particle
moving in a circle. The length is
the distance along the arc, from 
A to B.
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FIGURE 5;1 A small object 
moving in a circle, showing how 
the velocity changes. At each point,
the instantaneous velocity is in a 
direction tangent to the circular 
path.



acceleration is

[radial (centripetal) acceleration] (5;1)

[Equation 5–1 is valid at any instant in circular motion, and even when v is not
constant.]

To summarize, an object moving in a circle of radius r at constant speed v has
an acceleration whose direction is toward the center of the circle and whose magni-
tude is It is not surprising that this acceleration depends on v and r.
The greater the speed v, the faster the velocity changes direction; and the larger the
radius, the less rapidly the velocity changes direction.

The acceleration vector points toward the center of the circle when v is con-
stant. But the velocity vector always points in the direction of motion, which is
tangential to the circle. Thus the velocity and acceleration vectors are perpen-
dicular to each other at every point in the path for uniform circular motion 
(Fig. 5–3). This is another example that illustrates the error in thinking that 
acceleration and velocity are always in the same direction. For an object falling 
in a vertical path, and are indeed parallel. But in uniform circular motion, and 
are perpendicular, not parallel (nor were they parallel in projectile motion,
Section 3–5).

Circular motion is often described in terms of the frequency f, the number of
revolutions per second. The period T of an object revolving in a circle is the time
required for one complete revolution. Period and frequency are related by

(5;2)

For example, if an object revolves at a frequency of then each revolution
takes An object revolving in a circle (of circumference ) at constant

speed v travels a distance in one revolution which takes a time T. Thus

Acceleration of a revolving ball. A 150-g ball at the end of
a string is revolving uniformly in a horizontal circle of radius 0.600 m, as 
in Fig. 5–1 or 5–3. The ball makes 2.00 revolutions in a second. What is its 
centripetal acceleration?

APPROACH The centripetal acceleration is  We are given r, and we
can find the speed of the ball, v, from the given radius and frequency.

SOLUTION If the ball makes 2.00 complete revolutions per second, then the
ball travels in a complete circle in a time interval equal to 0.500 s, which is its
period T. The distance traveled in this time is the circumference of the circle,

where r is the radius of the circle. Therefore, the ball has speed

The centripetal acceleration† is

EXERCISE A In Example 5–1, if the radius is doubled to 1.20 m, but the period stays 
the same, the centripetal acceleration will change by a factor of:
(a) 2; (b) 4; (c) (d) (e) none of these.1

4 ;1
2 ;

aR =
v2

r
=

(7.54 m�s)2

(0.600 m)
= 94.7 m�s2.

v =
2pr

T
=

2p(0.600 m)
(0.500 s)

= 7.54 m�s.

2pr,

aR = v2�r.

EXAMPLE 5;1

v =
distance

time
=

2pr

T
.

2pr
2pr1

3 s.(= rev)
3 rev�s,

T =
1
f

.

vBaBvBaB

aR = v2�r.

aR =
v2

r
.
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The direction of motion and 
the acceleration are not in 
the same direction; instead, aB ⊥ vB

(aB)
(vB)

†Differences in the final digit can depend on whether you keep all digits in your calculator for v
(which gives  ), or if you use  (which gives  ). Both results
are valid since our assumed accuracy is about (see Section 1–4).&0.1 m�s

aR = 94.8 m�s2v = 7.54 m�saR = 94.7 m�s2

2

2

1

1vB

vB

aB

aB

FIGURE 5;3 For uniform circular
motion, is always perpendicular to vB.aB

C A U T I O N

In uniform circular motion, the speed is
constant, but the acceleration is not zero



Moon’s centripetal acceleration. The Moon’s nearly circu-
lar orbit around the Earth has a radius of about 384,000 km and a period T of
27.3 days. Determine the acceleration of the Moon toward the Earth.

APPROACH Again we need to find the velocity v in order to find 

SOLUTION In one orbit around the Earth, the Moon travels a distance 
where  is the radius of its circular path. The time required 
for one complete orbit is the Moon’s period of 27.3 d. The speed of the Moon 
in its orbit about the Earth is The period T in seconds is

Therefore,

We can write this acceleration in terms of (the acceleration of
gravity at the Earth’s surface) as

NOTE The centripetal acceleration of the Moon, is not
the acceleration of gravity for objects at the Moon’s surface due to the Moon’s
gravity. Rather, it is the acceleration due to the Earth’s gravity for any object
(such as the Moon) that is 384,000 km from the Earth. Notice how small this
acceleration is compared to the acceleration of objects near the Earth’s surface.

5–2 Dynamics of 
Uniform Circular Motion

According to Newton’s second law an object that is accelerating 
must have a net force acting on it. An object moving in a circle, such as a ball on
the end of a string, must therefore have a force applied to it to keep it moving in
that circle. That is, a net force is necessary to give it centripetal acceleration. The
magnitude of the required force can be calculated using Newton’s second law for
the radial component, where is the centripetal acceleration,

and is the total (or net) force in the radial direction:

[circular motion] (5;3)

For uniform circular motion the acceleration is which is
directed toward the center of the circle at all times. Thus the net force too must 
be directed toward the center of the circle (Fig. 5–4). A net force is necessary
because if no net force were exerted on the object, it would not move in a circle
but in a straight line, as Newton’s first law tells us. The direction of the net force
is continually changing so that it is always directed toward the center of the circle.
This force is sometimes called a centripetal (“pointing toward the center”) force.
But be aware that “centripetal force” does not indicate some new kind of force.
The term “centripetal force” merely describes the direction of the net force needed
to provide a circular path: the net force is directed toward the circle’s center. The
force must be applied by other objects. For example, to swing a ball in a circle on
the end of a string, you pull on the string and the string exerts the force on the
ball. (Try it.) Here, the “centripetal force” that provides the centripetal accelera-
tion is tension in the string. In other cases it can be gravity (on the Moon, for example),
a normal force, or even an electric force.

aR ,(v = constant),

©FR = maR = m
v2

r
.

©FRaR = v2�r,
aR©FR = maR ,

A©F
B

= maB B,

aR = 2.78 * 10–4 g,

L  0.0003 g.

aR = 2.72 * 10–3 m�s2 a g

9.80 m�s2
b = 2.78 * 10–4 g

g = 9.80 m�s2

= 0.00272 m�s2 = 2.72 * 10–3 m�s2.

aR =
v2

r
=

(2pr)2

T2r
=

4p2r

T2
=

4p2A3.84 * 108 mB
A2.36 * 106 sB2

T = (27.3 d)(24.0 h�d)(3600 s�h) = 2.36 * 106 s.
v = 2pr�T.

r = 3.84 * 108 m
2pr,

aR .

EXAMPLE 5;2

112 CHAPTER 5 Circular Motion; Gravitation

C A U T I O N

Distinguish the Moon’s 
gravity on objects at its surface
from the Earth’s gravity acting 

on the Moon (this Example)

C A U T I O N

Centripetal force is not a new
kind of force 

(Every force must be exerted 
by an object)

F
B

F
B

vB

vB

FIGURE 5;4 A force is required to
keep an object moving in a circle. If
the speed is constant, the force is
directed toward the circle’s center.



There is a common misconception that an object moving in a circle has an 
outward force acting on it, a so-called centrifugal (“center-fleeing”) force. This is
incorrect: there is no outward force on the revolving object. Consider, for example,
a person swinging a ball on the end of a string around her head (Fig. 5–5). If you
have ever done this yourself, you know that you feel a force pulling outward on
your hand. The misconception arises when this pull is interpreted as an outward
“centrifugal” force pulling on the ball that is transmitted along the string to your
hand. This is not what is happening at all. To keep the ball moving in a circle, you
pull inwardly on the string, and the string exerts this inward force on the ball. The ball
exerts an equal and opposite force on the string (Newton’s third law), and this
is the outward force your hand feels (see Fig. 5–5).

The force on the ball in Fig. 5–5 is the one exerted inwardly on it by you, via the
string. To see even more convincing evidence that a “centrifugal force” does not act 
on the ball, consider what happens when you let go of the string. If a centrifugal force
were acting, the ball would fly outward, as shown in Fig. 5–6a. But it doesn’t;
the ball flies off tangentially (Fig. 5–6b), in the direction of the velocity it had 
at the moment it was released, because the inward force no longer acts. Try it 
and see!

EXERCISE B Return to Chapter-Opening Question 1, page 109, and answer it again
now. Try to explain why you may have answered differently the first time.

Force on revolving ball (horizontal). Estimate
the force a person must exert on a string attached to a 0.150-kg ball to make the
ball revolve in a horizontal circle of radius 0.600 m. The ball makes 2.00 revo-
lutions per second  as in Example 5–1. Ignore the string’s mass.

APPROACH First we need to draw the free-body diagram for the ball. The forces
acting on the ball are the force of gravity, downward, and the tension force 
that the string exerts toward the hand at the center (which occurs because the
person exerts that same force on the string). The free-body diagram for the ball is
shown in Fig. 5–7. The ball’s weight complicates matters and makes it impos-
sible to revolve a ball with the cord perfectly horizontal. We estimate the force
assuming the weight is small, and letting in Fig. 5–7. Then will act
nearly horizontally and, in any case, provides the force necessary to give the ball
its centripetal acceleration.

SOLUTION We apply Newton’s second law to the radial direction, which we
assume is horizontal:

where  and  Thus

NOTE We keep only two significant figures in the answer because we ignored the
ball’s weight; it is  about of our result,
which is small but maybe not so small as to justify stating a more precise answer 
for FT .

1
10mg = (0.150 kg)A9.80 m�s2B = 1.5 N,

= (0.150 kg)
(7.54 m�s)2

(0.600 m)
L 14 N.

FT = m
v2

r

v = 2pr�T = 2p(0.600 m)�(0.500 s) = 7.54 m�s.aR = v2�r

 (©F)R = maR ,

F
B

Tf L 0

F
B

TmgB

(T = 0.500 s),
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There is no real “centrifugal force”

Force on hand
exerted by
string

Force on ball
exerted by
string

FIGURE 5;5 Swinging a ball on the
end of a string (looking down from
above).

(b)

(c)

(a)

DOESN’T
HAPPEN

HAPPENS

vB

vB

FIGURE 5;6 If centrifugal force
existed, the revolving ball would fly
outward as in (a) when released. In
fact, it flies off tangentially as in (b).
In (c) sparks fly in straight lines 
tangentially from the edge of a 
rotating grinding wheel.

r
φ

mgB

TF
B

FIGURE 5;7 Example 5–3.



Revolving ball (vertical circle). A 0.150-kg ball on the end
of a 1.10-m-long cord (negligible mass) is swung in a vertical circle. (a) Deter-
mine the minimum speed the ball must have at the top of its arc so that the ball
continues moving in a circle. (b) Calculate the tension in the cord at the bottom
of the arc, assuming the ball is moving at twice the speed of part (a).

APPROACH The ball moves in a vertical circle and is not undergoing uniform
circular motion. The radius is assumed constant, but the speed v changes
because of gravity. Nonetheless, Eq. 5–1  is valid at each point along
the circle, and we use it at the top and bottom points. The free-body diagram is
shown in Fig. 5–8 for both positions.

SOLUTION (a) At the top (point 1), two forces act on the ball: the force of
gravity, and the tension force the cord exerts at point 1. Both act down-
ward, and their vector sum acts to give the ball its centripetal acceleration 
We apply Newton’s second law, for the vertical direction, choosing downward as
positive since the acceleration is downward (toward the center):

[at top]

From this equation we can see that the tension force at point 1 will get larger
if (ball’s speed at top of circle) is made larger, as expected. But we are asked
for the minimum speed to keep the ball moving in a circle. The cord will remain
taut as long as there is tension in it. But if the tension disappears (because is 
too small) the cord can go limp, and the ball will fall out of its circular path. Thus,
the minimum speed will occur if (the ball at the topmost point), for
which the equation above becomes

[minimum speed at top]

We solve for keeping an extra digit for use in (b):

This is the minimum speed at the top of the circle if the ball is to continue
moving in a circular path.
(b) When the ball is at the bottom of the circle (point 2 in Fig. 5–8), the cord
exerts its tension force upward, whereas the force of gravity, still acts
downward. Choosing upward as positive, Newton’s second law gives:

[at bottom]

The speed is given as twice that in (a), namely We solve for 

= (0.150 kg)
(6.566 m�s)2

(1.10 m)
+ (0.150 kg)A9.80 m�s2B = 7.35 N.

FT 2 = m
v2

2

r + mg

FT 2 :6.566 m�s.v2

FT 2 - mg = m
v2

2

r
.

