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This snowboarder flying through 
the air shows an example of 
motion in two dimensions. In 
the absence of air resistance, the
path would be a perfect parabola.
The gold arrow represents the 
downward acceleration of 
gravity, Galileo analyzed the
motion of objects in 2 dimensions
under the action of gravity near 
the Earth’s surface (now called 
“projectile motion”) into its 
horizontal and vertical components.

We will discuss vectors and how 
to add them. Besides analyzing 
projectile motion, we will also see
how to work with relative velocity.
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I n Chapter 2 we dealt with motion along a straight line. We now consider the
motion of objects that move in paths in two (or three) dimensions. In par-
ticular, we discuss an important type of motion known as projectile motion:

objects projected outward near the Earth’s surface, such as struck baseballs and
golf balls, kicked footballs, and other projectiles. Before beginning our discussion
of motion in two dimensions, we will need a new tool, vectors, and how to add them.

gB

CHAPTER-OPENING QUESTION—Guess now!
[Don’t worry about getting the right answer now—you will get another chance later in the
Chapter. See also p. 1 of Chapter 1 for more explanation.]

A small heavy box of emergency supplies is dropped from a moving helicopter at
point A as it flies at constant speed in a horizontal direction. Which path in the
drawing below best describes the path of the box (neglecting air resistance) as
seen by a person standing on the ground?

*



3–1 Vectors and Scalars
We mentioned in Chapter 2 that the term velocity refers not only to how fast an
object is moving but also to its direction. A quantity such as velocity, which has
direction as well as magnitude, is a vector quantity. Other quantities that are also
vectors are displacement, force, and momentum. However, many quantities have no
direction associated with them, such as mass, time, and temperature. They are speci-
fied completely by a number and units. Such quantities are called scalar quantities.

Drawing a diagram of a particular physical situation is always helpful in
physics, and this is especially true when dealing with vectors. On a diagram, each
vector is represented by an arrow. The arrow is always drawn so that it points in
the direction of the vector quantity it represents. The length of the arrow is drawn
proportional to the magnitude of the vector quantity. For example, in Fig. 3–1,
green arrows have been drawn representing the velocity of a car at various places
as it rounds a curve. The magnitude of the velocity at each point can be read off
Fig. 3–1 by measuring the length of the corresponding arrow and using the scale
shown

When we write the symbol for a vector, we will always use boldface type, with a
tiny arrow over the symbol. Thus for velocity we write If we are concerned only
with the magnitude of the vector, we will write simply v, in italics, as we do for
other symbols.

3–2 Addition of Vectors—Graphical
Methods

Because vectors are quantities that have direction as well as magnitude, they must
be added in a special way. In this Chapter, we will deal mainly with displacement
vectors, for which we now use the symbol and velocity vectors, But the results
will apply for other vectors we encounter later.

We use simple arithmetic for adding scalars. Simple arithmetic can also be
used for adding vectors if they are in the same direction. For example, if a 
person walks 8 km east one day, and 6 km east the next day, the person will be

east of the point of origin. We say that the net or resultant
displacement is 14 km to the east (Fig. 3–2a). If, on the other hand, the person
walks 8 km east on the first day, and 6 km west (in the reverse direction) on the
second day, then the person will end up 2 km from the origin (Fig. 3–2b), so the
resultant displacement is 2 km to the east. In this case, the resultant displacement
is obtained by subtraction:

But simple arithmetic cannot be used if the two vectors are not along the same
line. For example, suppose a person walks 10.0 km east and then walks 5.0 km
north. These displacements can be represented on a graph in which the positive 
y axis points north and the positive x axis points east, Fig. 3–3. On this graph, we
draw an arrow, labeled to represent the 10.0-km displacement to the east.
Then we draw a second arrow, to represent the 5.0-km displacement to 
the north. Both vectors are drawn to scale, as in Fig. 3–3.

D
B

2 ,
D
B

1 ,

8 km - 6 km = 2 km.

8 km + 6 km = 14 km

vB.D
B

,

vB.

(1 cm = 90 km�h).
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Scale for velocity:
1 cm = 90 km/h

FIGURE 3;1 Car traveling on a
road, slowing down to round the
curve. The green arrows represent
the velocity vector at each position.

Resultant  = 14 km (east)

Resultant  = 2 km (east)
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FIGURE 3;2 Combining vectors in
one dimension.
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FIGURE 3;3 A person walks 10.0 km east and then 5.0 km
north. These two displacements are represented by the 
vectors and which are shown as arrows. Also shown
is the resultant displacement vector, which is the 
vector sum of and Measurement on the graph 
with ruler and protractor shows that has a magnitude 
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After taking this walk, the person is now 10.0 km east and 5.0 km north of the
point of origin. The resultant displacement is represented by the arrow labeled 
in Fig. 3–3. (The subscript R stands for resultant.) Using a ruler and a protractor,
you can measure on this diagram that the person is 11.2 km from the origin at an
angle north of east. In other words, the resultant displacement vector has
a magnitude of 11.2 km and makes an angle with the positive x axis. The
magnitude (length) of can also be obtained using the theorem of Pythagoras
in this case, because and form a right triangle with as the 
hypotenuse. Thus

You can use the Pythagorean theorem only when the vectors are perpendicular
to each other.

The resultant displacement vector, is the sum of the vectors and 
That is,

This is a vector equation. An important feature of adding two vectors that are not
along the same line is that the magnitude of the resultant vector is not equal to the
sum of the magnitudes of the two separate vectors, but is smaller than their sum.
That is,

where the equals sign applies only if the two vectors point in the same direction.
In our example (Fig. 3–3), whereas equals 15 km,
which is the total distance traveled. Note also that we cannot set equal to
11.2 km, because we have a vector equation and 11.2 km is only a part of the
resultant vector, its magnitude. We could write something like this, though:

Figure 3–3 illustrates the general rules for graphically adding two vectors
together, no matter what angles they make, to get their sum. The rules are as
follows:

1. On a diagram, draw one of the vectors—call it —to scale.
2. Next draw the second vector, to scale, placing its tail at the tip of the 

first vector and being sure its direction is correct.
3. The arrow drawn from the tail of the first vector to the tip of the second

vector represents the sum, or resultant, of the two vectors.

The length of the resultant vector represents its magnitude. Note that vectors can
be moved parallel to themselves on paper (maintaining the same length and
angle) to accomplish these manipulations. The length of the resultant can be 
measured with a ruler and compared to the scale. Angles can be measured 
with a protractor. This method is known as the tail-to-tip method of adding 
vectors.

The resultant is not affected by the order in which the vectors are added.
For example, a displacement of 5.0 km north, to which is added a displacement
of 10.0 km east, yields a resultant of 11.2 km and angle (see Fig. 3–4),
the same as when they were added in reverse order (Fig. 3–3). That is, now
using to represent any type of vector,

[Mathematicians call this equation the commutative property of vector addition.]
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FIGURE 3;4 If the vectors are
added in reverse order, the resultant
is the same. (Compare to Fig. 3–3.)



The tail-to-tip method of adding vectors can be extended to three or more
vectors. The resultant is drawn from the tail of the first vector to the tip of the last
one added. An example is shown in Fig. 3–5; the three vectors could represent
displacements (northeast, south, west) or perhaps three forces. Check for yourself
that you get the same resultant no matter in which order you add the three vectors.
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FIGURE 3;6 Vector addition by two
different methods, (a) and (b).
Part (c) is incorrect.

It is a common error to draw the sum vector as the diagonal running between
the tips of the two vectors, as in Fig. 3–6c. This is incorrect: it does not represent
the sum of the two vectors. (In fact, it represents their difference, as we
will see in the next Section.)

Range of vector lengths. Suppose two
vectors each have length 3.0 units. What is the range of possible lengths for the
vector representing the sum of the two?

RESPONSE The sum can take on any value from where the
vectors point in the same direction, to when the vectors are
antiparallel. Magnitudes between 0 and 6.0 occur when the two vectors are at
an angle other than 0° and 180°.

EXERCISE A If the two vectors of Example 3–1 are perpendicular to each other, what is
the resultant vector length?

3–3 Subtraction of Vectors, and
Multiplication of a Vector by a Scalar
Given a vector we define the negative of this vector to be a vector with
the same magnitude as but opposite in direction, Fig. 3–7. Note, however, that
no vector is ever negative in the sense of its magnitude: the magnitude of every
vector is positive. Rather, a minus sign tells us about its direction.
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0 (= 3.0 - 3.0)
6.0 (= 3.0 + 3.0)

CONCEPTUAL EXAMPLE 3;1
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A second way to add two vectors is the parallelogram method. It is fully equiva-
lent to the tail-to-tip method. In this method, the two vectors are drawn starting
from a common origin, and a parallelogram is constructed using these two vectors
as adjacent sides as shown in Fig. 3–6b. The resultant is the diagonal drawn from
the common origin. In Fig. 3–6a, the tail-to-tip method is shown, and we can see that
both methods yield the same result.

FIGURE 3;7 The negative of a
vector is a vector having the same
length but opposite direction.



We can now define the subtraction of one vector from another: the difference
between two vectors is defined as

That is, the difference between two vectors is equal to the sum of the first plus
the negative of the second. Thus our rules for addition of vectors can be applied as
shown in Fig. 3–8 using the tail-to-tip method.
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FIGURE 3;10 Resolving a vector into its 
components along a chosen set of x and y axes.
The components, once found, themselves 
represent the vector. That is, the components 
contain as much information as the vector itself.
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FIGURE 3;9 Multiplying a vector 
by a scalar c gives a vector whose
magnitude is c times greater and in 
the same direction as (or opposite
direction if c is negative).
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A vector can be multiplied by a scalar c. We define their product so that 
has the same direction as and has magnitude cV. That is, multiplication of a
vector by a positive scalar c changes the magnitude of the vector by a factor c but
doesn’t alter the direction. If c is a negative scalar (such as ), the magnitude
of the product is changed by the factor (where means the magnitude of c),
but the direction is precisely opposite to that of See Fig. 3–9.V
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EXERCISE B What does the “incorrect” vector in Fig. 3–6c represent? (a)
(b) (c) something else (specify).V
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3–4 Adding Vectors by Components
Adding vectors graphically using a ruler and protractor is often not sufficiently
accurate and is not useful for vectors in three dimensions. We discuss now a more
powerful and precise method for adding vectors. But do not forget graphical
methods—they are useful for visualizing, for checking your math, and thus for
getting the correct result.