 (©F)R = maR

mgB,FT 2

= 3.283 m�s L  3.28 m�s.

v1 = 1gr = 3A9.80 m�s2B(1.10 m)

v1 ,

mg = m
v1

2

r
.

FT 1 = 0

v1

v1

FT 1

FT 1 + mg = m
v1

2

r
.

 (©F)R = maR

aR .
F
B

T 1 ,
mgB,

(aR = v2�r)
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Circular motion only if cord 
is under tension
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FIGURE 5;9 Exercise C.
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F
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gB

gB

FIGURE 5;8 Example 5–4. Free-
body diagrams for positions 1 and 2.

EXERCISE C A rider on a Ferris wheel moves in a vertical circle of radius r at constant
speed v (Fig. 5–9). Is the normal force that the seat exerts on the rider at the top of 
the wheel (a) less than, (b) more than, or (c) the same as, the force the seat exerts at the
bottom of the wheel?



Tetherball. The game of tetherball is played
with a ball tied to a pole with a cord. After the ball is struck, it revolves 
around the pole as shown in Fig. 5–10. In what direction is the acceleration of
the ball, and what force causes the acceleration, assuming constant speed?

RESPONSE If the ball revolves in a horizontal plane as shown, then the accel-
eration points horizontally toward the center of the ball’s circular path (not
toward the top of the pole). The force responsible for the acceleration may not
be obvious at first, since there seems to be no force pointing directly horizontally.
But it is the net force (the sum of and here) that must point in the 
direction of the acceleration. The vertical component of the cord tension,
balances the ball’s weight, The horizontal component of the cord tension,

is the force that produces the centripetal acceleration toward the center.FTx ,
mgB.

FTy ,
F
B

TmgB

CONCEPTUAL EXAMPLE 5;5
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Driving around a curve

Ty

T

Tx

m

F
B

F
B

F
B

gB

FIGURE 5;10 Example 5–5.

Force on car
    (sum of friction forces
    acting on each tire)

Tendency for
passenger to go
straight

Force on 
passenger

FIGURE 5;11 The road exerts an
inward force (friction against the tires)
on a car to make it move in a circle.
The car exerts an inward force on the
passenger.

5–3 Highway Curves:
Banked and Unbanked

An example of circular dynamics occurs when an automobile rounds a curve, say
to the left. In such a situation, you may feel that you are thrust outward toward
the right side door. But there is no mysterious centrifugal force pulling on you.
What is happening is that you tend to move in a straight line, whereas the car has
begun to follow a curved path. To make you go in the curved path, the seat 
(friction) or the door of the car (direct contact) exerts a force on you (Fig. 5–11).
The car also must have a force exerted on it toward the center of the curve if it 
is to move in that curve. On a flat road, this force is supplied by friction between
the tires and the pavement.

is, all the forces or components that act radially, toward
or away from the center of the circular path. The sum
of these forces (or components) provides the centrip-
etal acceleration,

3. Choose a convenient coordinate system, preferably
with one axis along the acceleration direction.

4. Apply Newton’s second law to the radial component:

[radial direction]©FR = maR = m
v2

r
.

aR = v2�r.

P
R

O
B

L
E

M

S O LV I N G

Uniform Circular Motion
1. Draw a free-body diagram, showing all the forces

acting on each object under consideration. Be sure
you can identify the source of each force (tension 
in a cord, Earth’s gravity, friction, normal force, and
so on). Don’t put in something that doesn’t belong
(like a centrifugal force).

2. Determine which of the forces, or which of their compo-
nents, act to provide the centripetal acceleration—that



If the wheels and tires of the car are rolling normally without slipping or 
sliding, the bottom of the tire is at rest against the road at each instant. So the 
friction force the road exerts on the tires is static friction. But if static friction 
is not great enough, as under icy conditions or high speed, the static friction 
force is less than and the car will skid out of a circular path into a more
nearly straight path. See Fig. 5–12. Once a car skids or slides, the friction force
becomes kinetic friction, which is smaller than static friction.

Skidding on a curve. A 1000-kg car rounds a curve on a 
flat road of radius 50 m at a speed of Will the car follow the
curve, or will it skid? Assume: (a) the pavement is dry and the coefficient of static
friction is  (b) the pavement is icy and  

APPROACH The forces on the car are gravity mg downward, the normal 
force exerted upward by the road, and a horizontal friction force due to the
road. They are shown in Fig. 5–13, which is the free-body diagram for the car.
The car will follow the curve if the maximum static friction force is greater than
the mass times the centripetal acceleration.

SOLUTION In the vertical direction (y) there is no acceleration. Newton’s second
law tells us that the normal force on the car is equal to the weight mg since
the road is flat:

so

In the horizontal direction the only force is friction, and we must compare it to
the force needed to produce the centripetal acceleration to see if it is sufficient.
The net horizontal force required to keep the car moving in a circle around the
curve is

Now we compute the maximum total static friction force (the sum of the friction
forces acting on each of the four tires) to see if it can be large enough to provide
a safe centripetal acceleration. For (a), and the maximum friction
force attainable (recall from Section 4–8 that ) is

Since a force of only 4500 N is needed, and that is, in fact, how much will be
exerted by the road as a static friction force, the car can follow the curve. But in
(b) the maximum static friction force possible is

The car will skid because the ground cannot exert sufficient force (4500 N is
needed) to keep it moving in a curve of radius 50 m at a speed of 

The possibility of skidding is worse if the wheels lock (stop rotating) when the
brakes are applied too hard. When the tires are rolling, static friction exists. But 
if the wheels lock (stop rotating), the tires slide and the friction force, which is
now kinetic friction, is less. More importantly, the direction of the friction force
changes suddenly if the wheels lock. Static friction can point perpendicular to the
velocity, as in Fig. 5–13b; but if the car slides, kinetic friction points opposite to
the velocity. The force no longer points toward the center of the circle, and the car
cannot continue in a curved path (see Fig. 5–12). Even worse, if the road is wet 
or icy, locking of the wheels occurs with less force on the brake pedal since there 
is less road friction to keep the wheels turning rather than sliding. Antilock brakes
(ABS) are designed to limit brake pressure just before the point where sliding
would occur, by means of delicate sensors and a fast computer.

54 km�h.

AFfrBmax = ms FN = (0.25)(9800 N) = 2450 N.

AFfrBmax = ms FN = (0.60)(9800 N) = 5880 N.

Ffr � ms FN

ms = 0.60,

(©F)R = maR = m
v2

r
= (1000 kg)

(15 m�s)2

(50 m)
= 4500 N.

FN = mg = (1000 kg)A9.80 m�s2B = 9800 N.

 0 = ©Fy = FN - mg

FN

FN

ms = 0.25.ms = 0.60;

15 m�s (54 km�h).
EXAMPLE 5;6

mv2�r
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Antilock brakes

(b)

(a) gB
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FIGURE 5;13 Example 5–6.
Forces on a car rounding a curve on
a flat road. (a) Front view, (b) top
view.

FIGURE 5;12 Race car heading
into a curve. From the tire marks 
we see that most cars experienced a
sufficient friction force to give them
the needed centripetal acceleration
for rounding the curve safely. But,
we also see tire tracks of cars on
which there was not sufficient
force—and which unfortunately 
followed more nearly straight-line
paths.



The banking of curves can reduce the chance of skidding. The normal force
exerted by a banked road, acting perpendicular to the road, will have a compo-
nent toward the center of the circle (Fig. 5–14), thus reducing the reliance on
friction. For a given banking angle there will be one speed for which no friction
at all is required. This will be the case when the horizontal component of the
normal force toward the center of the curve, (see Fig. 5–14), is just 
equal to the force required to give a vehicle its centripetal acceleration—that is,
when

[no friction required]

The banking angle of a road, is chosen so that this condition holds for a partic-
ular speed, called the “design speed.”

u,

FN sin u = m
v2

r
.

FN sin u

u,
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Banked curves

C A U T I O N

is not always equal to mgFN

FN cosθ

θ

θ

FN sinθ

y

x

m

R

N

gB

F
B

aB

FIGURE 5;14 Normal force on a
car rounding a banked curve,
resolved into its horizontal and 
vertical components. The centripetal
acceleration is horizontal (not
parallel to the sloping road). The
friction force on the tires, not 
shown, could point up or down 
along the slope, depending on the
car’s speed. The friction force will 
be zero for one particular speed.

EXERCISE D To negotiate a flat (unbanked) curve at a faster speed, a driver puts a couple
of sand bags in his van aiming to increase the force of friction between the tires and the
road. Will the sand bags help?

Banking angle. (a) For a car traveling with speed v around
a curve of radius r, determine a formula for the angle at which a road should 
be banked so that no friction is required. (b) What is this angle for a road which
has a curve of radius 50 m with a design speed of 

APPROACH Even though the road is banked, the car is still moving along a
horizontal circle, so the centripetal acceleration needs to be horizontal. We
choose our x and y axes as horizontal and vertical so that which is hori-
zontal, is along the x axis. The forces on the car are the Earth’s gravity mg
downward, and the normal force exerted by the road perpendicular to its
surface. See Fig. 5–14, where the components of are also shown. We don’t
need to consider the friction of the road because we are designing a road to be
banked so as to eliminate dependence on friction.

SOLUTION (a) Since there is no vertical motion, and gives

or

[Note in this case that  because  ]
We substitute this relation for into the equation for the horizontal motion,

which becomes

or

This is the formula for the banking angle no friction needed at this speed v.
(b) For  and  ( ),

so

We have been using the centripetal acceleration where r is the
radius of a circle. For a road, and in many other situations, we don’t have a full
circle, but only a portion of a circle: still works and we often call r the
radius of curvature of that portion of a circle we are dealing with.

a = v2�r

a = v2�r

u = tan–1(0.40) = 22°.

tan u =
(14 m�s)2

(50 m)A9.8 m�s2B = 0.40,

�  14 m�sv = 50 km�hr = 50 m
u:

tan u =
v2

rg
.

mg

cos u
sin u = m

v2

r

FN sin u = m
v2

r
,

FN

cos u � 1.FN � mg

FN =
mg

cos u
.

FN cos u - mg = 0

©Fy = mayay = 0

FN

FN

aR ,

50 km�h?

EXAMPLE 5;7



5–4 Nonuniform Circular Motion
Circular motion at constant speed occurs when the net force on an object is
exerted toward the center of the circle. If the net force is not directed toward the
center but is at an angle, as shown in Fig. 5–15a, the force has two components.
The component directed toward the center of the circle, gives rise to the cen-
tripetal acceleration, and keeps the object moving in a circle. The component
tangent to the circle, acts to increase (or decrease) the speed, and thus gives
rise to a component of the acceleration tangent to the circle, When the speed
of the object is changing, a tangential component of force is acting.

When you first start revolving a ball on the end of a string around your head,
you must give it tangential acceleration. You do this by pulling on the string with
your hand displaced from the center of the circle. In athletics, a hammer thrower
accelerates the hammer tangentially in a similar way so that it reaches a high speed
before release.

The tangential component of the acceleration, has magnitude equal to
the rate of change of the magnitude of the object’s velocity:

The radial (centripetal) acceleration arises from the change in direction of the
velocity and, as we have seen (Eq. 5–1), has magnitude

The tangential acceleration always points in a direction tangent to the circle, and
is in the direction of motion (parallel to which is always tangent to the circle) 
if the speed is increasing, as shown in Fig. 5–15b. If the speed is decreasing,

points antiparallel to In either case, and are always perpendicular 
to each other; and their directions change continually as the object moves along
its circular path. The total vector acceleration is the sum of the two components:

Since and are always perpendicular to each other, the magnitude of at
any moment is

Two components of acceleration. A race car starts from
rest in the pit area and accelerates at a uniform rate to a speed of in 
moving on a circular track of radius 500 m. Assuming constant tangential 
acceleration, find (a) the tangential acceleration, and (b) the radial acceler-
ation, at the instant when the speed is  

APPROACH The tangential acceleration relates to the change in speed of the car,
and can be calculated as  The centripetal acceleration relates to the
change in the direction of the velocity vector and is calculated using

SOLUTION (a) During the 11-s time interval, we assume the tangential accel-
eration is constant. Its magnitude is

(b) When the centripetal acceleration is

NOTE The radial (centripetal) acceleration increases continually, whereas the
tangential acceleration stays constant.

aR =
v2

r
=

(15 m�s)2

(500 m)
= 0.45 m�s2.

v = 15 m�s,

atan =
¢v

¢t
=

(35 m�s - 0 m�s)
11 s

= 3.2 m�s2.

atan

aR = v2�r.
atan = ¢v�¢t.

v = 15 m�s.

11 s,35 m�s
EXAMPLE 5;8

a = 3atan
2 + aR

2 .

aBaBtanaBR

aB = aBtan + aBR .

aB

aBRaBtanvB.aBtan

vB,

aR =
v2

r
.

atan =
¢v

¢t
.

atan ,

aBtan .
F
B

tan ,
aBR ,

F
B

R ,

*
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(a)

(b)

FIGURE 5;15 The speed of an
object moving in a circle changes if
the force on it has a tangential 
component, Part (a) shows the
force and its vector components;
part (b) shows the acceleration
vector and its vector components.

F
B

Ftan .
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5–5 Newton’s Law of Universal Gravitation
Besides developing the three laws of motion, Isaac Newton also examined the motion
of the planets and the Moon. In particular, he wondered about the nature of the
force that must act to keep the Moon in its nearly circular orbit around the Earth.

Newton was also thinking about the problem of gravity. Since falling objects
accelerate, Newton had concluded that they must have a force exerted on them,
a force we call the force of gravity. Whenever an object has a force exerted on it,
that force is exerted by some other object. But what exerts the force of gravity?
Every object on the surface of the Earth feels the force of gravity and no 
matter where the object is, the force is directed toward the center of the Earth
(Fig. 5–16). Newton concluded that it must be the Earth itself that exerts the
gravitational force on objects at its surface.

According to legend, Newton noticed an apple drop from a tree. He is said to
have been struck with a sudden inspiration: If gravity acts at the tops of trees, and
even at the tops of mountains, then perhaps it acts all the way to the Moon! With
this idea that it is the Earth’s gravity that holds the Moon in its orbit, Newton
developed his great theory of gravitation. But there was controversy at the time.
Many thinkers had trouble accepting the idea of a force “acting at a distance.”
Typical forces act through contact—your hand pushes a cart and pulls a wagon,
a bat hits a ball, and so on. But gravity acts without contact, said Newton: the Earth
exerts a force on a falling apple and on the Moon, even though there is no contact,
and the two objects may even be very far apart.†

Newton set about determining the magnitude of the gravitational force that
the Earth exerts on the Moon as compared to the gravitational force on objects
at the Earth’s surface. The centripetal acceleration of the Moon, as we calculated
in Example 5–2, is In terms of the acceleration of gravity at
the Earth’s surface,

That is, the acceleration of the Moon toward the Earth is about as great as 
the acceleration of objects at the Earth’s surface. The Moon is 384,000 km from
the Earth, which is about 60 times the Earth’s radius of 6380 km. That is, the
Moon is 60 times farther from the Earth’s center than are objects at the Earth’s
surface. But  Again that number 3600! Newton concluded
that the gravitational force or exerted by the Earth on any object decreases
with the square of its distance r from the Earth’s center:

The Moon is 60 Earth radii away, so it feels a gravitational force only
times as strong as it would if it were at a point on the Earth’s surface.

Newton realized that the force of gravity on an object depends not only on
distance but also on the object’s mass. In fact, it is directly proportional to its
mass, as we have seen (Eq. 4–3). According to Newton’s third law, when the Earth
exerts its gravitational force on any object, such as the Moon, that object exerts an
equal and opposite force on the Earth (Fig. 5–17). Because of this symmetry,
Newton reasoned, the magnitude of the force of gravity must be proportional to
both masses:

where and are the masses of the Earth and the other object, respectively,
and r is the distance from the Earth’s center to the center of the other object.

mObjmE

FG r
mE mObj

r2
,

1
602 = 1

3600

FG r
1

r2
.

FGFgrav

60 * 60 = 602 = 3600.

1
3600

aR =
0.00272 m�s2

9.80 m�s2
g L

1
3600

g.

g = 9.80 m�s2,
aR = 0.00272 m�s2.

FG ,

†To deal with the conceptual difficulty of “action at a distance,” the idea of a gravitational field was intro-
duced many years later: every object that has mass produces a gravitational field in space. The force
one object exerts on a second object is then due to the gravitational field produced by the first object at
the position of the second object. We discuss fields in Section 16–7.

Moon

Gravitational
force exerted on
Moon by Earth

Earth

Gravitational force 
exerted on Earth
by the Moon

MEF
B

EMF
B

FIGURE 5;17 The gravitational
force one object exerts on a second
object is directed toward the first
object; and, by Newton’s third law,
is equal and opposite to the force
exerted by the second object on the
first. In the case shown, the
gravitational force on the Moon 
due to Earth, is equal and
opposite to the gravitational force
on Earth due to the Moon,
That is, F

B

ME = –F
B

EM .
F
B

EM .
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B

ME ,
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FIGURE 5;16 Anywhere on Earth,
whether in Alaska, Peru, or 
Australia, the force of gravity acts
downward toward the Earth’s center.
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Light
source
(narrow beam)
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Scale
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A
B

r

FIGURE 5;18 Schematic diagram of
Cavendish’s apparatus. Two spheres
are attached to a light horizontal rod,
which is suspended at its center by a
thin fiber. When a third sphere
(labeled A) is brought close to one of
the suspended spheres (labeled B),
the gravitational force causes the 
latter to move, and this twists the 
fiber slightly. The tiny movement is 
magnified by the use of a narrow light
beam directed at a mirror mounted on
the fiber. The beam reflects onto a 
scale. Previous determination of how
large a force will twist the fiber a 
given amount then allows the 
experimenter to determine the 
magnitude of the gravitational force
between the two objects, A and B.

Newton went a step further in his analysis of gravity. In his examination of the
orbits of the planets, he concluded that the force required to hold the different 
planets in their orbits around the Sun seems to diminish as the inverse square of
their distance from the Sun. This led him to believe that it is also the gravitational
force that acts between the Sun and each of the planets to keep them in their orbits.
And if gravity acts between these objects, why not between all objects? Thus he 
proposed his law of universal gravitation, which we can state as follows:

Every particle in the universe attracts every other particle with a force that 
is proportional to the product of their masses and inversely proportional to 
the square of the distance between them. This force acts along the line 
joining the two particles.

The magnitude of the gravitational force can be written as

(5;4)

where and are the masses of the two particles, r is the distance between
them, and G is a universal constant which must be measured experimentally.

The value of G must be very small, since we are not aware of any force of
attraction between ordinary-sized objects, such as between two baseballs. The
force between two ordinary objects was first measured by Henry Cavendish in
1798, over 100 years after Newton published his law. To detect and measure the
incredibly small force between ordinary objects, he used an apparatus like that
shown in Fig. 5–18. Cavendish confirmed Newton’s hypothesis that two objects
attract one another and that Eq. 5–4 accurately describes this force. In addition,
because Cavendish could measure and r accurately, he was able to
determine the value of the constant G as well. The accepted value today is

(See Table inside front cover for values of all constants to highest known precision.)
Equation 5–4 is called an inverse square law because the force is inversely propor-
tional to 

[Strictly speaking, Eq. 5–4 gives the magnitude of the gravitational force that
one particle exerts on a second particle that is a distance r away. For an extended
object (that is, not a point), we must consider how to measure the distance r.
A correct calculation treats each extended body as a collection of particles, and 
the total force is the sum of the forces due to all the particles. The sum over all these
particles is often done using integral calculus, which Newton himself invented.
When extended bodies are small compared to the distance between them (as for the
Earth–Sun system), little inaccuracy results from considering them as point particles.
Newton was able to show that the gravitational force exerted on a particle outside a
uniform sphere is the same as if the entire mass of the sphere was concentrated at its
center.† Thus Eq. 5–4 gives the correct force between two uniform spheres where r
is the distance between their centers.]

r2.

G = 6.67 * 10–11 N�m2�kg2.

m1 , m2 ,FG ,

m2m1

FG = G
m1 m2

r2
,
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Can you attract another person gravita-

tionally? A 50-kg person and a 70-kg person are sitting on a bench close to each
other. Estimate the magnitude of the gravitational force each exerts on the other.

APPROACH This is an estimate: we let the distance between the centers of the
two people be (about as close as you can get).

SOLUTION We use Eq. 5–4, which gives

rounded off to an order of magnitude. Such a force is unnoticeably small unless
extremely sensitive instruments are used ( of a pound).6  1�100,000

FG = G
m1 m2

r2
L
A6.67 * 10–11 N�m2�kg2B(50 kg)(70 kg)

(0.5 m)2
L 10–6 N,

1
2 m

EXAMPLE 5;9 ESTIMATE

†We demonstrate this result in Section 16–12.
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Spacecraft at What is the force of gravity acting on a
2000-kg spacecraft when it orbits two Earth radii from the Earth’s center (that is,
a distance  above the Earth’s surface, Fig. 5–19)? The mass of the
Earth is

APPROACH We could plug all the numbers into Eq. 5–4, but there is a simpler
approach. The spacecraft is twice as far from the Earth’s center as when it is 
at the surface of the Earth. Therefore, since the force of gravity decreases as
the square of the distance the force of gravity on the satellite will
be only one-fourth its weight at the Earth’s surface.

SOLUTION At the surface of the Earth, At a distance from the Earth’s
center of is as great:

FG = 1
4 mg = 1

4 (2000 kg)A9.80 m�s2B = 4900 N.

1
42rE , FG

FG = mg.

1
22 = 1

4B,Aand
FG

mE = 5.98 * 1024 kg.
rE = 6380 km

2rE .EXAMPLE 5;10

Motion

2rE

rE

FIGURE 5;19 Example 5–10;
a spacecraft in orbit at r = 2rE .

Note carefully that the law of universal gravitation describes a particular
force (gravity), whereas Newton’s second law of motion tells how an
object accelerates due to any type of force.

5–6 Gravity Near the Earth’s Surface
When Eq. 5–4 is applied to the gravitational force between the Earth and an
object at its surface, becomes the mass of the Earth becomes the mass
of the object m, and r becomes the distance of the object from the Earth’s center,
which is the radius of the Earth This force of gravity due to the Earth is the
weight of the object on Earth, which we have been writing as mg. Thus,

We can solve this for g, the acceleration of gravity at the Earth’s surface:

(5;5)

Thus, the acceleration of gravity at the surface of the Earth, g, is determined by
and (Don’t confuse G with g; they are very different quantities, but are

related by Eq. 5–5.)
Until G was measured, the mass of the Earth was not known. But once G

was measured, Eq. 5–5 could be used to calculate the Earth’s mass, and Caven-
dish was the first to do so. Since  and the radius of the Earth is

then, from Eq. 5–5, we obtain the mass of the Earth to be

Equation 5–5 can be applied to other planets, where g, m, and r would refer 
to that planet.

mE =
grE

2

G
=
A9.80 m�s2B A6.38 * 106 mB2

6.67 * 10–11 N�m2�kg2
= 5.98 * 1024 kg.

rE = 6.38 * 106 m,
g = 9.80 m�s2

rE .mE

g = G
mE

rE
2

.

mg = G
mmE

rE
2

.

rE .

m2mE ,m1

(F = ma)
C A U T I O N

Distinguish Newton’s second law
from the law of universal gravitation

C A U T I O N

Distinguish G from g

Gravity on Everest. Estimate the effective
value of g on the top of Mt. Everest, 8850 m (29,035 ft) above sea level 
(Fig. 5–20). That is, what is the acceleration due to gravity of objects allowed to
fall freely at this altitude? Ignore the mass of the mountain itself.

APPROACH The force of gravity (and the acceleration due to gravity g) depends
on the distance from the center of the Earth, so there will be an effective value
on top of Mt. Everest which will be smaller than g at sea level. We assume the
Earth is a uniform sphere (a reasonable “estimate”).

SOLUTION We use Eq. 5–5, with replaced by  

which is a reduction of about 3 parts in a thousand (0.3%).

g = G
mE

r2
=
A6.67 * 10–11 N�m2�kg2B A5.98 * 1024 kgB

A6.389 * 106 mB2 = 9.77 m�s2,

6389 km = 6.389 * 106 m:
r = 6380 km + 8.9 km =rE

g¿

EXAMPLE 5;11 ESTIMATE

FIGURE 5;20 Example 5–11. Mount
Everest, 8850 m (29,035 ft) above sea
level; in the foreground, the author
with sherpas at 5500 m (18,000 ft).



5–7 Satellites and “Weightlessness”
Satellite Motion
Artificial satellites circling the Earth are now commonplace (Fig. 5–21). A satellite
is put into orbit by accelerating it to a sufficiently high tangential speed with the use
of rockets, as shown in Fig. 5–22. If the speed is too high, the spacecraft will not be
confined by the Earth’s gravity and will escape, never to return. If the speed is too
low, it will return to Earth. Satellites are typically put into circular (or nearly circu-
lar) orbits, because such orbits require the least takeoff speed.
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Artificial Earth satellites

FIGURE 5;21 A satellite, the International Space Station,
circling the Earth.