Components
Consider first a vector that lies in a particular plane. It can be expressed as 
the sum of two other vectors, called the components of the original vector. The
components are usually chosen to be along two perpendicular directions, such as
the x and y axes. The process of finding the components is known as resolving the
vector into its components. An example is shown in Fig. 3–10; the vector could
be a displacement vector that points at an angle north of east, where we
have chosen the positive x axis to be to the east and the positive y axis north.
This vector is resolved into its x and y components by drawing dashed lines 
(AB and AC) out from the tip (A) of the vector, making them perpendicular to
the x and y axes. Then the lines 0B and 0C represent the x and y components
of respectively, as shown in Fig. 3–10b. These vector components are written 

and In this book we usually show vector components as arrows, like vectors,
but dashed. The scalar components, and are the magnitudes of the vector
components, with units, accompanied by a positive or negative sign depending on
whether they point along the positive or negative x or y axis. As can be seen in
Fig. 3–10, by the parallelogram method of adding vectors.

Space is made up of three dimensions, and sometimes it is necessary to
resolve a vector into components along three mutually perpendicular directions.
In rectangular coordinates the components are and V

B

z .V
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FIGURE 3;12 Finding the 
components of a vector using
trigonometric functions. The 
equations are valid only if is the
angle makes with the positive 
x axis.
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To add vectors using the method of components, we need to use the trigo-
nometric functions sine, cosine, and tangent, which we now review.

Given any angle as in Fig. 3–11a, a right triangle can be constructed by
drawing a line perpendicular to one of its sides, as in Fig. 3–11b. The longest 
side of a right triangle, opposite the right angle, is called the hypotenuse, which
we label h. The side opposite the angle is labeled o, and the side adjacent is
labeled a. We let h, o, and a represent the lengths of these sides, respectively.

u

u,

θ θ θ

(c)

o

a

h o
h

a

h'

a'

(a) (b)

o'
FIGURE 3;11 Starting with an angle as 
in (a), we can construct right triangles of 
different sizes, (b) and (c), but the ratio of
the lengths of the sides does not depend on
the size of the triangle.

u

We now define the three trigonometric functions, sine, cosine, and tangent (abbre-
viated sin, cos, tan), in terms of the right triangle, as follows:

(3;1)

If we make the triangle bigger, but keep the same angles, then the ratio of the
length of one side to the other, or of one side to the hypotenuse, remains the same.
That is, in Fig. 3–11c we have: and
Thus the values of sine, cosine, and tangent do not depend on how big the trian-
gle is. They depend only on the size of the angle. The values of sine, cosine, and
tangent for different angles can be found using a scientific calculator, or from the
Table in Appendix A.

A useful trigonometric identity is

(3;2)

which follows from the Pythagorean theorem ( in Fig. 3–11). That is:

(See Appendix A and inside the rear cover for other details on trigonometric
functions and identities.)

The use of trigonometric functions for finding the components of a vector is
illustrated in Fig. 3–12, where a vector and its two components are thought of as
making up a right triangle. We then see that the sine, cosine, and tangent are as
given in Fig. 3–12, where is the angle makes with the axis. If we multiply
the definition of by V on both sides, we get

(3;3a)

Similarly, from the definition of we obtain

(3;3b)

Note that if is not the angle the vector makes with the positive x axis, Eqs. 3–3
are not valid.

u

Vx = V cos u.

cos u,

Vy = V sin u.
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±xV
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=
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=
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sin2 u + cos2 u = 1
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o
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Using Eqs. 3–3, we can calculate and for any vector, such as that illus-
trated in Fig. 3–10 or Fig. 3–12. Suppose represents a displacement of 500 m in
a direction 30° north of east, as shown in Fig. 3–13. Then From a
calculator or Tables, and Then

There are two ways to specify a vector in a given coordinate system:

1. We can give its components, and 
2. We can give its magnitude V and the angle it makes with the positive x axis.

We can shift from one description to the other using Eqs. 3–3, and, for the reverse,
by using the theorem of Pythagoras† and the definition of tangent:

(3;4a)

(3;4b)

as can be seen in Fig. 3–12.

Adding Vectors
We can now discuss how to add vectors using components. The first step is to
resolve each vector into its components. Next we can see, using Fig. 3–14, that the
addition of any two vectors and to give a resultant, implies that

(3;5)

That is, the sum of the x components equals the x component of the resultant vector,
and the sum of the y components equals the y component of the resultant, as can
be verified by a careful examination of Fig. 3–14. Note that we do not add x compo-
nents to y components.

If the magnitude and direction of the resultant vector are desired, they can
be obtained using Eqs. 3–4.

VRy = V1y + V2y .

VRx = V1x + V2x

V
B

R = V
B

1 + V
B

2 ,V
B

2V
B

1

 tan u =
Vy

Vx

V = 3Vx
2 + Vy

2

u

Vy .Vx

Vy = V sin u = (500 m)(0.500) = 250 m (north).

Vx = V cos u = (500 m)(0.866) = 433 m (east),

cos 30° = 0.866.sin 30° = 0.500
V = 500 m.

V
B

VyVx
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Vy = V sin = 250 mθ
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FIGURE 3;13 (a) Vector 
represents a displacement of 500 m
at a 30° angle north of east. (b) The
components of are and 
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†In three dimensions, the theorem of Pythagoras becomes where is the
component along the third, or z, axis.
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The components of a given vector depend on the choice of coordinate axes.
You can often reduce the work involved in adding vectors by a good choice of
axes—for example, by choosing one of the axes to be in the same direction as one
of the vectors. Then that vector will have only one nonzero component.

Mail carrier’s displacement. A rural mail carrier leaves the
post office and drives 22.0 km in a northerly direction. She then drives in a direc-
tion 60.0° south of east for 47.0 km (Fig. 3–15a). What is her displacement from
the post office?

APPROACH We choose the positive x axis to be east and the positive y axis to
be north, since those are the compass directions used on most maps. The origin
of the xy coordinate system is at the post office. We resolve each vector into its
x and y components. We add the x components together, and then the y compo-
nents together, giving us the x and y components of the resultant.

SOLUTION Resolve each displacement vector into its components, as shown
in Fig. 3–15b. Since has magnitude 22.0 km and points north, it has only a 
y component:

has both x and y components:

Notice that is negative because this vector component points along the
negative y axis. The resultant vector, has components:

This specifies the resultant vector completely:

We can also specify the resultant vector by giving its magnitude and angle using
Eqs. 3–4:

A calculator with a key labeled INV TAN, or ARC TAN, or gives
The negative sign means below the 

x axis, Fig. 3–15c. So, the resultant displacement is 30.0 km directed at 38.5°
in a southeasterly direction.

NOTE Always be attentive about the quadrant in which the resultant vector
lies. An electronic calculator does not fully give this information, but a good
diagram does.

As we saw in Example 3–2, any component that points along the negative x or
y axis gets a minus sign. The signs of trigonometric functions depend on which
“quadrant” the angle falls in: for example, the tangent is positive in the first and
third quadrants (from 0° to 90°, and 180° to 270°), but negative in the second
and fourth quadrants; see Appendix A, Fig. A–7. The best way to keep track of
angles, and to check any vector result, is always to draw a vector diagram, like
Fig. 3–15. A vector diagram gives you something tangible to look at when analyzing
a problem, and provides a check on the results.

The following Problem Solving Strategy should not be considered a prescrip-
tion. Rather it is a summary of things to do to get you thinking and involved in the
problem at hand.

u = 38.5°tan–1(–0.796) = –38.5°.u =
tan–1

 tan u =
DRy

DRx
=

–18.7 km
   23.5 km

= –0.796.

DR = 3DRx
2 + DRy

2 = 3(23.5 km)2 + (–18.7 km)2 = 30.0 km

DRx = 23.5 km,  DRy = –18.7 km.

DRy = D1y + D2y = 22.0 km + (–40.7 km) = –18.7 km.

DRx = D1x + D2x = 0 km  +    23.5 km  = ±23.5 km

D
B

R ,
D2y

D2y = –(47.0 km)(sin 60°) = –(47.0 km)(0.866) = –40.7 km.

D2x = ±(47.0 km)(cos 60°) = ±(47.0 km)(0.500) = ±23.5 km

D
B

2

D1x = 0,  D1y = 22.0 km.

D
B

1

EXAMPLE 3;2
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Identify the correct quadrant by
drawing a careful diagram

y

x
East

(a)

y

x

(b)

0

0

0

D2x

y

x

(c)

D2y

Post
office

North

60°

θ

60°

1

2

2

2

1

1

D
B

D
B

D
B

D
B

D
B

DR
B

D
B

FIGURE 3;15 Example 3–2.
(a) The two displacement vectors,

and (b) is resolved into 
its components. (c) and are
added to obtain the resultant 
The component method of adding
the vectors is explained in the 
Example.
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Three short trips. An airplane trip involves three legs, with
two stopovers, as shown in Fig. 3–16a. The first leg is due east for 620 km; the
second leg is southeast (45°) for 440 km; and the third leg is at 53° south of 
west, for 550 km, as shown. What is the plane’s total displacement?

APPROACH We follow the steps in the Problem Solving Strategy above.

SOLUTION

1. Draw a diagram such as Fig. 3–16a, where and represent the
three legs of the trip, and is the plane’s total displacement.

2. Choose axes: Axes are also shown in Fig. 3–16a: x is east, y north.
3. Resolve components: It is imperative to draw a good diagram. The components

are drawn in Fig. 3–16b. Instead of drawing all the vectors starting from
a common origin, as we did in Fig. 3–15b, here we draw them “tail-to-tip”
style, which is just as valid and may make it easier to see.

4. Calculate the components:

We have given a minus sign to each component that in Fig. 3–16b points in the
or direction. The components are shown in the Table in the margin.

5. Add the components: We add the x components together, and we add the 
y components together to obtain the x and y components of the resultant:

The x and y components of the resultant are 600 km and and point
respectively to the east and south. This is one way to give the answer.

6. Magnitude and direction: We can also give the answer as

Thus, the total displacement has magnitude 960 km and points 51° below the
x axis (south of east), as was shown in our original sketch, Fig. 3–16a.

so u = –51°. tan u =
DRy

DRx
=

–750 km
600 km

= –1.25,

DR = 3DRx
2 + DRy

2 = 3(600)2 + (–750)2 km = 960 km

–750 km,
DRy = D1y + D2y + D3y = 0 km - 311 km - 439 km = –750 km.
DRx = D1x + D2x + D3x = 620 km + 311 km - 331 km = 600 km

–y–x

D3y = –D3 sin 53°  = –(550 km)(0.799) = –439 km.
D
B

3 : D3x = –D3 cos 53° = –(550 km)(0.602) = –331 km

D2y = –D2 sin 45°  = –(440 km)(0.707) = –311 km
D
B

2 : D2x = ±D2 cos 45° = ±(440 km)(0.707) = ±311 km

D1y = ±D1 sin 0°  = 0 km   
D
B

1 : D1x = ±D1 cos 0°  = D1 = 620 km   

D
B

R

D
B

3D
B

1 , D
B

2 ,
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Pay careful attention to signs: any component that
points along the negative x or y axis gets a minus sign.