It is sometimes asked: “What keeps a satellite up?” The answer is: its high
speed. If a satellite in orbit stopped moving, it would fall directly to Earth. But at
the very high speed a satellite has, it would quickly fly out into space (Fig. 5–23)
if it weren’t for the gravitational force of the Earth pulling it into orbit. In fact,
a satellite in orbit is falling (accelerating) toward Earth, but its high tangential
speed keeps it from hitting Earth.

For satellites that move in a circle (at least approximately), the needed acceler-
ation is centripetal and equals The force that gives a satellite this acceleration
is the force of gravity exerted by the Earth, and since a satellite may be at a 
considerable distance from the Earth, we must use Newton’s law of universal
gravitation (Eq. 5–4) for the force acting on it. When we apply Newton’s second
law, in the radial direction, we find

(5;6)

where m is the mass of the satellite. This equation relates the distance of 
the satellite from the Earth’s center, r, to its speed, v, in a circular orbit.
Note that only one force—gravity—is acting on the satellite, and that r is the sum
of the Earth’s radius plus the satellite’s height h above the Earth: r = rE + h.rE

G
mmE

r2
= m

v2

r
,

©FR = maR

v2�r.

27,000 km/h
(circular orbit)

30,000 km/h
(elliptical orbit)

40,000 km/h
(escape from Earth)

FIGURE 5;22 Artificial satellites launched at 
different speeds.

Without
gravity

With
gravity

FIGURE 5;23 A moving satellite
“falls” out of a straight-line path
toward the Earth.

Note that Eq. 5–5 does not give precise values for g at different locations
because the Earth is not a perfect sphere. The Earth not only has mountains and
valleys, and it bulges at the equator, but also its mass is not distributed precisely 
uniformly. (See Table 5–1.) The Earth’s rotation also affects the value of g. However,
for most practical purposes, when an object is near the Earth’s surface, we will
simply use  and write the weight of an object as mg.g = 9.80 m�s2

EXERCISE E Suppose you could double the mass of a planet but keep its volume the
same. How would the acceleration of gravity, g, at the surface change?

TABLE 5;1 Acceleration Due 
to Gravity at Various Locations

Elevation g
Location (m)

New York 0 9.803
San Francisco 0 9.800
Denver 1650 9.796
Pikes Peak 4300 9.789
Sydney, Australia 0 9.798
Equator 0 9.780
North Pole 0 9.832
(calculated)

(m�s2)



If we solve Eq. 5–6 for v, we find  and we see that a satellite’s
speed does not depend on its own mass. Satellites of different mass orbiting at the
same distance above Earth have the same speed and period.

v = 2GmE�r
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Geosynchronous satellites
Geosynchronous satellite. A geosynchronous satellite is

one that stays above the same point on the Earth, which is possible only if it
is above a point on the equator. Why? Because the center of a satellite orbit is
always at the center of the Earth; so it is not possible to have a satellite orbiting
above a fixed point on the Earth at any latitude other than 0°. Geosynchronous
satellites are commonly used for TV and radio transmission, for weather forecasting,
and as communication relays.† Determine (a) the height above the Earth’s surface
such a satellite must orbit, and (b) such a satellite’s speed. (c) Compare to the
speed of a satellite orbiting 200 km above Earth’s surface.

APPROACH To remain above the same point on Earth as the Earth rotates,
the satellite must have a period of 24 hours. We can apply Newton’s second law,

where  if we assume the orbit is circular.

SOLUTION (a) The only force on the satellite is the gravitational force due
to the Earth. (We can ignore the gravitational force exerted by the Sun. Why?)
We apply Eq. 5–6 assuming the satellite moves in a circle:

This equation has two unknowns, r and v. So we need a second equation. The
satellite revolves around the Earth with the same period that the Earth rotates
on its axis, namely once in 24 hours. Thus the speed of the satellite must be

where  We substitute this into the
“satellite equation” above and obtain (after cancelling on both sides):

After cancelling an r, we can solve for 

We take the cube root and find

or 42,200 km from the Earth’s center. We subtract the Earth’s radius of 6380 km
to find that a geosynchronous satellite must orbit about 36,000 km (about )
above the Earth’s surface.
(b) We solve for v in the satellite equation, Eq. 5–6:

or about 11,000 km h We get the same result if we use
(c) The equation in part (b) for v shows So for

we get

or about 28,000 km h (L 17,000 mi�h).�

v¿ = vA r

r¿
= (3070 m�s)B (42,200 km)

(6580 km)
= 7770 m�s,

6380 km + 200 km = 6580 km,
r = rE + h =v r 11�r .

v = 2pr�T.(L 7000 mi�h).�

v = BGmE

r = C A6.67 * 10–11 N�m2�kg2B A5.98 * 1024 kgB
A4.22 * 107 mB = 3070 m�s,

6rE

r = 4.22 * 107 m,

= 7.54 * 1022 m3.

r3 =
GmE T2

4p2
=
A6.67 * 10–11 N�m2�kg2B A5.98 * 1024 kgB(86,400 s)2

4p2

r3:

G
mE

r2
=

(2pr)2

rT2
.

mSat

T = 1 day = (24 h)(3600 s�h) = 86,400 s.

v =
2pr

T
,

G
mSat mE

r2
= mSat

v2

r
.

a = v2�rF = ma,

EXAMPLE 5;12

†Geosynchronous satellites are useful because receiving and transmitting antennas at a given place 
on Earth can stay fixed on such a satellite (no tracking and no switching satellites is needed).



Weightlessness
People and other objects in a satellite circling the Earth are said to experience
apparent weightlessness. Let us first look at a simpler case: a falling elevator. In
Fig. 5–24a, an elevator is at rest with a bag hanging from a spring scale. The 
scale reading indicates the downward force exerted on it by the bag. This force,
exerted on the scale, is equal and opposite to the force exerted by the scale
upward on the bag, and we call its magnitude w (for “weight”). Two forces act on
the bag: the downward gravitational force and the upward force exerted by the
scale equal to w. Because the bag is not accelerating when we apply

to the bag in Fig. 5–24a we obtain

where mg is the weight of the bag. Thus, and since the scale indicates
the force w exerted on it by the bag, it registers a force equal to the weight of the
bag, as we expect.

Now let the elevator have an acceleration, a. Applying Newton’s second law,
to the bag as seen from an inertial reference frame (the elevator itself

is not now an inertial frame) we have

Solving for w, we have

We have chosen the positive direction up. Thus, if the acceleration a is up, a is
positive; and the scale, which measures w, will read more than mg. We call w the
apparent weight of the bag, which in this case would be greater than its actual
weight (mg). If the elevator accelerates downward, a will be negative and w, the
apparent weight, will be less than mg. The direction of the velocity doesn’t
matter. Only the direction of the acceleration (and its magnitude) influences
the scale reading.

Suppose the elevator’s acceleration is upward; then we find

That is, the scale reads times the actual weight of the bag (Fig. 5–24b). The
apparent weight of the bag is times its real weight. The same is true of the per-
son: her apparent weight (equal to the normal force exerted on her by the elevator
floor) is times her real weight. We can say that she is experiencing g’s, just 
as astronauts experience so many g’s at a rocket’s launch.

If, instead, the elevator’s acceleration is (downward), then
That is, the scale reads half the actual weight. If the

elevator is in free fall (for example, if the cables break), then and
The scale reads zero. See Fig. 5–24c. The bag appears weight-

less. If the person in the elevator accelerating at let go of a box, it would 
not fall to the floor. True, the box would be falling with acceleration g. But so
would the floor of the elevator and the person. The box would hover right 
in front of the person. This phenomenon is called apparent weightlessness
because in the reference frame of the person, objects don’t fall or seem to have
weight—yet gravity does not disappear. Gravity is still acting on each object,
whose weight is still mg.

–g
w = mg - mg = 0.

a = –g
w = mg - 1

2 mg = 1
2 mg.

a = – 1
2 g

1 1
21 1

2

1 1
2

1 1
2

= 3
2 mg.

w = mg + mA12 gB

1
2 g

aB
vB

[a is + upward]w = mg + ma.

w - mg = ma.

©F = ma,

w = mg,

w - mg = 0,

©F = ma
(a = 0),
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FIGURE 5;24 (a) A bag in an 
elevator at rest exerts a force on a
spring scale equal to its weight.
(b) In an elevator accelerating
upward at the bag’s apparent
weight is times larger than its 
true weight. (c) In a freely falling
elevator, the bag experiences
“weightlessness”: the scale reads
zero.
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The “weightlessness” experienced by people in a satellite orbit close to the
Earth (Fig. 5–25) is the same apparent weightlessness experienced in a freely
falling elevator. It may seem strange, at first, to think of a satellite as freely falling.
But a satellite is indeed falling toward the Earth, as was shown in Fig. 5–23. The
force of gravity causes it to “fall” out of its natural straight-line path. The accel-
eration of the satellite must be the acceleration due to gravity at that point, because
the only force acting on it is gravity. Thus, although the force of gravity acts on
objects within the satellite, the objects experience an apparent weightlessness
because they, and the satellite, are accelerating together as in free fall.

Figure 5–26 shows some examples of “free fall,” or apparent weightlessness,
experienced by people on Earth for brief moments.

A completely different situation occurs if a spacecraft is out in space far from
the Earth, the Moon, and other attracting bodies. The force of gravity due to the
Earth and other celestial bodies will then be quite small because of the distances
involved, and persons in such a spacecraft would experience real weightlessness.
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FIGURE 5;25 This astronaut is out-
side the International Space Station.
He must feel very free because he is
experiencing apparent weightlessness.

(a) (b) (c)

FIGURE 5;26 Experiencing
“weightlessness” on Earth.

FIGURE 5;27 Time exposure 
showing movement of stars over a
period of several hours.

5–8 Planets, Kepler’s Laws, and
Newton’s Synthesis

Where did we first get the idea of planets? Have you ever escaped the lights of
the city to gaze late at night at the multitude of stars in the night sky? It is a
moving experience. Thousands of years ago, the ancients saw this sight every
cloudless night, and were fascinated. They noted that the vast majority of stars,
bright or dim, seemed to maintain fixed positions relative to each other. The
ancients imagined these fixed stars as being attached to a huge inverted bowl, or
sphere. This celestial sphere revolved around the Earth almost exactly once a day
(Fig. 5–27), from east to west. Among all the stars that were visible to the naked
eye (there were no telescopes until much later, about 1600), the ancients saw five
stars that changed position relative to the fixed stars over weeks and months.
These five wandering stars were called planets (Greek for wandering). Planets
were thus visible at night as tiny points of light like other stars.

The ancient idea that the Sun, Moon, and planets revolve around the Earth
is called the geocentric view ( in Greek). It was developed into a fine
theoretical system by Ptolemy in the second century B.C. Today we believe in a
heliocentric system ( in Greek), where the Earth is just another
planet, between Venus and Mars, orbiting around the Sun. Although a heliocentric
view was proposed in ancient times, it was largely ignored until Renaissance Italy
of the fifteenth century. The real theory change (see Section 1–1 and Fig. 1–2)
began with the heliocentric theory of Nicolaus Copernicus (1473–1543) and then
was greatly advanced by the experimental observations of Galileo around 1610 using
his newly developed telescope. Galileo observed that the planet Jupiter has
moons (like a miniature solar system) and that Venus has phases like our Moon, not
explainable by Ptolemy’s geocentric system. [Galileo’s famous encounter with the
Church had little to do with religious faith, but rather with politics, personality
conflict, and authority. Today it is generally understood that science and faith are
different approaches that are not in conflict.]

30*

helios = Sun

geo = Earth

EXERCISE F Return to Chapter-Opening Question 2, page 109, and answer it again
now. Try to explain why you may have answered differently the first time.



TABLE 5;2 Planetary Data
Applied to Kepler’s Third Law

Mean
Distance
to Sun, s Period, T

Planet (Earth yr)

Mercury 57.9 0.241 3.34
Venus 108.2 0.615 3.35
Earth 149.6 1.000 3.35
Mars 227.9 1.88 3.35
Jupiter 778.3 11.86 3.35
Saturn 1427 29.5 3.34
Uranus 2870 84.0 3.35
Neptune 4497 165 3.34
(Pluto)† 5900 248 3.34
†Pluto, since its discovery in 1930, was
considered a ninth planet. But its small mass
and the recent discovery of other objects
beyond Neptune with similar masses has led 
to calling these smaller objects, including Pluto,
“dwarf planets.” We keep it in the Table to
indicate its great distance, and its consistency
with Kepler’s third law.

a1024 
km3

yr2 b(106 km)

s3�T 2

Sun

1

4

3

2

FIGURE 5;29 Kepler’s second law.
The two shaded regions have equal
areas. The planet moves from point 1
to point 2 in the same time it takes to
move from point 3 to point 4. Planets
move fastest when closest to the Sun.

Kepler’s Laws
Also about 1600, more than a half century before Newton proposed his three laws
of motion and his law of universal gravitation, the German astronomer Johannes
Kepler (1571–1630) had worked out a detailed description of the motion of the
planets around the Sun. Kepler’s work resulted in part from the many years he
spent examining data collected (without a telescope) by Tycho Brahe (1546–1601)
on the positions of the planets in their motion through the night sky.

Among Kepler’s writings were three empirical findings that we now refer to
as Kepler’s laws of planetary motion. These are summarized as follows, with
additional explanation in Figs. 5–28 and 5–29.

Kepler’s first law: The path of each planet around the Sun is an ellipse with the
Sun at one focus (Fig. 5–28).

Kepler’s second law: Each planet moves so that an imaginary line drawn from the
Sun to the planet sweeps out equal areas in equal periods of time (Fig. 5–29).

Kepler’s third law: The ratio of the squares of the periods T of any two planets
revolving around the Sun is equal to the ratio of the cubes of their mean dis-
tances from the Sun. [The mean distance equals the semimajor axis s (
the distance from the planet’s near point N and far point M from the Sun,
Fig. 5–28).] That is, if and represent the periods (the time needed for 
one revolution about the Sun) for any two planets, and and represent their
mean distances from the Sun, then

We can rewrite Kepler’s third law as

meaning that should be the same for each planet. Present-day data are
given in Table 5–2; see the last column.

In Examples and Problems we usually will assume the orbits are circles,
although it is not quite true in general.

s3�T2

s1
3

T1
2

=
s2
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FIGURE 5;28 Kepler’s first law.
An ellipse is a closed curve such 
that the sum of the distances from
any point P on the curve to two 
fixed points (called the foci, and

) remains constant. That is, the
sum of the distances, is
the same for all points on the curve.
A circle is a special case of an 
ellipse in which the two foci 
coincide, at the center of the circle.

F1P + F2P,
F2

F1

Where is Mars? Mars’ period (its “year”) was noted by
Kepler to be about 687 days (Earth days), which is
(Earth years). Determine the mean distance of Mars from the Sun using the
Earth as a reference.

APPROACH We are given the ratio of the periods of Mars and Earth. We can
find the distance from Mars to the Sun using Kepler’s third law, given the
Earth–Sun distance as (Table 5–2; also Table inside front cover).

SOLUTION Let the distance of Mars from the Sun be and the Earth–Sun
distance be From Kepler’s third law:

So Mars is 1.52 times the Earth’s distance from the Sun, or 2.28 * 1011 m.

sMS

sES
= aTM

TE
b 2

3 = a 1.88 yr
1 yr

b 2
3 = 1.52.

sES = 1.50 * 1011 m.
sMS ,

1.50 * 1011 m

(687 d�365 d) = 1.88 yr
EXAMPLE 5;13

Kepler’s Third Law Derived, Sun’s Mass, Perturbations
We will derive Kepler’s third law for the special case of a circular orbit, in 
which case the mean distance s is the radius r of the circle. (Most planetary orbits
are close to a circle.) First, we write Newton’s second law of motion,
For F we use the law of universal gravitation (Eq. 5–4) for the force between the
Sun and a planet of mass and for a the centripetal acceleration, Wev2�r.m1 ,

©F = ma.
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Kepler’s third law

assume the mass of the Sun is much greater than the mass of its planets, so we
ignore the effects of the planets on each other. Then

Here is the mass of a particular planet, its distance from the Sun, and 
its speed in orbit; is the mass of the Sun, since it is the gravitational attraction
of the Sun that keeps each planet in its orbit. The period of the planet is the
time required for one complete orbit, which is a distance equal to the circum-
ference of a circle. Thus

We substitute this formula for into the previous equation:

We rearrange this to get

(5;7a)

We derived this for planet 1 (say, Mars). The same derivation would apply for a
second planet (say, Saturn) orbiting the Sun,

where and are the period and orbit radius, respectively, for the second
planet. Since the right sides of the two previous equations are equal, we have

or, rearranging,

(5;7b)

which is Kepler’s third law. Equations 5–7a and 5–7b are valid also for elliptical
orbits if we replace r with the semimajor axis s.
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©F = ma

MS

The Sun’s mass determined. Determine the mass of the
Sun given the Earth’s distance from the Sun as  

APPROACH Equation 5–7a relates the mass of the Sun to the period and
distance of any planet. We use the Earth.

SOLUTION The Earth’s period is 
We solve Eq. 5–7a for 

MS =
4p2rES

3

GTE
2

=
4p2 A1.5 * 1011 mB3

A6.67 * 10–11 N�m2�kg2B A3.16 * 107 sB2 = 2.0 * 1030 kg.

MS :3.16 * 107 s.
TE = 1 yr = A365 1

4 dB A24 h�dB A3600 s�hB =
MS

rES = 1.5 * 1011 m.
EXAMPLE 5;14

Accurate measurements on the orbits of the planets indicated that they did
not precisely follow Kepler’s laws. For example, slight deviations from perfectly
elliptical orbits were observed. Newton was aware that this was to be expected
because any planet would be attracted gravitationally not only by the Sun but also
(to a much lesser extent) by the other planets. Such deviations, or perturbations,
in the orbit of Saturn were a hint that helped Newton formulate the law of 
universal gravitation, that all objects attract each other gravitationally. Observa-
tion of other perturbations later led to the discovery of Neptune. Deviations 
in the orbit of Uranus could not all be accounted for by perturbations 
due to the other known planets. Careful calculation in the nineteenth century
indicated that these deviations could be accounted for if another planet existed
farther out in the solar system. The position of this planet was predicted from 
the deviations in the orbit of Uranus, and telescopes focused on that region of 
the sky quickly found it; the new planet was called Neptune. Similar but much
smaller perturbations of Neptune’s orbit led to the discovery of Pluto in 1930.

P H Y S I C S  A P P L I E D

Determining the 
Sun’s mass

P H Y S I C S  A P P L I E D

Perturbations and 
discovery of planets
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FIGURE 5;30 Our solar system
(a) is compared to recently 
discovered planets orbiting (b) the
star Upsilon Andromedae with at
least three planets. is the mass of
Jupiter. (Sizes are not to scale.)

mJ

128 CHAPTER 5

P H Y S I C S  A P P L I E D

Planets around 
other stars

C A U T I O N

Compare orbits of objects 
only around the same center

Other Centers for Kepler’s Laws
The derivation of Eq. 5–7b, Kepler’s third law, compared two planets revolving
around the Sun. But the derivation is general enough to be applied to other systems.
For example, we could apply Eq. 5–7b to compare an artificial satellite and our
Moon, both revolving around Earth (then would be replaced by the mass
of the Earth). Or we could apply Eq. 5–7b to compare two moons revolving around
Jupiter. But Kepler’s third law, Eq. 5–7b, applies only to objects orbiting the same
attracting center. Do not use Eq. 5–7b to compare, say, the Moon’s orbit around
Earth to the orbit of Mars around the Sun: they depend on different attracting centers.

Distant Planetary Systems
Starting in the mid-1990s, planets revolving around distant stars (Fig. 5–30)
were inferred from the regular “wobble” in position of each star due to the gravi-
tational attraction of the revolving planet(s). Many such “extrasolar” planets are
now known.

ME ,MS

Newton’s Synthesis
Kepler arrived at his laws through careful analysis of experimental data.
Fifty years later, Newton was able to show that Kepler’s laws could be derived
mathematically from the law of universal gravitation and the laws of motion.
Newton also showed that for any reasonable form for the gravitational force law,
only one that depends on the inverse square of the distance is fully consistent
with Kepler’s laws. He thus used Kepler’s laws as evidence in favor of his law of
universal gravitation, Eq. 5–4.

The development by Newton of the law of universal gravitation and the three
laws of motion was a major intellectual achievement. With these laws, he was
able to describe the motion of objects on Earth and of the far-away planets seen
in the night sky. The motions of the planets through the heavens and of objects
on Earth were seen to follow the same laws (not recognized previously). For this
reason, and also because Newton integrated the results of earlier scientists into
his system, we sometimes speak of Newton’s synthesis.

The laws formulated by Newton are referred to as causal laws. By causality we
mean that one occurrence can cause another. When a rock strikes a window, we infer
the rock causes the window to break.This idea of “cause and effect”relates to Newton’s
laws: the acceleration of an object was seen to be caused by the net force acting on it.

As a result of Newton’s theories, the universe came to be viewed by many as
a machine whose parts move in a deterministic way. This deterministic view of the
universe had to be modified in the twentieth century (Chapter 28).

Sun Earth Reference Frames
The geocentric–heliocentric controversy (page 125) may be seen today as a matter of
frame of reference. From the reference frame of Earth, we see the Sun and Moon
as revolving around us with average periods of 24 h ( definition of 1 day) and
almost 25 h, respectively, roughly in circles. The orbits of the planets as seen from
Earth are very complicated, however.

In the Sun’s reference frame, Earth makes one revolution ( definition of the
year) in 365.256 days, in an ellipse that is nearly a circle. The Sun’s reference frame
has the advantage that the other planets also have simple elliptical orbits. (Or nearly
so—each planet’s gravity pulls on the others, causing small perturbations.) The Sun’s
vastly greater mass ( Earth’s) allows it to be an easier reference frame to use.

The Sun itself (and the Earth with it) revolves around the center of our Galaxy
(see Fig. 33–2 or 5–49) which itself moves relative to other galaxies. Indeed, there is
no one reference frame that we can consider as preferred or central.
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SunEarth (t = 0)

Earth (27.32 d)

Earth (29.53 d)

t = 1 day

(a) Full moon

(b) One day later

(c) New moon

(d) Moon has made one full
 revolution around Earth

(e) Moon needs 2 more days
 to align (Full moon)

FIGURE 5;31 Looking down on the plane of Earth’s orbit
around the Sun (not to scale), above Earth’s north pole, showing
our Moon making one revolution about Earth: (a) at a Full moon

(the red dot is an observer at about 6 PM who can just see the Full
moon rise); (b) exactly one day later (for the red dot to see the 

Moon rise, the Earth must rotate another 50 min); (c) after making a
“half revolution” the Moon is in line with the Sun, on the Sun’s side,

and is a New moon; (d) after the Moon makes one complete revolution
around Earth (sidereal period); (e) at the next Full moon (synodic 

period). At (a) and (e) there could be a lunar eclipse (Earth’s shadow 
falling on the Moon) but this rarely happens because the plane of Moon’s 

orbit is inclined to the plane of Earth’s orbit, so the Moon is usually above or
below the Earth’s orbital plane. At (c) there could be a solar eclipse, also rare.

5–9 Moon Rises an Hour Later Each Day
From the Earth’s reference frame, our Moon revolves on average in 24 h, 50 min,
which means the Moon rises nearly an hour later each day; and it is at its highest
point in the sky about an hour later each day. When the Moon is on the direct oppo-
site side of Earth from the Sun, the Sun’s light fully illuminates the Moon and we
call it a Full moon (Fig. 5–31a). When the Moon is on the same side of the Earth
as the Sun, and nearly aligned with both, we see the Moon as a thin sliver—most
or all of it is in shadow ( a New moon). The phases of the Moon (new, first 
quarter, full, third quarter) take it from one Full moon to the next Full moon in 
29.53 days ( synodic period) on average, as seen from the Earth as reference frame
(Fig. 5–31e). In the Sun’s frame of reference, the Moon revolves around the Earth in
27.32 days (sidereal period, Fig. 5–31d). This small difference arises because, when
the Moon has made one complete revolution around the Earth, the Earth itself
has moved in its orbit relative to the Sun. So the Moon needs more time ( 2 days)
to be fully aligned with the Sun and Earth and be a Full moon, Fig. 5–31e. The
red dot in Figs. 5–31a, b, and e represents an observer at the same location on Earth,
which in (a) is when the Full moon is rising and the Sun is just setting.

5–10 Types of Forces in Nature
We have already discussed that Newton’s law of universal gravitation, Eq. 5–4,
describes how a particular type of force—gravity—depends on the masses of the
objects involved and the distance between them. Newton’s second law,
on the other hand, tells how an object will accelerate due to any type of force. But
what are the types of forces that occur in nature besides gravity?