5. Add the x components together to get the x compo-
nent of the resultant. Similarly for y:

This is the answer: the components of the resultant
vector. Check signs to see if they fit the quadrant
shown in your diagram (point 1 above).

6. If you want to know the magnitude and direction of
the resultant vector, use Eqs. 3–4:

The vector diagram you already drew helps to obtain
the correct position (quadrant) of the angle u.

VR = 3VRx
2 + VRy

2 ,  tan u =
VRy

VRx

.

VRy = V1y + V2y + any others.

VRx = V1x + V2x + any others

P
R

O
B

L
E

M
S O LV I N G

Adding Vectors
Here is a brief summary of how to add two or more
vectors using components:
1. Draw a diagram, adding the vectors graphically by

either the parallelogram or tail-to-tip method.
2. Choose x and y axes. Choose them in a way, if possible,

that will make your work easier. (For example, choose
one axis along the direction of one of the vectors, which
then will have only one component.)

3. Resolve each vector into its x and y components,
showing each component along its appropriate
(x or y) axis as a (dashed) arrow.

4. Calculate each component (when not given) using
sines and cosines. If is the angle that vector 
makes with the positive x axis, then:

V1x = V1 cos u1 ,  V1y = V1 sin u1 .

V
B

1u1

Components
Vector x (km) y (km)

620 0
311

600 –750D
B

R

–439–331D
B

3

–311D
B

2

D
B

1

= ?θ 45°
–x

0

53°

+x

+y

–y

(a)

D2y

D3y

D3x

–x
0

+x

+y

–y

(b)

45°

D2x

53°

North

East

East

North

1D
B

2D
B

3D
B

RD
B

1D
B

3D
B

2D
B

FIGURE 3;16 Example 3–3.



3–5 Projectile Motion
In Chapter 2, we studied the one-dimensional motion of an object in terms of dis-
placement, velocity, and acceleration, including purely vertical motion of a falling
object undergoing acceleration due to gravity. Now we examine the more general
translational motion of objects moving through the air in two dimensions near the
Earth’s surface, such as a golf ball, a thrown or batted baseball, kicked footballs,
and speeding bullets. These are all examples of projectile motion (see Fig. 3–17),
which we can describe as taking place in two dimensions if there is no wind.

Although air resistance is often important, in many cases its effect can be
ignored, and we will ignore it in the following analysis. We will not be concerned 
now with the process by which the object is thrown or projected. We consider only 
its motion after it has been projected, and before it lands or is caught—that is,
we analyze our projected object only when it is moving freely through the air under
the action of gravity alone. Then the acceleration of the object is that due to gravity,
which acts downward with magnitude and we assume it is constant.†

Galileo was the first to describe projectile motion accurately. He showed that
it could be understood by analyzing the horizontal and vertical components of
the motion separately. For convenience, we assume that the motion begins at
time at the origin of an xy coordinate system (so ).

Let us look at a (tiny) ball rolling off the end of a horizontal table with an 
initial velocity in the horizontal (x) direction, See Fig. 3–18, where an object
falling vertically is also shown for comparison. The velocity vector at each instant
points in the direction of the ball’s motion at that instant and is thus always tangent
to the path. Following Galileo’s ideas, we treat the horizontal and vertical compo-
nents of velocity and acceleration separately, and we can apply the kinematic
equations (Eqs. 2–11a through 2–11c) to the x and y components of the motion.

First we examine the vertical (y) component of the motion. At the instant 
the ball leaves the table’s top it has only an x component of velocity.
Once the ball leaves the table (at ), it experiences a vertically downward
acceleration g, the acceleration due to gravity. Thus is initially zero
but increases continually in the downward direction (until the ball hits the
ground). Let us take y to be positive upward. Then the acceleration due to gravity
is in the direction, so From Eq. 2–11a (using y in place of x) we 
can write since we set The vertical displacement
is given by Eq. 2–11b written in terms of y:
Given and then y = – 1

2 gt 2.ay = –g,vy 0 = 0,y0 = 0,
y = y0 + vy 0 + 1

2 ay t2.
vy 0 = 0.vy = vy 0 + ay t = –gt

ay = –g.–y

Avy 0 = 0Bvy

t = 0
(t = 0),

vB
vBx 0 .

x0 = y0 = 0t = 0

g = 9.80 m�s2,
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†This restricts us to objects whose distance traveled and maximum height above the Earth are small
compared to the Earth’s radius (6400 km).

(b)

(a)

FIGURE 3;17 Photographs of 
(a) a bouncing ball and (b) a thrown
basketball, each showing the
characteristic “parabolic” path of
projectile motion.

y

x

Vertical
fall

Projectile
motion

=
x0

x

x

y

y

vB

vB

vB

vB

vB

vB vB

aB gB

FIGURE 3;18 Projectile motion of a small
ball projected horizontally with initial 
velocity  The dashed black line 
represents the path of the object. The 
velocity vector is in the direction of 
motion at each point, and thus is tangent to 
the path. The velocity vectors are green 
arrows, and velocity components are dashed.
(A vertically falling object starting from rest 
at the same place and time is shown at the 
left for comparison; is the same at each
instant for the falling object and the 
projectile.)

vy

vB

vBx 0 .vB =



In the horizontal direction, on the other hand, there is no acceleration (we are
ignoring air resistance). With the horizontal component of velocity,
remains constant, equal to its initial value, and thus has the same magnitude
at each point on the path. The horizontal displacement (with ) is given by

The two vector components, and can be added
vectorially at any instant to obtain the velocity at that time (that is, for each
point on the path), as shown in Fig. 3–18.

One result of this analysis, which Galileo himself predicted, is that an object
projected horizontally will reach the ground in the same time as an object dropped
vertically. This is because the vertical motions are the same in both cases, as shown
in Fig. 3–18. Figure 3–19 is a multiple-exposure photograph of an experiment
that confirms this.

vB
vBy ,vBxx = vx 0 t + 1

2 ax t2 = vx 0 t.
ax = 0

vx 0 ,
vx ,ax = 0,
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x

y

θ

0

= 0 at this point

0

0

y

y

y0
xvS y

x

y

x

x0

vS

=vB

vB vB

vB

vB

vB

vB

vB

vB
vB

vB

vB

vB

vB

gBaB

FIGURE 3;20 Path of a projectile launched with
initial velocity at angle to the horizontal.
Path is shown dashed in black, the velocity 
vectors are green arrows, and velocity 
components are dashed. The figure does 
not show where the projectile hits the ground 
(at that point, projectile motion ceases).

u0vB0

FIGURE 3;19 Multiple-exposure
photograph showing positions of 
two balls at equal time intervals.
One ball was dropped from rest at
the same time the other ball was
projected horizontally outward.
The vertical position of each ball is
seen to be the same at each instant.

EXERCISE C Two balls having different speeds roll off the edge of a horizontal table at
the same time. Which hits the floor sooner, the faster ball or the slower one?

EXERCISE D Where in Fig. 3–20 is (i) (ii) and (iii) vx = 0?vy = 0,vB = 0,

If an object is projected at an upward angle, as in Fig. 3–20, the analysis is
similar, except that now there is an initial vertical component of velocity,
Because of the downward acceleration of gravity, the upward component of
velocity gradually decreases with time until the object reaches the highest
point on its path, at which point Subsequently the object moves down-
ward (Fig. 3–20) and increases in the downward direction, as shown (that is,
becoming more negative). As before, remains constant.vx

vy

vy = 0.
vy

vy 0 .

EXERCISE E Return to the Chapter-Opening Question, page 49, and answer it again
now. Try to explain why you may have answered differently the first time. Describe the
role of the helicopter in this example of projectile motion.

Where does the apple land? A child sits
upright in a wagon which is moving to the right at constant speed as shown in
Fig. 3–21. The child extends her hand and throws an apple straight upward
(from her own point of view, Fig. 3–21a), while the wagon continues to travel
forward at constant speed. If air resistance is neglected, will the apple land
(a) behind the wagon, (b) in the wagon, or (c) in front of the wagon?

RESPONSE The child throws the apple straight up from her own reference frame
with initial velocity (Fig. 3–21a). But when viewed by someone on the ground,
the apple also has an initial horizontal component of velocity equal to the speed of
the wagon, Thus, to a person on the ground, the apple will follow the path of
a projectile as shown in Fig. 3–21b. The apple experiences no horizontal accel-
eration, so will stay constant and equal to the speed of the wagon. As the
apple follows its arc, the wagon will be directly under the apple at all times
because they have the same horizontal velocity. When the apple comes down, it
will drop right into the outstretched hand of the child. The answer is (b).

vBx 0

vBx 0 .

vBy 0

CONCEPTUAL EXAMPLE 3;4

y

x

(b) Ground reference frame

(a) Wagon reference frame

0

0x

y0vB

y0vB vB

vB

v 0xvB

FIGURE 3;21 Example 3–4.
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Choice of time interval

TABLE 3;2 Kinematic Equations for Projectile Motion 
(y positive upward; )

Horizontal Motion Vertical Motion†

(Eq. 2–11a)
(Eq. 2–11b)
(Eq. 2–11c)

† If y is taken positive downward, the minus signs in front of g become signs.±(–)

vy
2 = vy 0

2 - 2gAy - y0B
y = y0 + vy 0 t - 1

2 gt2x = x0 + vx 0 t
vy = vy 0 - gtvx = vx 0

(ay � �g � constant)(ax � 0, vx � constant)

ax � 0, ay � �g � �9.80 m�s2

5. Examine the horizontal (x) and vertical (y) motions
separately. If you are given the initial velocity, you
may want to resolve it into its x and y components.

6. List the known and unknown quantities, choosing
and  or where  

and using the or sign, depending on whether
you choose y positive up or down. Remember that

never changes throughout the trajectory, and that
at the highest point of any trajectory that

returns downward. The velocity just before landing is
generally not zero.