In the twentieth century, physicists came to recognize four fundamental forces
in nature: (1) the gravitational force; (2) the electromagnetic force (we shall see
later that electric and magnetic forces are intimately related); (3) the strong nuclear
force (which holds protons and neutrons together to form atomic nuclei); and 
(4) the weak nuclear force (involved in radioactivity). In this Chapter, we dis-
cussed the gravitational force in detail. The nature of the electromagnetic force
will be discussed in Chapters 16 to 22. The strong and weak nuclear forces, which
are discussed in Chapters 30 to 32, operate at the level of the atomic nucleus 
and are much less obvious in our daily lives.

Physicists have been working on theories that would unify these four forces—
that is, to consider some or all of these forces as different manifestations of the
same basic force. So far, the electromagnetic and weak nuclear forces have been
theoretically united to form electroweak theory, in which the electromagnetic and
weak forces are seen as two aspects of a single electroweak force. Attempts to further
unify the forces, such as in grand unified theories (GUT), are hot research topics today.

But where do everyday forces fit? Ordinary forces, other than gravity, such as
pushes, pulls, and other contact forces like the normal force and friction, are today
considered to be due to the electromagnetic force acting at the atomic level. For
example, the force your fingers exert on a pencil is the result of electrical repulsion
between the outer electrons of the atoms of your finger and those of the pencil.
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FIGURE 5;34 Question 10.

An object moving in a circle of radius r with constant speed v is
said to be in uniform circular motion. It has a radial acceleration

that is directed radially toward the center of the circle (also
called centripetal acceleration), and has magnitude

(5;1)

The velocity vector and the acceleration vector are continu-
ally changing in direction, but are perpendicular to each other
at each moment.

A force is needed to keep an object revolving in a circle,
and the direction of this force is toward the center of the circle.
This force could be due to gravity (as for the Moon), to tension
in a cord, to a component of the normal force, or to another
type of force or combination of forces.

[*When the speed of circular motion is not constant, the
acceleration has two components, tangential as well as 
centripetal.]

Newton’s law of universal gravitation states that every 
particle in the universe attracts every other particle with a force

aBR

aR =
v2

r
.

aR

proportional to the product of their masses and inversely pro-
portional to the square of the distance between them:

(5;4)

The direction of this force is along the line joining the two 
particles, and the force is always attractive. It is this gravitational
force that keeps the Moon revolving around the Earth, and the
planets revolving around the Sun.

Satellites revolving around the Earth are acted on by
gravity, but “stay up” because of their high tangential speed.

Newton’s three laws of motion, plus his law of universal
gravitation, constituted a wide-ranging theory of the universe.
With them, motion of objects on Earth and in space could be
accurately described. And they provided a theoretical base for
Kepler’s laws of planetary motion.

The four fundamental forces in nature are (1) the gravi-
tational force, (2) the electromagnetic force, (3) the strong nuclear
force, and (4) the weak nuclear force. The first two fundamental
forces are responsible for nearly all “everyday” forces.

FG = G
m1 m2

r2
.

Summary

1. How many “accelerators” do you have in your car? There
are at least three controls in the car which can be used to
cause the car to accelerate. What are they? What accelera-
tions do they produce?

2. A car rounds a curve at a steady If it rounds the
same curve at a steady will its acceleration be any
different? Explain.

3. Will the acceleration of a car be the same when a car travels
around a sharp curve at a constant as when it
travels around a gentle curve at the same speed? Explain.

4. Describe all the forces acting on a child riding a horse on 
a merry-go-round. Which of these forces provides the 
centripetal acceleration of the child?

5. A child on a sled comes flying over the crest of a small hill,
as shown in Fig. 5–32. His sled does not leave the ground,
but he feels the normal force between his chest and the sled
decrease as he goes
over the hill. Explain
this decrease using
Newton’s second law.

60 km�h

70 km�h,
50 km�h.

Questions

FIGURE 5;32

Question 5.

FIGURE 5;33

Question 9.

6. Sometimes it is said that water is removed from clothes in
the spin dryer by centrifugal force throwing the water 
outward. Is this correct? Discuss.

7. A girl is whirling a ball on a string around her head in a
horizontal plane. She wants to let go at precisely the right
time so that the ball will hit a target on the other side of the
yard. When should she let go of the string?

8. A bucket of water can be whirled in a vertical circle with-
out the water spilling out, even at the top of the circle when
the bucket is upside down. Explain.

10. A car maintains a constant speed v as it traverses the hill
and valley shown in Fig. 5–34. Both the hill and valley
have a radius of curvature R. At which point, A, B, or C,
is the normal force acting on the car (a) the largest,
(b) the smallest? Explain. (c) Where would the driver 
feel heaviest and (d) lightest? Explain. (e) How fast can
the car go without losing contact with the road at A?

11. Can a particle with constant speed be accelerating? What if
it has constant velocity? Explain.

12. Why do airplanes bank when they turn? How would you
compute the banking angle given the airspeed and radius
of the turn? [Hint: Assume an aerodynamic “lift” force
acts perpendicular to the wings. See also Example 5–7.]

9. Astronauts who spend long periods in outer space could be
adversely affected by weightlessness. One way to simulate
gravity is to shape the spaceship like a cylindrical shell that
rotates, with the astronauts
walking on the inside surface
(Fig. 5–33). Explain how
this simulates gravity.
Consider (a) how objects
fall, (b) the force we feel
on our feet, and (c) any
other aspects of gravity
you can think of.



19. The source of the Mississippi River is closer to the center
of the Earth than is its outlet in Louisiana (because the Earth
is fatter at the equator than at the poles). Explain how the
Mississippi can flow “uphill.”

20. People sometimes ask, “What keeps a satellite up in its orbit
around the Earth?” How would you respond?

21. Is the centripetal acceleration of Mars in its orbit around
the Sun larger or smaller than the centripetal acceleration
of the Earth? Explain.

22. The mass of the “planet” Pluto was not known until it was
discovered to have a moon. Explain how this enabled an
estimate of Pluto’s mass.

23. The Earth moves faster in its orbit around the Sun in Jan-
uary than in July. Is the Earth closer to the Sun in January,
or in July? Explain. [Note: This is not much of a factor in
producing the seasons—the main factor is the tilt of the
Earth’s axis relative to the plane of its orbit.]

(a) (b) (c) (d) (e)

FIGURE 5;36 MisConceptual Question 6.

13. Does an apple exert a gravitational force on the Earth? If
so, how large a force? Consider an apple (a) attached to a
tree and (b) falling.

14. Why is more fuel required for a spacecraft to travel from the
Earth to the Moon than to return from the Moon to the Earth?

15. Would it require less speed to launch a satellite (a) toward
the east or (b) toward the west? Consider the Earth’s rota-
tion direction and explain your choice.

16. An antenna loosens and becomes detached from a satellite
in a circular orbit around the Earth. Describe the antenna’s
subsequent motion. If it will land on the Earth, describe where;
if not, describe how it could be made to land on the Earth.

17. The Sun is below us at midnight, nearly in line with the
Earth’s center. Are we then heavier at midnight, due to the
Sun’s gravitational force on us, than we are at noon? Explain.

18. When will your apparent weight be the greatest, as meas-
ured by a scale in a moving elevator: when the elevator
(a) accelerates downward, (b) accelerates upward, (c) is in
free fall, or (d) moves upward at constant speed? (e) In
which case would your apparent weight be the least?
(f) When would it be the same as when you are on the ground?
Explain.

1. While driving fast around a sharp right turn, you find 
yourself pressing against the car door. What is happening?
(a) Centrifugal force is pushing you into the door.
(b) The door is exerting a rightward force on you.
(c) Both of the above.
(d) Neither of the above.

2. Which of the following point towards the center of the circle
in uniform circular motion? 
(a) Acceleration.
(b) Velocity, acceleration, net force.
(c) Velocity, acceleration.
(d) Velocity, net force.
(e) Acceleration, net force.

3. A Ping-Pong ball is shot into a circular tube that is lying
flat (horizontal) on a tabletop.
When the Ping-Pong ball 
exits the tube, which path 
will it follow in Fig. 5–35?

5. A child whirls a ball in a vertical circle. Assuming the speed
of the ball is constant (an approximation), when would the
tension in the cord connected to the ball be greatest? 
(a) At the top of the circle.
(b) At the bottom of the circle.
(c) A little after the bottom of the circle when the ball is

climbing.
(d) A little before the bottom of the circle when the ball is

descending quickly.
(e) Nowhere; the cord is stretched the same amount at all

points.

6. In a rotating vertical cylinder (Rotor-ride) a rider finds
herself pressed with her back to the rotating wall. Which is
the correct free-body diagram for her (Fig. 5–36)?

MisConceptual Questions

(c)
(d)

(e)

(b)
(a)

ball enters

FIGURE 5;35

MisConceptual Question 3.

7. The Moon does not crash into the Earth because:
(a) the net force on it is zero.
(b) it is beyond the main pull of the Earth’s gravity.
(c) it is being pulled by the Sun as well as by the Earth.
(d) it is freely falling but it has a high tangential velocity.

4. A car drives at steady speed around a perfectly circular
track.
(a) The car’s acceleration is zero.
(b) The net force on the car is zero.
(c) Both the acceleration and net force on the car point

outward.
(d) Both the acceleration and net force on the car point

inward.
(e) If there is no friction, the acceleration is outward.

MisConceptual Questions 131



8. Which pulls harder gravitationally, the Earth on the Moon,
or the Moon on the Earth? Which accelerates more?
(a) The Earth on the Moon; the Earth.
(b) The Earth on the Moon; the Moon.
(c) The Moon on the Earth; the Earth.
(d) The Moon on the Earth; the Moon.
(e) Both the same; the Earth.
(f) Both the same; the Moon.

9. In the International Space Station which orbits Earth,
astronauts experience apparent weightlessness because 
(a) the station is so far away from the center of the Earth.
(b) the station is kept in orbit by a centrifugal force that

counteracts the Earth’s gravity.
(c) the astronauts and the station are in free fall towards

the center of the Earth.
(d) there is no gravity in space.
(e) the station’s high speed nullifies the effects of gravity.

10. Two satellites orbit the Earth in circular orbits of the same
radius. One satellite is twice as massive as the other. Which
statement is true about the speeds of these satellites?
(a) The heavier satellite moves twice as fast as the lighter one.
(b) The two satellites have the same speed.
(c) The lighter satellite moves twice as fast as the heavier one.
(d) The ratio of their speeds depends on the orbital radius.
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11. A space shuttle in orbit around the Earth carries its payload
with its mechanical arm. Suddenly, the arm malfunctions and
releases the payload. What will happen to the payload? 
(a) It will fall straight down and hit the Earth.
(b) It will follow a curved path and eventually hit the Earth.
(c) It will remain in the same orbit with the shuttle.
(d) It will drift out into deep space.

*12. A penny is placed on a turntable
which is spinning clockwise as shown
in Fig. 5–37. If the power to the
turntable is turned off, which arrow
best represents the direction of the
acceleration of the penny at point P
while the turntable is still spinning
but slowing down?

5;1 to 5;3 Uniform Circular Motion

1. (I) A child sitting 1.20 m from the center of a merry-go-
round moves with a speed of Calculate (a) the
centripetal acceleration of the child and (b) the net hori-
zontal force exerted on the child

2. (I) A jet plane traveling pulls out of 
a dive by moving in an arc of radius 5.20 km. What is the
plane’s acceleration in g’s?

3. (I) A horizontal force of 310 N is exerted on a 2.0-kg ball
as it rotates (at arm’s length) uniformly in a horizontal circle
of radius 0.90 m. Calculate the speed of the ball.

4. (II) What is the magnitude of the acceleration of a speck 
of clay on the edge of a potter’s wheel turning at 45 rpm
(revolutions per minute) if the wheel’s diameter is 35 cm?

5. (II) A 0.55-kg ball, attached to the end of a horizontal
cord, is revolved in a circle of radius 1.3 m on a frictionless
horizontal surface. If the cord will break when the tension in
it exceeds 75 N, what is the maximum speed the ball can have?

6. (II) How fast (in rpm) must a centrifuge rotate if a particle
7.00 cm from the axis of rotation is to experience an accel-
eration of 125,000 g’s?

7. (II) A car drives straight down toward the bottom of a valley
and up the other side on a road whose bottom has a radius of
curvature of 115 m.At the very bottom, the normal force on the
driver is twice his weight. At what speed was the car traveling?

8. (II) How large must the coefficient of static friction be
between the tires and the road if a car is to round a level
curve of radius 125 m at a speed of 

9. (II) What is the maximum speed with which a 1200-kg car
can round a turn of radius 90.0 m on a flat road if the 
coefficient of friction between tires and road is 0.65? Is
this result independent of the mass of the car?

95 km�h?

1890 km�h (525 m�s)
(mass = 22.5 kg).

1.10 m�s.

Problems

P

(a) (b) (c) (d) (e)

FIGURE 5;37

MisConceptual
Question 12.

10. (II) A bucket of mass 2.00 kg is whirled in a vertical circle of
radius 1.20 m. At the lowest point of its motion the tension
in the rope supporting the bucket is 25.0 N. (a) Find the
speed of the bucket. (b) How fast must the bucket move at
the top of the circle so that the rope does not go slack?

11. (II) How many revolutions per minute would a 25-m-
diameter Ferris wheel need to make for the passengers to
feel “weightless” at the topmost point?

12. (II) A jet pilot takes his aircraft in a vertical loop (Fig. 5–38).
(a) If the jet is moving at a speed of at the 
lowest point of the loop, determine
the minimum radius of the 
circle so that the centripetal
acceleration at the lowest point
does not exceed 6.0 g’s. (b) Cal-
culate the 78-kg pilot’s effective
weight (the force with which the
seat pushes up on him) at the
bottom of the circle, and (c) at
the top of the circle (assume
the same speed).

13. (II) A proposed space station consists of a circular tube that
will rotate about its center
(like a tubular bicycle tire),
Fig. 5–39. The circle formed by
the tube has a diameter of
1.1 km. What must be the rota-
tion speed (revolutions per day)
if an effect nearly equal to
gravity at the surface of the
Earth (say, 0.90 g) is to be felt?

840 km�h

FIGURE 5;38

Problem 12.

1.1 km

FIGURE 5;39 Problem 13.

For assigned homework and other learning materials, go to the MasteringPhysics website.
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rB

rA
mA

mB
FIGURE 5;41

Problem 17.

17. (II) Two blocks, with masses and are connected 
to each other and to a central post by thin rods as 
shown in Fig. 5–41. The blocks revolve about the post at the
same frequency f (revolutions per second) on a frictionless
horizontal surface at distances and from the post.
Derive an algebraic expression for the tension in each 
rod.

rBrA

mB ,mA

18. (II) Tarzan plans to cross a gorge by swinging in an arc
from a hanging vine (Fig. 5–42).
If his arms are capable of 
exerting a force of 1150 N on
the vine, what is the maximum
speed he can tolerate at the
lowest point of his swing? His
mass is 78 kg and the vine is
4.7 m long.

20. (II) Highway curves are marked with a suggested speed. If this
speed is based on what would be safe in wet weather, estimate
the radius of curvature for an unbanked curve marked

Use Table 4–2 (coefficients of friction).
21. (III) A pilot performs an evasive maneuver by diving verti-

cally at If he can withstand an acceleration of
8.0 g’s without blacking out, at what altitude must he begin
to pull his plane out of the dive to avoid crashing into the sea?

22. (III) If a curve with a radius of 95 m is properly banked 
for a car traveling what must be the coefficient of
static friction for a car not to skid when traveling at 

23. (III) A curve of radius 78 m is banked for a design speed 
of If the coefficient of static friction is 0.30 (wet
pavement), at what range of speeds can a car safely make
the curve? [Hint: Consider the direction of the friction
force when the car goes too slow or too fast.]

*5;4 Nonuniform Circular Motion

*24. (I) Determine the tangential and centripetal components 
of the net force exerted on the car (by the ground) in 
Example 5–8 when its speed is The car’s mass is 950 kg.

*25. (II) A car at the Indianapolis 500 accelerates uniformly from
the pit area, going from rest to in a semicircular
arc with a radius of 220 m. Determine the tangential and
radial acceleration of the car when it is halfway through 
the arc, assuming constant tangential acceleration. If the
curve were flat, what coefficient of static friction would be
necessary between the tires and the road to provide this
acceleration with no slipping or skidding?

*26. (II) For each of the cases described below, sketch and label
the total acceleration vector, the radial acceleration vector,
and the tangential acceleration vector. (a) A car is 
accelerating from to as it rounds a curve
of constant radius. (b) A car is going a constant as
it rounds a curve of constant radius. (c) A car slows down
while rounding a curve of constant radius.

*27. (III) A particle revolves in a horizontal circle of radius
1.95 m. At a particular instant, its acceleration is 
in a direction that makes an angle of 25.0° to its direction 
of motion. Determine its speed (a) at this moment, and 
(b) 2.00 s later, assuming constant tangential acceleration.

5;5 and 5;6 Law of Universal Gravitation

28. (I) Calculate the force of Earth’s gravity on a spacecraft 
2.00 Earth radii above the Earth’s surface if its mass is
1850 kg.

29. (I) At the surface of a certain planet, the gravitational accel-
eration g has a magnitude of A 24.0-kg brass 
ball is transported to this planet. What is (a) the mass of the
brass ball on the Earth and on the planet, and (b) the weight
of the brass ball on the Earth and on the planet?

30. (II) At what distance from the Earth will a spacecraft trav-
eling directly from the Earth to the Moon experience zero
net force because the Earth and Moon pull in opposite
directions with equal force?

31. (II) Two objects attract each other gravitationally with a
force of when they are 0.25 m apart. Their
total mass is 4.00 kg. Find their individual masses.

32. (II) A hypothetical planet has a radius 2.0 times that of
Earth, but has the same mass. What is the acceleration due
to gravity near its surface?

2.5 * 10–10 N

12.0 m�s2.

1.05 m�s2,

65 km�h
70 km�h55 km�h

270 km�h

15 m�s.

85 km�h.

95 km�h?
65 km�h,

270 m�s.

50 km�h.

FIGURE 5;42

Problem 18.

14. (II) On an ice rink two skaters of equal mass grab hands and
spin in a mutual circle once every 2.5 s. If we assume their
arms are each 0.80 m long and their individual masses are
55.0 kg, how hard are they pulling on one another?

15. (II) A coin is placed 13.0 cm from the axis of a rotating
turntable of variable speed. When the speed of the turn-
table is slowly increased, the coin remains fixed on the
turntable until a rate of 38.0 rpm (revolutions per minute)
is reached, at which point the coin slides off. What is 
the coefficient of static friction between the coin and the
turntable?

16. (II) The design of a new road includes a straight stretch that
is horizontal and flat but that suddenly dips down a steep hill
at 18°. The transi-
tion should be
rounded with what
minimum radius so
that cars traveling

will not
leave the road
(Fig. 5–40)?

95 km�h

FIGURE 5;40

Problem 16.

19. (II) A 975-kg sports car (including driver) crosses the
rounded top of a hill  at Deter-
mine (a) the normal force exerted by the road on the car,
(b) the normal force exerted by the car on the 62.0-kg
driver, and (c) the car speed at which the normal force on
the driver equals zero.

18.0 m�s.(radius = 88.0 m)
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FIGURE 5;44 Problem 41 (not to scale).

33. (II) Calculate the acceleration due to gravity on the Moon,
which has radius and mass 

34. (II) Estimate the acceleration due to gravity at the surface
of Europa (one of the moons of Jupiter) given that its 
mass is and making the assumption that 
its mass per unit volume is the same as Earth’s.

35. (II) Given that the acceleration of gravity at the surface of
Mars is 0.38 of what it is on Earth, and that Mars’ radius is
3400 km, determine the mass of Mars.

36. (II) Find the net force on the Moon  
due to the gravitational attraction of both the Earth

and the Sun
assuming they are at right angles to each other, Fig. 5–43.

(mS = 1.99 * 1030 kg),(mE = 5.98 * 1024 kg)

(mM = 7.35 * 1022 kg)

4.9 * 1022 kg

7.35 * 1022 kg.1.74 * 106 m
43. (II) Determine the distance from the Earth’s center to a

point outside the Earth where the gravitational acceleration
due to the Earth is of its value at the Earth’s surface.

44. (II) A certain neutron star has five times the mass of our
Sun packed into a sphere about 10 km in radius. Estimate
the surface gravity on this monster.

5;7 Satellites and Weightlessness

45. (I) A space shuttle releases a satellite into a circular orbit
780 km above the Earth. How fast must the shuttle be
moving (relative to Earth’s center) when the release occurs?

46. (I) Calculate the speed of a satellite moving in a stable 
circular orbit about the Earth at a height of 4800 km.

47. (II) You know your mass is 62 kg, but when you stand on a
bathroom scale in an elevator, it says your mass is 77 kg.
What is the acceleration of the elevator, and in which
direction?

48. (II) A 12.0-kg monkey hangs from a cord suspended from
the ceiling of an elevator. The cord can withstand a tension
of 185 N and breaks as the elevator accelerates. What 
was the elevator’s minimum acceleration (magnitude and
direction)?

49. (II) Calculate the period of a satellite orbiting the Moon,
95 km above the Moon’s surface. Ignore effects of the
Earth. The radius of the Moon is 1740 km.

50. (II) Two satellites orbit Earth at altitudes of 7500 km and
15,000 km above the Earth’s surface. Which satellite is faster,
and by what factor?

51. (II) What will a spring scale read for the weight of a 58.0-kg
woman in an elevator that moves (a) upward with constant
speed (b) downward with constant speed 
(c) with an upward acceleration 0.23 g, (d) with a downward
acceleration 0.23 g, and (e) in free fall?

52. (II) Determine the time it takes for a satellite to orbit the
Earth in a circular near-Earth orbit. A “near-Earth” orbit
is at a height above the surface of the Earth that is very
small compared to the radius of the Earth. [Hint: You may
take the acceleration due to gravity as essentially the same as
that on the surface.] Does your result depend on the mass
of the satellite?

53. (II) What is the apparent weight of a 75-kg astronaut
2500 km from the center of the Moon in a space vehicle
(a) moving at constant velocity and (b) accelerating toward
the Moon at State “direction” in each case.

54. (II) A Ferris wheel 22.0 m in diameter rotates once every
12.5 s (see Fig. 5–9). What is the ratio of a person’s apparent
weight to her real weight at (a) the top, and (b) the bottom?

55. (II) At what rate must a cylindrical spaceship rotate if occu-
pants are to experience simulated gravity of 0.70 g? Assume
the spaceship’s diameter is 32 m, and give your answer as
the time needed for one revolution. (See Question 9,
Fig 5–33.)

56. (III) (a) Show that if a satellite orbits very near the surface
of a planet with period T, the density ( mass per unit
volume) of the planet is  (b) Esti-
mate the density of the Earth, given that a satellite near
the surface orbits with a period of 85 min. Approximate
the Earth as a uniform sphere.

r = m�V = 3p�GT2.
�

1.8 m�s2?

5.0 m�s,5.0 m�s,

1
10

37. (II) A hypothetical planet has a mass 2.80 times that of
Earth, but has the same radius. What is g near its surface?

38. (II) If you doubled the mass and tripled the radius of a
planet, by what factor would g at its surface change?

39. (II) Calculate the effective value of g, the acceleration of
gravity, at (a) 6400 m, and (b) 6400 km, above the Earth’s
surface.

40. (II) You are explaining to friends why an astronaut feels
weightless orbiting in the space shuttle, and they respond
that they thought gravity was just a lot weaker up there.
Convince them that it isn’t so by calculating how much
weaker (in %) gravity is 380 km above the Earth’s surface.

41. (II) Every few hundred years most of the planets line up
on the same side of the Sun. Calculate the total force on
the Earth due to Venus, Jupiter, and Saturn, assuming all
four planets are in a line, Fig. 5–44. The masses are

and the
mean distances of the four planets from the Sun are 
108, 150, 778, and 1430 million km. What fraction of the
Sun’s force on the Earth is this?

mSat = 95.1 mE ,mJ = 318 mE ,mV = 0.815 mE ,

Moon

θ

Sun

Earth
ME

MSF
B

F
B

FIGURE 5;43 Problem 36.
Orientation of Sun (S), Earth (E),
and Moon (M) at right angles to
each other (not to scale).

42. (II) Four 7.5-kg spheres are located at the corners of a
square of side 0.80 m. Calculate the magnitude and direc-
tion of the gravitational force exerted on one sphere by the
other three.



TABLE 5;3 Principal Moons of Jupiter 
(Problems 62 and 63)

Period Mean distance 
Moon Mass (kg) (Earth days) from Jupiter (km)

Io 1.77 
Europa 3.55 
Ganymede 7.16 
Callisto 16.7 1883 * 10311 * 1022

1070 * 10315 * 1022
671 * 1034.9 * 1022
422 * 1038.9 * 1022

m

M R

FIGURE 5;46 Problem 68.

5;8 Kepler’s Laws

57. (I) Neptune is an average distance of from the
Sun. Estimate the length of the Neptunian year using the
fact that the Earth is from the Sun on average.