7. Think for a minute before jumping into the equations.
A little planning goes a long way. Apply the relevant
equations (Table 3–2), combining equations if neces-
sary. You may need to combine components of a
vector to get magnitude and direction (Eqs. 3–4).

vy = 0
vx

–±
g = 9.80 m�s2,±g,ay = –gax = 0P

R
O

B
L

E
M
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Projectile Motion
Our approach to solving Problems in Section 2–6 also
applies here. Solving Problems involving projectile
motion can require creativity, and cannot be done just
by following some rules. Certainly you must avoid just
plugging numbers into equations that seem to “work.”
1. As always, read carefully; choose the object (or

objects) you are going to analyze.
2. Draw a careful diagram showing what is happening

to the object.
3. Choose an origin and an xy coordinate system.
4. Decide on the time interval, which for projectile

motion can only include motion under the effect of
gravity alone, not throwing or landing. The time inter-
val must be the same for the x and y analyses. The x
and y motions are connected by the common time, .t

TABLE 3;1 General Kinematic Equations for Constant Acceleration 
in Two Dimensions

x component (horizontal) y component (vertical)

(Eq. 2–11a)

(Eq. 2–11b)

(Eq. 2–11c) vy
2 = vy 0

2 + 2ayAy - y0Bvx
2 = vx 0

2 + 2axAx - x0B
y = y0 + vy 0 t + 1

2 ay t2x = x0 + vx 0 t + 1
2 ax t2

vy = vy 0 + ay tvx = vx 0 + ax t

3–6 Solving Projectile Motion Problems
We now work through several Examples of projectile motion quantitatively. We
use the kinematic equations (2–11a through 2–11c) separately for the vertical and
horizontal components of the motion. These equations are shown separately for
the x and y components of the motion in Table 3–1, for the general case of two-
dimensional motion at constant acceleration. Note that x and y are the respective
displacements, that and are the components of the velocity, and that 

and are the components of the acceleration, each of which is constant.
The subscript 0 means “at ”t = 0.

ayax

vyvx

We can simplify Eqs.2–11 to use for projectile motion because we can set
See Table 3–2, which assumes y is positive upward, so –9.80 m�s2.ay = –g =

ax = 0.

If the projection angle is chosen relative to the axis (Fig. 3–20), then
and

In doing Problems involving projectile motion, we must consider a time interval for
which our chosen object is in the air, influenced only by gravity. We do not consider
the throwing (or projecting) process, nor the time after the object lands or is caught,
because then other influences act on the object, and we can no longer set aB = gB.

vy 0 = v0 sin u0 .vx 0 = v0 cos u0 ,
±xu0



Driving off a cliff. A movie stunt driver on a motorcycle
speeds horizontally off a 50.0-m-high cliff. How fast must the motorcycle leave
the cliff top to land on level ground below, 90.0 m from the base of the cliff where
the cameras are? Ignore air resistance.

APPROACH We explicitly follow the steps of the Problem Solving Strategy 
on the previous page.

SOLUTION

1. and 2. Read, choose the object, and draw a diagram. Our object is the motor-
cycle and driver, taken as a single unit. The diagram is shown in Fig. 3–22.

3. Choose a coordinate system. We choose the y direction to be positive
upward, with the top of the cliff as The x direction is horizontal with

at the point where the motorcycle leaves the cliff.
4. Choose a time interval. We choose our time interval to begin just as

the motorcycle leaves the cliff top at position Our time
interval ends just before the motorcycle touches the ground below.

5. Examine x and y motions. In the horizontal (x) direction, the acceleration
so the velocity is constant. The value of x when the motorcycle

reaches the ground is In the vertical direction, the accelera-
tion is the acceleration due to gravity, The value of
y when the motorcycle reaches the ground is The initial veloc-
ity is horizontal and is our unknown, the initial vertical velocity is zero,

6. List knowns and unknowns. See the Table in the margin. Note that in addition
to not knowing the initial horizontal velocity (which stays constant until
landing), we also do not know the time when the motorcycle reaches the
ground.

7. Apply relevant equations. The motorcycle maintains constant as long as it
is in the air. The time it stays in the air is determined by the y motion—when
it reaches the ground. So we first find the time using the y motion, and then
use this time value in the x equations. To find out how long it takes the
motorcycle to reach the ground below, we use Eq. 2–11b (Tables 3–1 and 3–2)
for the vertical (y) direction with and

or

We solve for and set

To calculate the initial velocity, we again use Eq. 2–11b, but this time for
the horizontal (x) direction, with and

or

Then

which is about (roughly ).

NOTE In the time interval of the projectile motion, the only acceleration is g in
the negative y direction. The acceleration in the x direction is zero.

60 mi�h100 km�h

vx 0 =
x

t
=

90.0 m
3.19 s

= 28.2 m�s,

x = vx 0 t.

= 0 + vx 0 t +  0

x = x0 + vx 0 t + 1
2 ax t2

x0 = 0:ax = 0
vx0 ,

t = B 2y
–g

= B2(–50.0 m)

–9.80 m�s2
= 3.19 s.

y = –50.0 m:t

y = – 1
2 gt2.

= 0 +    0  + 1
2 (–g)t2

y = y0 + vy 0 t + 1
2 ay t2

vy 0 = 0:y0 = 0

vx

t
vx 0

vy 0 = 0.
vx 0 ;

y = –50.0 m.
ay = –g = –9.80 m�s2.

x = ±90.0 m.
ax = 0,

x0 = 0, y0 = 0.
(t = 0)

x0 = 0
y0 = 0.

EXAMPLE 3;5
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Known Unknown

vy 0 = 0
ay = –g = –9.80 m�s2
ax = 0
y = –50.0 m

tx = 90.0 m
vx 0x0 = y0 = 0

y = −50.0 m

50.0 m

= gBaB

90.0 m

+ x

+ y

FIGURE 3;22 Example 3–5.



A kicked football. A kicked football leaves the ground at
an angle  with a velocity of as shown in Fig. 3–23. Calculate
(a) the maximum height, (b) the time of travel before the football hits the ground,
and (c) how far away it hits the ground. Assume the ball leaves the foot at ground
level, and ignore air resistance and rotation of the ball.

APPROACH This may seem difficult at first because there are so many questions.
But we can deal with them one at a time. We take the y direction as positive
upward, and treat the x and y motions separately. The total time in the air is again
determined by the y motion. The x motion occurs at constant velocity. The y com-
ponent of velocity varies, being positive (upward) initially, decreasing to zero at
the highest point, and then becoming negative as the football falls.

SOLUTION We resolve the initial velocity into its components (Fig. 3–23):

(a) To find the maximum height, we consider a time interval that begins just after
the football loses contact with the foot until the ball reaches its maximum height.
During this time interval, the acceleration is g downward. At the maximum
height, the velocity is horizontal (Fig. 3–23), so This occurs at a time given
by with (see Eq. 2–11a in Table 3–2), so and

From Eq. 2–11b, with we can solve for y at this time :

The maximum height is 7.35 m. [Solving Eq. 2–11c for y gives the same result.]
(b) To find the time it takes for the ball to return to the ground, we consider a
different time interval, starting at the moment the ball leaves the foot  

and ending just before the ball touches the ground ( again).
We can use Eq. 2–11b with and also set (ground level):

This equation can be factored:

There are two solutions, (which corresponds to the initial point, ), and

which is the total travel time of the football.
(c) The total distance traveled in the x direction is found by applying Eq. 2–11b
with , and :

NOTE In (b), the time needed for the whole trip, is double
the time to reach the highest point, calculated in (a). That is, the time to go up
equals the time to come back down to the same level (ignoring air resistance).

t = 2vy 0 �g = 2.45 s,

x = vx 0 t = (16.0 m�s)(2.45 s) = 39.2 m.

t = 2.45 sx0 = 0,   ax = 0,   vx 0 = 16.0 m�s

t =
2vy 0

g
=

2(12.0 m�s)

A9.80 m�s2B = 2.45 s,

y0t = 0

t A12 gt - vy 0B = 0.

 0 = 0 + vy 0 t - 1
2 gt2.

y = y0 + vy 0 t - 1
2 gt2

y = 0y0 = 0
y = 0y0 = 0B At = 0,

=
vy 0

2

g
-

1
2

vy 0
2

g
=

vy 0
2

2g
=

(12.0 m�s)2

2A9.80 m�s2B = 7.35 m.y = vy 0 t - 1
2 gt2

(t = vy 0�g)y0 = 0,

t =
vy 0

g
=

(12.0 m�s)

A9.80 m�s2B = 1.224 s L 1.22 s.

vy 0 = gtvy = 0vy = vy 0 - gt
vy = 0.

vy 0 = v0 sin 37.0°  = (20.0 m�s)(0.602) = 12.0 m�s.

vx 0 = v0 cos 37.0° = (20.0 m�s)(0.799) = 16.0 m�s

20.0 m�s,u0 = 37.0°
EXAMPLE 3;6
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Sports

FIGURE 3;23 Example 3–6.

37.0°

y = 0 at this point

0

yvBvB

vB

x0vB

y0vB

0vB
vB

vB

= gBaB
x
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Symmetry



y = 0
v0

y

d

FIGURE 3;24 Example 3–7.
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EXERCISE F In Example 3–6, what is (a) the velocity vector at the maximum height, and
(b) the acceleration vector at maximum height?

The wrong strategy. A boy on a small hill
aims his water-balloon slingshot horizontally, straight at a second boy hanging from
a tree branch a distance d away, Fig. 3–24. At the instant the water balloon is released,
the second boy lets go and falls from the tree, hoping to avoid being hit. Show that
he made the wrong move. (He hadn’t studied physics yet.) Ignore air resistance.

RESPONSE Both the water balloon and the boy in the tree start falling at the
same instant, and in a time they each fall the same vertical distance
much like Fig. 3–19. In the time it takes the water balloon to travel the horizontal
distance d, the balloon will have the same y position as the falling boy. Splat. If
the boy had stayed in the tree, he would have avoided the humiliation.

y = 1
2 gt2,t

CONCEPTUAL EXAMPLE 3;7

Level Horizontal Range
The total distance the football traveled in Example 3–6 is called the horizontal
range R. We now derive a formula for the range, which applies to a projectile that
lands at the same level it started : that is, (see Fig. 3–25a).
Looking back at Example 3–6 part (c), we see that where (from
part b) Thus

[ ]

where and This can be rewritten, using the trigon-
ometric identity (Appendix A or inside the rear cover):

[only if ]

Note that the maximum range, for a given initial velocity is obtained when
takes on its maximum value of 1.0, which occurs for so

The maximum range increases by the square of so doubling the muzzle velocity
of a cannon increases its maximum range by a factor of 4.

When air resistance is important, the range is less for a given and the maxi-
mum range is obtained at an angle smaller than 45°.

v0 ,

v0 ,

u0 = 45°  for maximum range,  and  Rmax = v0
2�g.

2u0 = 90°;sin 2u
v0 ,

y (final) = y0R =
v0

2 sin 2u0

g
.

2 sin u cos u = sin 2u
vy 0 = v0 sin u0 .vx 0 = v0 cos u0

y = y0R = vx 0 t = vx 0 ¢ 2vy 0

g
≤ =

2vx 0 vy 0

g
=

2v0
2 sin u0 cos u0

g
,

t = 2vy 0�g.
x = R = vx 0 t

y (final) = y0(�y0)

Range of a cannon ball. Suppose one of Napoleon’s cannons
had a muzzle speed, of At what angle should it have been aimed
(ignore air resistance) to strike a target 320 m away?

APPROACH We use the equation just derived for the range,
with

SOLUTION We solve for in the range formula:

We want to solve for an angle that is between 0° and 90°, which means in
this equation can be as large as 180°. Thus, is a solution, so .
But is also a solution (see Appendix A–7), so

can also be . In general we have two solutions (see Fig. 3–25b),
which in the present case are given by

Either angle gives the same range. Only when (so )  is there
a single solution (that is, both solutions are the same).

u0 = 45°sin 2u0 = 1

u0 = 30.3° or 59.7°.

u0 = 59.7°u0

2u0 = 180° - 60.6° = 119.4°
u0 = 30.3°2u0 = 60.6°

2u0u0

sin 2u0 =
Rg

v0
2

=
(320 m)A9.80 m�s2B

(60.0 m�s)2
= 0.871.

sin 2u0

R = 320 m.
R = v0

2 sin 2u0�g,

60.0 m�s.v0 ,
EXAMPLE 3;8

y = 0 again here
(where x = R)

y

x

x0 = 0
y0 = 0

0

(b)

60°

30°

y

x

(a)
R

45°

θ

FIGURE 3;25 (a) The range R of a
projectile. (b) There are generally
two angles that will give the 
same range. If one angle is 
the other is
Example 3–8.

u02 = 90° - u01 .
u01 ,

u0

In Example 3–6, we treated the football as if it were a particle, ignoring its
rotation. We also ignored air resistance. Because air resistance is significant on a
football, our results are only estimates (mainly overestimates).



A punt. Suppose the football in Example 3–6 was punted,
and left the punter’s foot at a height of 1.00 m above the ground. How far did
the football travel before hitting the ground? Set

APPROACH The only difference here from Example 3–6 is that the football hits
the ground below its starting point of That is, the ball hits the ground at

See Fig. 3–26. Thus we cannot use the range formula which is valid
only if As in Example 3–6,

SOLUTION With and (see Example 3–6), we use
the y version of Eq. 2–11b with

and obtain

We rearrange this equation into standard form so we can
use the quadratic formula:

The quadratic formula (Appendix A–4) gives

The second solution would correspond to a time prior to the kick, so it doesn’t
apply. With for the time at which the ball touches the ground, the
horizontal distance the ball traveled is (using from Example 3–6):

Our assumption in Example 3–6 that the ball leaves the foot at ground level
would result in an underestimate of about 1.3 m in the distance our punt traveled.

x = vx 0 t = (16.0 m�s)(2.53 s) = 40.5 m.

vx 0 = 16.0 m�s
t = 2.53 s

= 2.53 s or –0.081 s.

t =
12.0 m�s63(–12.0 m�s)2 - 4A4.90 m�s2B(–1.00 m)

2A4.90 m�s2B

A4.90 m�s2B t2 - (12.0 m�s)t - (1.00 m) = 0.

Aax2 + bx + c = 0B
–1.00 m = 0 + (12.0 m�s)t - A4.90 m�s2B t2.

y = y0 + vy 0 t - 1
2 gt2,

ay = –g,
vy 0 = 12.0 m�sy = –1.00 m

u0 = 37.0°.v0 = 20.0 m�s,y (final) = y0 .
y = –1.00 m.

y0 = 0.

x0 = 0,  y0 = 0.

EXAMPLE 3;9
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Sports

P R O B L E M  S O L V I N G

Do not use any formula unless you
are sure its range of validity fits the

problem; the range formula does 
not apply here because y Z y0

Ground

y

x
y0 =  0

y =  −1.00 m

FIGURE 3;26 Example 3–9: the 
football leaves the punter’s foot at  

and reaches the ground 
where y = –1.00 m.
y = 0,

3–7 Projectile Motion Is Parabolic
We now show that the path followed by any projectile is a parabola, if we can
ignore air resistance and can assume that is constant. To do so, we need to find
y as a function of x by eliminating between the two equations for horizontal and
vertical motion (Eq. 2–11b in Table 3–2), and for simplicity we set

From the first equation, we have and we substitute this into the second
one to obtain

(3;6)

We see that y as a function of x has the form

where A and B are constants for any specific projectile motion. This is the standard
equation for a parabola. See Figs. 3–17 and 3–27.

The idea that projectile motion is parabolic was, in Galileo’s day, at the fore-
front of physics research. Today we discuss it in Chapter 3 of introductory physics!

y = Ax - Bx2,

y = ¢ vy 0

vx 0
≤x - ¢ g

2vx 0
2
≤x2.

t = x�vx 0 ,

y = vy 0 t - 1
2 gt2.

x = vx 0 t
x0 = y0 = 0 :

t
gB

*

FIGURE 3;27 Examples of 
projectile motion: a boy jumping,
and glowing lava from the volcano
Stromboli.

*Some Sections of this book, such as this one, may be considered optional at the discretion of the
instructor. See the Preface for more details.
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3–8 Relative Velocity
We now consider how observations made in different frames of reference are
related to each other. For example, consider two trains approaching one another,
each with a speed of with respect to the Earth. Observers on the Earth
beside the train tracks will measure for the speed of each of the trains.
Observers on either one of the trains (a different frame of reference) will mea-
sure a speed of for the train approaching them.

Similarly, when one car traveling passes a second car traveling in
the same direction at the first car has a speed relative to the second car
of

When the velocities are along the same line, simple addition or subtraction is
sufficient to obtain the relative velocity. But if they are not along the same line, we
must make use of vector addition. We emphasize, as mentioned in Section 2–1, that
when specifying a velocity, it is important to specify what the reference frame is.

When determining relative velocity, it is easy to make a mistake by adding
or subtracting the wrong velocities. It is important, therefore, to draw a diagram
and use a careful labeling process. Each velocity is labeled by two subscripts:
the first refers to the object, the second to the reference frame in which it has this
velocity. For example, suppose a boat heads directly across a river, as shown 
in Fig. 3–28. We let be the velocity of the Boat with respect to the Water.
(This is also what the boat’s velocity would be relative to the shore if the 
water were still.) Similarly, is the velocity of the Boat with respect to the Shore,
and is the velocity of the Water with respect to the Shore (this is the river
current). Note that is what the boat’s motor produces (against the water),
whereas is equal to plus the effect of the current, Therefore, the
velocity of the boat relative to the shore is (see vector diagram, Fig. 3–28)

(3;7)

By writing the subscripts using this convention, we see that the inner subscripts
(the two W’s) on the right-hand side of Eq. 3–7 are the same; also, the outer 
subscripts on the right of Eq. 3–7 (the B and the S) are the same as the two
subscripts for the sum vector on the left, By following this convention (first
subscript for the object, second for the reference frame), you can write down the
correct equation relating velocities in different reference frames.†

Equation 3–7 is valid in general and can be extended to three or more
velocities. For example, if a fisherman on the boat walks with a velocity rela-
tive to the boat, his velocity relative to the shore is  The
equations involving relative velocity will be correct when adjacent inner subscripts
are identical and when the outermost ones correspond exactly to the two on the
velocity on the left of the equation. But this works only with plus signs (on the
right), not minus signs.

It is often useful to remember that for any two objects or reference frames,
A and B, the velocity of A relative to B has the same magnitude, but opposite
direction, as the velocity of B relative to A:

(3;8)

For example, if a train is traveling relative to the Earth in a certain
direction, objects on the Earth (such as trees) appear to an observer on the train
to be traveling in the opposite direction.100 km�h

100 km�h

vBBA = –vBAB .

vBFS = vBFB + vBBW + vBWS .
vBFB

vBBS .

vBBS = vBBW + vBWS .

vBWS .vBBWvBBS

vBBW

vBWS

vBBS

vBBW

90 km�h - 75 km�h = 15 km�h.
75 km�h,

90 km�h
160 km�h

80 km�h
80 km�h

†We thus can see, for example, that the equation  is wrong: the inner subscripts
are not the same, and the outer ones on the right do not correspond to the subscripts on the left.

V
B

BW = V
B

BS + V
B

WS

E

N

W

S

BS
BW

WSvB

vB
vB

θ

River current

FIGURE 3;28 A boat heads north
directly across a river which flows
west. Velocity vectors are shown as
green arrows:

As it crosses the river, the boat is
dragged downstream by the current.

(river current).
 respect to the Shore

vBWS = velocity of Water with
 respect to the Water,

vBBW = velocity of Boat with
 respect to the Shore,

vBBS = velocity of Boat with



Heading across the river. The same boat  
now heads directly across the river whose current is still (a) What is the velocity
(magnitude and direction) of the boat relative to the shore? (b) If the river is 110 m
wide, how long will it take to cross and how far downstream will the boat be then?

APPROACH The boat now heads directly across the river and is pulled down-
stream by the current, as shown in Fig. 3–30. The boat’s velocity with respect to
the shore, is the sum of its velocity with respect to the water, plus the
velocity of the water with respect to the shore, just as before,

SOLUTION (a) Since is perpendicular to we can get using the
theorem of Pythagoras:

We can obtain the angle (note how is defined in  Fig. 3–30) from:

A calculator with a key INV TAN or ARC TAN or  gives
Note that this angle is not equal to the angle calculated in Example 3–10.

(b) The travel time for the boat is determined by the time it takes to cross the
river. Given the river’s width we can use the velocity component in the
direction of D, Solving for we get  
The boat will have been carried downstream, in this time, a distance

NOTE There is no acceleration in this Example, so the motion involves only
constant velocities (of the boat or of the river).

d = vWS t = (1.20 m�s)(59.5 s) = 71.4 m L 71 m.

59.5 s.t = 110 m�1.85 m�s =t,vBW = D�t.
D = 110 m,

= 33.0°.
tan–1(0.6486)u =tan–1

tan u = vWS�vBW = (1.20 m�s)�(1.85 m�s) = 0.6486.

u

vBS = 3vBW
2 + vWS

2 = 3(1.85 m�s)2 + (1.20 m�s)2 = 2.21 m�s.

vBSvBWS ,vBBW

vBBS = vBBW + vBWS .

vBWS :
vBBW ,vBBS ,

1.20 m�s.
AvBW = 1.85 m�sBEXAMPLE 3;11
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BS
BW

WSvB

vB
vB

θ

River current

FIGURE 3;30 Example 3–11.
A boat heading directly across a 
river whose current moves at
1.20 m�s.