58. (I) The asteroid Icarus, though only a few hundred meters
across, orbits the Sun like the planets. Its period is 410 d.
What is its mean distance from the Sun?

59. (I) Use Kepler’s laws and the period of the Moon (27.4 d)
to determine the period of an artificial satellite orbiting
very near the Earth’s surface.

60. (II) Determine the mass of the Earth from the known
period and distance of the Moon.

61. (II) Our Sun revolves about the center of our Galaxy
at a distance of about light-

years
What is the period of the Sun’s orbital motion about the
center of the Galaxy?

62. (II) Table 5–3 gives the mean distance, period, and mass
for the four largest moons of Jupiter (those discovered by
Galileo in 1609). Determine the mass of Jupiter: (a) using
the data for Io; (b) using data for each of the other three
moons. Are the results consistent?

C1 ly = A3.00 * 108 m�sB # A3.16 * 107 s�yrB # A1.00 yrB D .
3 * 104AmG L  4 * 1041 kgB

1.50 * 108 km

4.5 * 109 km

63. (II) Determine the mean distance from Jupiter for each of
Jupiter’s principal moons, using Kepler’s third law. Use the
distance of Io and the periods given in Table 5–3. Compare
your results to the values in Table 5–3.

64. (II) Planet A and planet B are in circular orbits around a
distant star. Planet A is 7.0 times farther from the star than
is planet B. What is the ratio of their speeds 

65. (II) Halley’s comet orbits the Sun roughly once every
76 years. It comes very close to the surface of the Sun on
its closest approach (Fig. 5–45). Estimate the greatest 
distance of the comet from the Sun. Is it still “in” the 
solar system? What planet’s orbit is nearest when it is out
there?

vA�vB ?

66. (III) The comet Hale–Bopp has an orbital period of
2400 years. (a) What is its mean distance from the Sun? (b) At
its closest approach, the comet is about 1.0 AU from the Sun
( from Earth to the Sun). What is the 
farthest distance? (c) What is the ratio of the speed at the
closest point to the speed at the farthest point?

1 AU = distance

Sun
Halley’s comet

67. Calculate the centripetal acceleration of the Earth in its
orbit around the Sun, and the net force exerted on the
Earth. What exerts this force on the Earth? Assume that 
the Earth’s orbit is a circle of radius

68. A flat puck (mass M) is revolved in a circle on a frictionless
air hockey table top, and is held in this orbit by a massless cord
which is connected to a dangling mass (mass m) through a
central hole as shown in Fig. 5–46. Show that the speed of
the puck is given by v = 1mgR�M.

1.50 * 1011 m.

71. In a “Rotor-ride” at a carnival, people rotate in a vertical
cylindrically walled “room.” (See Fig. 5–47.) If the room
radius is 5.5 m, and the rotation frequency 0.50 revolu-
tions per second when the floor drops out, what minimum
coefficient of static friction keeps the people from slipping
down? People on this ride said they were “pressed against
the wall.” Is there really an outward force pressing them
against the wall? If so, what is its source? If not, what is 
the proper description of their situation (besides nausea)?
[Hint: Draw a free-body diagram for a person.]

General Problems

69. A device for training astronauts and jet fighter pilots is
designed to move the trainee in a horizontal circle of
radius 11.0 m. If the force felt by the trainee is 7.45 times
her own weight, how fast is she revolving? Express your
answer in both and 

70. A 1050-kg car rounds a curve of radius 72 m banked at an
angle of 14°. If the car is traveling at will a friction
force be required? If so, how much and in what direction?

85 km�h,

rev�s.m�s

FIGURE 5;47

Problem 71.
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FIGURE 5;45

Problem 65.

72. While fishing, you get bored and start to swing a sinker
weight around in a circle below you on a 0.25-m piece of
fishing line. The weight makes a complete circle every
0.75 s. What is the angle that the fishing line makes with
the vertical? [Hint: See Fig. 5–10.]
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73. At what minimum speed
must a roller coaster be
traveling so that passen-
gers upside down at 
the top of the circle 
(Fig. 5–48) do not fall
out? Assume a radius of
curvature of 8.6 m.

30,000 ly

Sun

FIGURE 5;49 Edge-on view of our galaxy.
Problem 84.

89. An asteroid of mass m is in a circular orbit of radius r
around the Sun with a speed v. It has an impact with
another asteroid of mass M and is kicked into a new circu-
lar orbit with a speed of 1.5 v. What is the radius of the new
orbit in terms of r?

*90. Use dimensional analysis (Section 1–8) to obtain the form
for the centripetal acceleration, aR = v2�r.

FIGURE 5;48

Problem 73.

85. A satellite of mass 5500 kg orbits the Earth and has a period
of 6600 s. Determine (a) the radius of its circular orbit,
(b) the magnitude of the Earth’s gravitational force on the
satellite, and (c) the altitude of the satellite.

86. Astronomers using the Hubble Space Telescope deduced
the presence of an extremely massive core in the distant
galaxy M87, so dense that it could be a black hole (from
which no light escapes). They did this by measuring the speed
of gas clouds orbiting the core to be at a distance
of 60 light-years from the core. Deduce
the mass of the core, and compare it to the mass of our Sun.

87. Suppose all the mass of the Earth were compacted into a
small spherical ball. What radius must the sphere have so
that the acceleration due to gravity at the Earth’s new 
surface would equal the acceleration due to gravity at the
surface of the Sun?

88. A science-fiction tale describes an artificial “planet” in the
form of a band completely encircling a sun (Fig. 5–50). The
inhabitants live on the inside surface (where it is always
noon). Imagine that this sun is exactly like our own, that
the distance to the band is the same as the Earth–Sun
distance (to make the climate livable), and that the ring
rotates quickly enough to produce an apparent gravity of g
as on Earth. What will be the period of revolution, this
planet’s year, in Earth days?

A�  5.7 * 1017 mB
780 km�s

74. Consider a train that rounds a curve with a radius of 
570 m at a speed of (approximately ).
(a) Calculate the friction force needed on a train pas-
senger of mass 55 kg if the track is not banked and the
train does not tilt. (b) Calculate the friction force on 
the passenger if the train tilts at an angle of 8.0° toward the
center of the curve.

75. Two equal-mass stars maintain a constant distance apart 
of and revolve about a point midway between
them at a rate of one revolution every 12.6 yr. (a) Why
don’t the two stars crash into one another due to the 
gravitational force between them? (b) What must be the
mass of each star?

76. How far above the Earth’s surface will the acceleration of
gravity be half what it is at the surface?

77. Is it possible to whirl a bucket of water fast enough in a
vertical circle so that the water won’t fall out? If so, what 
is the minimum speed? Define all quantities needed.

78. How long would a day be if the Earth were rotating so fast
that objects at the equator were apparently weightless?

79. The rings of Saturn are composed of chunks of ice that
orbit the planet. The inner radius of the rings is 73,000 km,
and the outer radius is 170,000 km. Find the period of an
orbiting chunk of ice at the inner radius and the period of 
a chunk at the outer radius. Compare your numbers with
Saturn’s own rotation period of 10 hours and 39 minutes.
The mass of Saturn is

80. During an Apollo lunar landing mission, the command
module continued to orbit the Moon at an altitude of about
100 km. How long did it take to go around the Moon once?

81. The Navstar Global Positioning System (GPS) utilizes a
group of 24 satellites orbiting the Earth. Using “triang-
ulation” and signals transmitted by these satellites, the
position of a receiver on the Earth can be determined to
within an accuracy of a few centimeters. The satellite orbits
are distributed around the Earth, allowing continuous
navigational “fixes.” The satellites orbit at an altitude
of approximately 11,000 nautical miles  [1 nautical mile

(a) Determine the speed of each
satellite. (b) Determine the period of each satellite.

82. The Near Earth Asteroid Rendezvous (NEAR) spacecraft,
after traveling 2.1 billion km, is meant to orbit the asteroid
Eros with an orbital radius of about 20 km. Eros is 
roughly Assume Eros has a density

of about (a) If Eros
were a sphere with the same mass and density, what would
its radius be? (b) What would g be at the surface of a
spherical Eros? (c) Estimate the orbital period of NEAR
as it orbits Eros, as if Eros were a sphere.

2.3 * 103 kg�m3.(mass�volume)
40 km * 6 km * 6 km.

1.852 km = 6076 ft].
=

5.7 * 1026 kg.

8.0 * 1011 m

100 mi�h160 km�h

FIGURE 5;50

Problem 88.

83. A train traveling at a constant speed rounds a curve of
radius 215 m. A lamp suspended from the ceiling swings
out to an angle of 16.5° throughout the curve. What is the
speed of the train?

84. The Sun revolves around the center of the Milky Way Galaxy
(Fig. 5–49) at a distance of about 30,000 light-years from
the center  If it takes about 200 mil-
lion years to make one revolution, estimate the mass of our
Galaxy. Assume that the mass distribution of our Galaxy 
is concentrated mostly in a central uniform sphere. If all the
stars had about the mass of our Sun how
many stars would there be in our Galaxy?

A2 * 1030 kgB,

A1 ly = 9.5 * 1015 mB.



1. Reread each Example in this Chapter and identify (i) the
object undergoing centripetal acceleration (if any), and 
(ii) the force, or force component, that causes the circular
motion.

2. Redo Example 5–3, precisely this time, by not ignoring 
the weight of the ball which revolves on a string 0.600 m
long. In particular, find the magnitude of and the 
angle it makes with the horizontal. [Hint: Set the horizon-
tal component of equal to also, since there is 
no vertical motion, what can you say about the vertical
component of ]

3. A banked curve of radius R in a new highway is designed
so that a car traveling at speed can negotiate the turn
safely on glare ice (zero friction). If a car travels too slowly,
then it will slip toward the center of the circle. If it travels
too fast, it will slip away from the center of the circle. If 
the coefficient of static friction increases, it becomes possi-
ble for a car to stay on the road while traveling at a speed
within a range from to Derive formulas for 
and as functions of and R.

4. Earth is not quite an inertial frame. We often make 
measurements in a reference frame fixed on the Earth,
assuming Earth is an inertial reference frame [Section 4–2].
But the Earth rotates, so this assumption is not quite valid.
Show that this assumption is off by 3 parts in 1000 by calcu-
lating the acceleration of an object at Earth’s equator due to
Earth’s daily rotation, and compare to  the
acceleration due to gravity.

5. A certain white dwarf star was once an average star like
our Sun. But now it is in the last stage of its evolution and
is the size of our Moon but has the mass of our Sun.
(a) Estimate the acceleration due to gravity on the surface
of this star. (b) How much would a 65-kg person weigh on
this star? Give as a percentage of the person’s weight on
Earth. (c) What would be the speed of a baseball dropped
from a height of 1.0 m when it hit the surface?

g = 9.80 m�s2,

ms , v0 ,vmax

vminvmax .vmin

v0

F
B

T ?

maR ;F
B

T

F
B

T ,

6. Jupiter is about 320 times as massive as the Earth. Thus, it
has been claimed that a person would be crushed by the
force of gravity on a planet the size of Jupiter because 
people cannot survive more than a few g’s. Calculate the
number of g’s a person would experience at Jupiter’s 
equator, using the following data for Jupiter:

equatorial rotation
55 min. Take the centripetal acceleration into

account. [See Sections 5–2, 5–6, and 5–7.]

7. A plumb bob (a mass m hanging on a string) is deflected
from the vertical by an angle due to a massive mountain
nearby (Fig. 5–51). (a) Find an approximate formula for 
in terms of the mass of the mountain, the distance to
its center, and the radius and mass of the Earth.
(b) Make a rough estimate of the mass of Mt. Everest,
assuming it has the shape of a cone 4000 m high and base
of diameter 4000 m. Assume its mass per unit volume is

(c) Estimate the angle of the plumb bob
if it is 5 km from the center of Mt. Everest.

u3000 kg per m3.

DM ,
mM ,

u

u

period = 9 hr
radius = 7.1 * 104 km,1.9 * 1027 kg,

mass =
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FIGURE 5;51 Search and Learn 7.

A: (a).
B: (d).
C: (a).

D: No.
E: g would double.
F: (b).
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8. (a) Explain why a Full moon always rises at sunset. (b) Explain
how the position of the Moon in Fig. 5–31b cannot be seen
yet by the person at the red dot (shown at 6 PM). (c) Explain
why the red dot is where it is in parts (b) and (e), and show
where it should be in part (d). (d) PRETTY HARD. Determine
the average period of the Moon around the Earth (sidereal
period) starting with the synodic period of 29.53 days as
observed from Earth. [Hint: First determine the angle of the
Moon in Fig. 5–31e relative to “horizontal,” as in part (a).]