A quantity such as velocity, that has both a magnitude and a
direction, is called a vector. A quantity such as mass, that has
only a magnitude, is called a scalar. On diagrams, vectors are
represented by arrows.

Addition of vectors can be done graphically by placing the
tail of each successive arrow at the tip of the previous one. The
sum, or resultant vector, is the arrow drawn from the tail of the
first vector to the tip of the last vector. Two vectors can also be
added using the parallelogram method.

Vectors can be added more accurately by adding their
components along chosen axes with the aid of trigonometric
functions. A vector of magnitude V making an angle with the

axis has components

(3;3)Vx = V cos u,  Vy = V sin u.

±x
u

Given the components, we can find a vector’s magnitude and
direction from

(3;4)

Projectile motion is the motion of an object in the air near the
Earth’s surface under the effect of gravity alone. It can be analyzed
as two separate motions if air resistance can be ignored. The hori-
zontal component of motion is at constant velocity, whereas the
vertical component is at constant acceleration, just as for an
object falling vertically under the action of gravity.

The velocity of an object relative to one frame of refer-
ence can be found by vector addition if its velocity relative to a
second frame of reference, and the relative velocity of the two
reference frames, are known.

gB,

V = 3Vx
2 + Vy

2 ,  tan u =
Vy
Vx

.

Summary

Heading upstream. A boat’s speed in still water is
. If the boat is to travel north directly across a river whose westward current has 

speed at what upstream angle must the boat head? (See Fig. 3–29.)

APPROACH If the boat heads straight across the river, the current will drag 
the boat downstream (westward). To overcome the river’s current, the boat
must have an upstream (eastward) component of velocity as well as a cross-stream
(northward) component. Figure 3–29 has been drawn with the velocity of
the Boat relative to the Shore, pointing directly across the river because this is
where the boat is supposed to go. (Note that  )

SOLUTION Vector points upstream at angle as shown. From the diagram,

Thus  so the boat must head upstream at a 40.4° angle.u = 40.4°,

sin u =
vWS

vBW
=

1.20 m�s
1.85 m�s

= 0.6486.

uvBBW

vBBS = vBBW + vBWS .

vBBS ,

vWS = 1.20 m�s,
1.85 m�s

vBW =EXAMPLE 3;10
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vB

vB

vBθ

River current

FIGURE 3;29 Example 3–10.
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1. One car travels due east at and a second car travels
north at Are their velocities equal? Explain.

2. Can you conclude that a car is not accelerating if its speed-
ometer indicates a steady Explain.

3. Give several examples of an object’s motion in which a great
distance is traveled but the displacement is zero.

4. Can the displacement vector for a particle moving in two
dimensions be longer than the length of path traveled by the
particle over the same time interval? Can it be less? Discuss.

5. During baseball practice, a player hits a very high fly ball
and then runs in a straight line and catches it. Which had
the greater displacement, the player or the ball? Explain.

6. If is V necessarily greater than and/or 
Discuss.

7. Two vectors have length  and  
What are the maximum and minimum magnitudes of their
vector sum?

8. Can two vectors, of unequal magnitude, add up to give the zero
vector? Can three unequal vectors? Under what conditions?

9. Can the magnitude of a vector ever (a) equal, or (b) be less
than, one of its components?

10. Does the odometer of a car measure a scalar or a vector
quantity? What about the speedometer?

11. How could you determine the speed a slingshot imparts to
a rock, using only a meter stick, a rock, and the slingshot?

12. In archery, should the arrow be aimed directly at the target?
How should your angle of aim depend on the distance to
the target?

13. It was reported in World War I that a pilot flying at an alti-
tude of 2 km caught in his bare hands a bullet fired at the
plane! Using the fact that a bullet slows down considerably
due to air resistance, explain how this incident occurred.

V2 = 4.0 km.V1 = 3.5 km

V2 ?V1V
B

= V
B

1 + V
B

2 ,

60 km�h?

40 km�h.
40 km�h, 14. You are on the street trying to hit a friend in his dorm

window with a water balloon. He has a similar idea and is
aiming at you with his water balloon. You aim straight at
each other and throw at the same instant. Do the water
balloons hit each other? Explain why or why not.

15. A projectile is launched at an upward angle of 30° to the
horizontal with a speed of How does the horizon-
tal component of its velocity 1.0 s after launch compare
with its horizontal component of velocity 2.0 s after launch,
ignoring air resistance? Explain.

16. A projectile has the least speed at what point in its path?

17. Two cannonballs, A and B, are fired from the ground with
identical initial speeds, but with larger than (a) Which
cannonball reaches a higher elevation? (b) Which stays
longer in the air? (c) Which travels farther? Explain.

18. A person sitting in an enclosed train car, moving at constant
velocity, throws a ball straight up into the air in her reference
frame. (a) Where does the ball land? What is your answer
if the car (b) accelerates, (c) decelerates, (d) rounds a curve,
(e) moves with constant velocity but is open to the air?

19. If you are riding on a train that speeds past another train
moving in the same direction on an adjacent track, it
appears that the other train is moving backward. Why?

20. Two rowers, who can row at the same speed in still water,
set off across a river at the same time. One heads straight
across and is pulled downstream somewhat by the current.
The other one heads upstream at an angle so as to arrive at
a point opposite the starting point. Which rower reaches
the opposite side first? Explain.

21. If you stand motionless under an umbrella in a rainstorm
where the drops fall vertically, you remain relatively dry.
However, if you start running, the rain begins to hit your
legs even if they remain under the umbrella. Why?

uB .uA

30 m�s.

Questions

1. You are adding vectors of length 20 and 40 units. Which of
the following choices is a possible resultant magnitude?
(a) 0.
(b) 18.
(c) 37.
(d) 64.
(e) 100.

2. The magnitude of a component of a vector must be
(a) less than or equal to the magnitude of the vector.
(b) equal to the magnitude of the vector.
(c) greater than or equal to the magnitude of the vector.
(d) less than, equal to, or greater than the magnitude of

the vector.

3. You are in the middle of a large field. You walk in a straight
line for 100 m, then turn left and walk 100 m more in a
straight line before stopping. When you stop, you are 100 m
from your starting point. By how many degress did you turn?
(a) 90°.
(b) 120°.
(c) 30°.
(d) 180°.
(e) This is impossible. You cannot walk 200 m and be only

100 m away from where you started.

4. A bullet fired from a rifle begins to fall 
(a) as soon as it leaves the barrel.
(b) after air friction reduces its speed.
(c) not at all if air resistance is ignored.

5. A baseball player hits a ball that
soars high into the air. After the
ball has left the bat, and while it is
traveling upward (at point P in 
Fig. 3–31), what is the direction of
acceleration? Ignore air resistance.

MisConceptual Questions

(b)(a) (c)

P

FIGURE 3;31

MisConceptual
Question 5.

6. One ball is dropped vertically from a window. At the same
instant, a second ball is thrown horizontally from the same
window. Which ball has the greater speed at ground level?
(a) The dropped ball.
(b) The thrown ball.
(c) Neither—they both have the same speed on impact.
(d) It depends on how hard the ball was thrown.



E

N

W

S

(835 km/h)
41.5°vB

7. You are riding in an enclosed train car moving at If
you throw a baseball straight up, where will the baseball land?
(a) In front of you.
(b) Behind you.
(c) In your hand.
(d) Can’t decide from the given information.

8. Which of the three kicks in Fig. 3–32 is in the air for the
longest time? They all reach the same maximum height h.
Ignore air resistance.
(a), (b), (c), or (d) all the same time.

90 km�h.
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10. A hunter is aiming horizontally at a monkey who is sitting
in a tree. The monkey is so terrified when it sees the gun
that it falls off the tree. At that very instant, the hunter
pulls the trigger. What will happen?
(a) The bullet will miss the monkey because the monkey

falls down while the bullet speeds straight forward.
(b) The bullet will hit the monkey because both the

monkey and the bullet are falling downward at the
same rate due to gravity.

(c) The bullet will miss the monkey because although 
both the monkey and the bullet are falling downward
due to gravity, the monkey is falling faster.

(d) It depends on how far the hunter is from the monkey.

11. Which statements are not valid for a projectile? Take up as
positive.
(a) The projectile has the same x velocity at any point on

its path.
(b) The acceleration of the projectile is positive and

decreasing when the projectile is moving upwards,
zero at the top, and increasingly negative as the 
projectile descends.

(c) The acceleration of the projectile is a constant negative
value.

(d) The y component of the velocity of the projectile is
zero at the highest point of the projectile’s path.

(e) The velocity at the highest point is zero.

12. A car travels east. Another car travels north.
The relative speed of the first car with respect to the second is
(a) less than 
(b) exactly 
(c) more than 20 m�s.

20 m�s.
20 m�s.

10 m�s10 m�s

3;2 to 3;4 Vector Addition

1. (I) A car is driven 225 km west and then 98 km southwest
(45°). What is the displacement of the car from the point 
of origin (magnitude and direction)? Draw a diagram.

2. (I) A delivery truck travels 21 blocks north, 16 blocks east,
and 26 blocks south. What is its final displacement from
the origin? Assume the blocks are equal length.

3. (I) If  and  determine
the magnitude and direction of 

4. (II) Graphically determine the resultant of the following
three vector displacements: (1) 24 m, 36° north of east;
(2) 18 m, 37° east of north; and (3) 26 m, 33° west of south.

5. (II) is a vector 24.8 units in magnitude and points at an
angle of 23.4° above the negative x axis. (a) Sketch this
vector. (b) Calculate and (c) Use and to
obtain (again) the magnitude and direction of [Note:
Part (c) is a good way to check if you’ve resolved your
vector correctly.]

6. (II) Vector is 6.6 units long and points along the nega-
tive x axis. Vector is 8.5 units long and points at to
the positive x axis. (a) What are the x and y components of
each vector? (b) Determine the sum (magnitude
and angle).

V
B

1 + V
B

2

±55°V
B

2

V
B

1

V
B

.
VyVxVy .Vx

V
B

V
B

.
Vy = –6.40 units,Vx = 9.80 units

Problems

9. A baseball is hit high and far. Which of the following state-
ments is true? At the highest point,
(a) the magnitude of the acceleration is zero.
(b) the magnitude of the velocity is zero.
(c) the magnitude of the velocity is the slowest.
(d) more than one of the above is true.
(e) none of the above are true.

8. (II) An airplane is traveling in a direction 41.5°
west of north (Fig. 3–34).
(a) Find the components
of the velocity vector
in the northerly 
and westerly direc-
tions. (b) How far
north and how far
west has the plane
traveled after 1.75 h?

835 km�h

FIGURE 3;34

Problem 8.

x

y

A
B

B
B

FIGURE 3;33

Problem 7.

7. (II) Figure 3–33 shows two vectors, and whose magni-
tudes are and Determine 
if (a) (b)
(c) Give the 
magnitude and direction
for each.

C
B

= B
B

- A
B

.
C
B

= A
B

- B
B

,C
B

= A
B

+ B
B

,
C
B

B = 5.5 units.A = 6.8 units
B
B

,A
B

h

(a) (b) (c)

FIGURE 3;32 MisConceptual Question 8.

For assigned homework and other learning materials, go to the MasteringPhysics website.



10. (II) (a) Given the vectors and shown in Fig. 3–35,
determine (b) Determine without using
your answer in (a). Then compare your results and see if
they are opposite.

11. (II) Determine the vector given the vectors and
in Fig. 3–35.

12. (II) For the vectors shown in Fig. 3–35, determine
(a) (b)

13. (II) For the vectors given in Fig. 3–35, determine
(a) (b) and (c)

14. (II) Suppose a vector makes an angle with respect to
the y axis. What could be the x and y components of the
vector

15. (II) The summit of a mountain, 2450 m above base camp,
is measured on a map to be 4580 m horizontally from the
camp in a direction 38.4° west of north. What are the compo-
nents of the displacement vector from camp to summit?
What is its magnitude? Choose the x axis east, y axis north,
and z axis up.

16. (III) You are given a vector in the xy plane that has a magni-
tude of 90.0 units and a y component of 
(a) What are the two possibilities for its x component?
(b) Assuming the x component is known to be positive,
specify the vector which, if you add it to the original one,
would give a resultant vector that is 80.0 units long and
points entirely in the direction.

3;5 and 3;6 Projectile Motion (neglect air resistance)
17. (I) A tiger leaps horizontally from a 7.5-m-high rock with

a speed of How far from the base of the rock will
she land?

18. (I) A diver running dives out horizontally from the
edge of a vertical cliff and 3.0 s later reaches the water
below. How high was the cliff and how far from its base did
the diver hit the water?

19. (II) Estimate by what factor a person can jump farther on
the Moon as compared to the Earth if the takeoff speed
and angle are the same. The acceleration due to gravity on
the Moon is one-sixth what it is on Earth.

20. (II) A ball is thrown horizontally from the roof of a build-
ing 7.5 m tall and lands 9.5 m from the base. What was the
ball’s initial speed?

21. (II) A ball thrown horizontally at from the roof of
a building lands 21.0 m from the base of the building. How
high is the building?

12.2 m�s

2.5 m�s

3.0 m�s.

–x

–65.0 units.
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Problems 69

9. (II) Three vectors are shown in Fig. 3–35. Their magnitudes
are given in arbitrary units. Determine the sum of the three
vectors. Give the resultant in terms of (a) components,
(b) magnitude and angle with the x axis.±

(C = 31.0)C
B

(B
= 26.5)

(A =  44.0)

B B

A
B

x

y

56.0° 28.0°

FIGURE 3;35

Problems 9, 10, 11, 12, and 13.
Vector magnitudes are given 
in arbitrary units.

FIGURE 3;36

Problem 23.

4.0 m/s

150 m

910 m

FIGURE 3;37

Problem 26.

24. (II) You buy a plastic dart gun, and being a clever physics
student you decide to do a quick calculation to find its
maximum horizontal range. You shoot the gun straight up,
and it takes 4.0 s for the dart to land back at the barrel.
What is the maximum horizontal range of your gun?

25. (II) A grasshopper hops along a level road. On each hop,
the grasshopper launches itself at angle and
achieves a range  What is the average hori-
zontal speed of the grasshopper as it hops along the
road? Assume that the time spent on the ground between
hops is negligible.

26. (II) Extreme-sports enthusiasts have been known to jump
off the top of El Capitan, a sheer granite cliff of height 
910 m in Yosemite National Park. Assume a jumper runs
horizontally off the top of El Capitan with speed 
and enjoys a free fall until she is 150 m above the valley
floor, at which time she opens her parachute (Fig. 3–37).
(a) How long is the jumper in free fall? Ignore air resis-
tance. (b) It is important to be as far away from the cliff
as possible before opening the parachute. How far from
the cliff is this jumper when she opens her chute?

4.0 m�s

R = 0.80 m.
u0 = 45°

27. (II) A projectile is fired with an initial speed of 
at an angle of 42.2° above the horizontal on a long flat
firing range. Determine (a) the maximum height reached
by the projectile, (b) the total time in the air, (c) the total
horizontal distance covered (that is, the range), and (d) the
speed of the projectile 1.50 s after firing.

36.6 m�s

2.5 m

u 0

22. (II) A football is kicked at ground level with a speed of
at an angle of 31.0° to the horizontal. How much

later does it hit the ground?
23. (II) A fire hose held near the ground shoots water at a

speed of At what angle(s) should the nozzle point
in order that the water land 2.5 m away (Fig. 3–36)? Why
are there two different angles?
Sketch the two trajectories.

6.5 m�s.

18.0 m�s
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u0

v0

FIGURE 3;40 Problem 36.

36. (III) Revisit Example 3–7, and assume that the boy with
the slingshot is below the boy in the tree (Fig. 3–40) and
so aims upward, directly at the boy in the tree. Show that
again the boy in the tree makes the wrong move by letting
go at the moment the water balloon is shot.

22 m

Must clear
this point!

1.5 m

FIGURE 3;41 Problem 37.

37. (III) A stunt driver wants to make his car jump over 8 cars
parked side by side below a horizontal ramp (Fig. 3–41).
(a) With what minimum speed must he drive off the hori-
zontal ramp? The vertical height of the ramp is 1.5 m above
the cars and the horizontal distance he must clear is 22 m.
(b) If the ramp is now tilted upward, so that “takeoff angle”
is 7.0° above the horizontal, what is the new minimum
speed?

3;8 Relative Velocity

38. (I) A person going for a morning jog on the deck of a
cruise ship is running toward the bow (front) of the ship at

while the ship is moving ahead at What is
the velocity of the jogger relative to the water? Later, the
jogger is moving toward the stern (rear) of the ship. What
is the jogger’s velocity relative to the water now?

39. (I) Huck Finn walks at a speed of across his raft
(that is, he walks perpendicular to the raft’s motion relative
to the shore). The heavy raft is traveling down the Mississippi
River at a speed of

relative to the
river bank (Fig. 3–42).
What is Huck’s velocity
(speed and direction)
relative to the river
bank?

1.50 m�s

0.70 m�s

8.5 m�s.2.0 m�s

x

vx0

“Dropped”
(vy0 = 0)

235 m

FIGURE 3;38 Problem 31.

425 m

235 m

Thrown upward?
(vy0 > 0)

Thrown downward?
(vy0 < 0)

FIGURE 3;39 Problem 32.

32. (III) Suppose the rescue plane of Problem 31 releases the
supplies a horizontal distance of 425 m in advance of the
mountain climbers. What vertical velocity (up or down)
should the supplies be given so that they arrive precisely at
the climbers’ position (Fig. 3–39)? With what speed do the
supplies land?

33. (III) A diver leaves the end of a 4.0-m-high diving board
and strikes the water 1.3 s later, 3.0 m beyond the end of
the board. Considering the diver as a particle, determine:
(a) her initial velocity, (b) the maximum height reached;
and (c) the velocity with which she enters the water.

34. (III) Show that the time required for a projectile to reach
its highest point is equal to the time for it to return to its
original height if air resistance is neglible.

35. (III) Suppose the kick in Example 3–6 is attempted 36.0 m
from the goalposts, whose crossbar is 3.05 m above the
ground. If the football is directed perfectly between the
goalposts, will it pass over the bar and be a field goal?
Show why or why not. If not, from what horizontal distance
must this kick be made if it is to score?

vBf

vB0 ;

28. (II) An athlete performing a long jump leaves the ground
at a 27.0° angle and lands 7.80 m away. (a) What was the
takeoff speed? (b) If this speed were increased by just
5.0%, how much longer would the jump be?

29. (II) A shot-putter throws the “shot” with an
initial speed of at a 34.0° angle to the horizontal.
Calculate the horizontal distance traveled by the shot if 
it leaves the athlete’s hand at a height of 2.10 m above 
the ground.

30. (II) A baseball is hit with a speed of at an angle of
45.0°. It lands on the flat roof of a 13.0-m-tall nearby build-
ing. If the ball was hit when it was 1.0 m above the ground,
what horizontal distance does it travel before it lands on
the building?

31. (II) A rescue plane wants to drop supplies to isolated moun-
tain climbers on a rocky ridge 235 m below. If the plane is
traveling horizontally with a speed of 
how far in advance of the recipients (horizontal distance)
must the goods be dropped (Fig. 3–38)?

(69.4 m�s),250 km�h

27.0 m�s

14.4 m�s
(mass = 7.3 kg)

River
current

0.70 m/s

FIGURE 3;42

Problem 39.

40. (II) Determine the speed of the boat with respect to the
shore in Example 3–10.



44. (II) An airplane is heading due south at a speed of
If a wind begins blowing from the southwest at

a speed of (average), calculate (a) the velocity
(magnitude and direction) of the plane, relative to the
ground, and (b) how far from its intended position it will
be after 11.0 min if the pilot takes no corrective action.
[Hint: First draw a diagram.]

45. (II) In what direction should the pilot aim the plane in
Problem 44 so that it will fly due south?

46. (II) A swimmer is capable of swimming in still
water. (a) If she aims her body directly across a 45-m-wide
river whose current is how far downstream (from
a point opposite her starting point) will she land? (b) How
long will it take her to reach the other side?

47. (II) (a) At what upstream angle must the swimmer in
Problem 46 aim, if she is to arrive at a point directly across
the stream? (b) How long will it take her?

0.50 m�s,

0.60 m�s

90.0 km�h
688 km�h.
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0.60 m/s = 1.70 m/s
45 x

y v

FIGURE 3;43 Problem 42.

41. (II) Two planes approach each other head-on. Each has a
speed of and they spot each other when they are
initially 10.0 km apart. How much time do the pilots have
to take evasive action?

42. (II) A passenger on a boat moving at on a still lake
walks up a flight of stairs at a speed of Fig. 3–43.
The stairs are angled at 45° pointing in the direction of
motion as shown. What is the velocity of the passenger rel-
ative to the water?

0.60 m�s,
1.70 m�s

780 km�h,

10.0 m/s

FIGURE 3;44

Problem 43.

43. (II) A person in the passenger basket of a hot-air balloon
throws a ball horizontally outward from the basket with
speed (Fig. 3–44). What initial velocity (magni-
tude and direction) does the ball have relative to a person
standing on the ground (a) if the hot-air balloon is rising
at relative to the ground during this throw, (b) if
the hot-air balloon is descending at relative to the
ground?

3.0 m�s
3.0 m�s

10.0 m�s

48. (II) A boat, whose speed in still water is must
cross a 285-m-wide river and arrive at a point 118 m
upstream from where it starts (Fig. 3–45). To do so, the
pilot must head the boat at a 45.0° upstream angle. What
is the speed of the
river’s current?

2.50 m�s,

45 m

2.0 m/s

1.0 m/s

FIGURE 3;46 Problem 49.

50. (III) An airplane, whose air speed is is supposed
to fly in a straight path 38.0° N of E. But a steady 
wind is blowing from the north. In what direction should
the plane head? [Hint: Use the law of sines, Appendix A–7.]

51. (III) Two cars approach a street corner at right angles to
each other (Fig. 3–47). Car 1 travels at a speed relative 
to Earth and car 2 at  
What is the relative
velocity of car 1 as
seen by car 2? What
is the velocity of car 2
relative to car 1?

v2E = 55 km�h.v1E = 35 km�h,

82 km�h
580 km�h,

1

2

1E

2EvB

vB

FIGURE 3;47

Problem 51.

49. (II) A child, who is 45 m from the bank of a river, is being
carried helplessly downstream by the river’s swift current
of As the child passes a lifeguard on the river’s
bank, the lifeguard starts swimming in a straight line 
(Fig. 3–46) until she reaches the child at a point downstream.
If the lifeguard can swim at a speed of relative 
to the water, how long does it take her to reach the child?
How far downstream does the lifeguard intercept the
child?

2.0 m�s

1.0 m�s.

current

Start

Finish

118 m

River

285 m

Pa
th

 o
f

bo
at

45.0°

FIGURE 3;45

Problem 48.



35.0°

P

h = 115 m

X

0 = 65.0 m/sv

FIGURE 3;51 Problem 59.

59. A projectile is shot from the edge of a cliff 115 m above
ground level with an initial speed of at an angle of
35.0° with the horizontal, as shown in Fig. 3–51. (a) Deter-
mine the time taken by the projectile to hit point P at
ground level. (b) Determine the distance X of point P
from the base of the vertical cliff. At the instant just before
the projectile hits point P, find (c) the horizontal and the
vertical components of its velocity, (d) the magnitude of
the velocity, and (e) the angle made by the velocity vector
with the horizontal. (f) Find the maximum height above
the cliff top reached by the projectile.

65.0 m�s
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Main road
downhill

Escape
route

FIGURE 3;48 Problem 53.

8.5 m

8.0 m

FIGURE 3;49

Problem 56.

54. A light plane is headed due south with a speed relative to
still air of After 1.00 h, the pilot notices that
they have covered only 135 km and their direction is not
south but 15.0° east of south. What is the wind velocity?

55. An Olympic long jumper is capable of jumping 8.0 m.
Assuming his horizontal speed is as he leaves the
ground, how long is he in the air and how high does he go?
Assume that he lands standing upright—that is, the same
way he left the ground.

56. Romeo is throwing pebbles gently up to Juliet’s window,
and he wants the pebbles to hit the window with only a
horizontal component of velocity. He is standing at the
edge of a rose garden 8.0 m below her window and 8.5 m
from the base of the wall (Fig. 3–49). How fast are the
pebbles going when they hit her window?

9.1 m�s

185 km�h.

58. (a) A long jumper leaves the ground at 45° above the
horizontal and lands 8.0 m away. What is her “takeoff”
speed (b) Now she is out on a hike and comes to the
left bank of a river. There is no bridge and the right bank 
is 10.0 m away horizontally and 2.5 m vertically below. If
she long jumps from the edge of the left bank at 45° with
the speed calculated in (a), how long, or short, of the
opposite bank will she land (Fig. 3–50)?

v0 ?

v0

45°

2.5 m

10.0 m

FIGURE 3;50 Problem 58.

60. William Tell must split the apple on top of his son’s head
from a distance of 27 m. When William aims directly at the
apple, the arrow is horizontal. At what angle should he aim
the arrow to hit the apple if the arrow travels at a speed of
35 m�s?

52. Two vectors, and add to a resultant
Describe and if (a) (b)
(c)

53. On mountainous downhill roads, escape routes are some-
times placed to the side of the road for trucks whose brakes
might fail. Assuming a constant upward slope of 26°, calcu-
late the horizontal and vertical components of the acceleration
of a truck that slowed from to rest in 7.0 s. See
Fig. 3–48.

110 km�h

V1 + V2 = V1 - V2 .
VR

2 = V1
2 + V2

2 ,VR = V1 + V2 ,V
B

2V
B

1

V
B

R = V
B

1 + V
B

2 .V
B

2 ,V
B
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General Problems

57. Apollo astronauts took a “nine iron” to the Moon and hit
a golf ball about 180 m. Assuming that the swing, launch
angle, and so on, were the same as on Earth where the
same astronaut could hit it only 32 m, estimate the accel-
eration due to gravity on the surface of the Moon. (We
neglect air resistance in both cases, but on the Moon there
is none.)



61. Raindrops make an angle with the vertical when viewed
through a moving train window (Fig. 3–52). If the speed
of the train is what is the speed of the raindrops in the
reference frame of
the Earth in which
they are assumed to
fall vertically?

vT ,

u

5.0 m

35 m

FIGURE 3;53

Problem 64.
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uFIGURE 3;52

Problem 61.

62. A car moving at passes a 1.00-km-long train trav-
eling in the same direction on a track that is parallel to the
road. If the speed of the train is how long does it
take the car to pass the train, and how far will the car have
traveled in this time? What are the results if the car and
train are instead traveling in opposite directions?

63. A hunter aims directly at a target (on the same level)
38.0 m away. (a) If the arrow leaves the bow at a speed of

by how much will it miss the target? (b) At what
angle should the bow be aimed so the target will be hit?

64. The cliff divers of Acapulco push off horizontally from rock
platforms about 35 m above the water, but they must clear
rocky outcrops at water level that extend out into the water
5.0 m from the base of the cliff directly under their launch
point. See Fig. 3–53. What minimum pushoff speed is neces-
sary to clear the rocks? How long are they in the air?

23.1 m�s,

75 km�h,

95 km�h

65. When Babe Ruth hit a homer over the 8.0-m-high right-
field fence 98 m from home plate, roughly what was the
minimum speed of the ball when it left the bat? Assume the
ball was hit 1.0 m above the ground and its path initially
made a 36° angle with the ground.

66. At serve, a tennis player aims to hit the ball horizontally.
What minimum speed is required for the ball to clear the
0.90-m-high net about 15.0 m from the server if the ball is
“launched” from a height of 2.50 m? Where will the ball
land if it just clears the net (and will it be “good” in the
sense that it lands within 7.0 m of the net)? How long will
it be in the air? See Fig. 3–54.

67. Spymaster Chris, flying a constant horizontally
in a low-flying helicopter, wants to drop secret documents
into her contact’s open car which is traveling on
a level highway 78.0 m below. At what angle (with the hori-
zontal) should the car be in her sights when the packet is
released (Fig. 3–55)?

156 km�h

208 km�h

15.0 m 7.0 m

2.50 m

FIGURE 3;54 Problem 66.

156 km/h

78.0 m

208 km/h

θ

FIGURE 3;55 Problem 67.

135 m

195 m

Landing point

v0

u

FIGURE 3;56

Problem 70.

35°

x � ?

v0 � 12 m/s

10 ft
� 3.05 m2.40 m

FIGURE 3;57

Problem 71.

68. A basketball leaves a player’s hands at a height of 2.10 m
above the floor. The basket is 3.05 m above the floor. The
player likes to shoot the ball at a 38.0° angle. If the shot is
made from a horizontal distance of 11.00 m and must be
accurate to (horizontally), what is the range of
initial speeds allowed to make the basket?

69. A boat can travel in still water. (a) If the boat
points directly across a stream whose current is 
what is the velocity (magnitude and direction) of the boat
relative to the shore? (b) What will be the position of the
boat, relative to its point of origin, after 3.00 s?

70. A projectile is launched from ground level to the top of a
cliff which is 195 m away and 135 m high (see Fig. 3–56).
If the projectile lands on top of the cliff 6.6 s after it is
fired, find the initial velocity of the projectile (magnitude
and direction). Neglect air resistance.

1.20 m�s,
2.20 m�s

&0.22 m

71. A basketball is shot from an initial height of 2.40 m
(Fig. 3–57) with an initial speed directed at
an angle above the horizontal. (a) How far from
the basket was the player if he made a basket? (b) At what
angle to the horizontal did the ball enter the basket?

u0 = 35°
v0 = 12 m�s



72. A rock is kicked horizontally at from a hill with a
45° slope (Fig. 3–58). How long does it take for the rock to
hit the ground?

15 m�s
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15 m/s

45�

FIGURE 3;58 Problem 72.

73. A batter hits a fly ball which leaves the bat 0.90 m above
the ground at an angle of 61° with an initial speed of

heading toward centerfield. Ignore air resistance.
(a) How far from home plate would the ball land if not
caught? (b) The ball is caught by the centerfielder who,
starting at a distance of 105 m from home plate just as the ball
was hit, runs straight toward home plate at a constant speed
and makes the catch at ground level. Find his speed.

74. A ball is shot from the top of a building with an initial
velocity of at an angle above the horizontal.
(a) What are the horizontal and vertical components of the
initial velocity? (b) If a nearby building is the same height
and 55 m away, how far below the top of the building will
the ball strike the nearby building?

75. If a baseball pitch leaves the pitcher’s hand horizontally at
a velocity of by what % will the pull of gravity
change the magnitude of the velocity when the ball reaches
the batter, 18 m away? For this estimate, ignore air resis-
tance and spin on the ball.

150 km�h,

u = 42°18 m�s

28 m�s

θ

v0

0

h

FIGURE 3;59 Search and Learn 1.

1. Here is something to try at a sporting event. Show that
the maximum height h attained by an object projected
into the air, such as a baseball, football, or soccer ball, is
approximately given by

where is the total time of flight for the object in sec-
onds. Assume that the object returns to the same level
as that from which it was launched, as in Fig. 3–59. For
example, if you count to find that a baseball was in the
air for the maximum height attained was

The fun of this relation is that
h can be determined without knowledge of the launch
speed or launch angle Why is that exactly? See 
Section 3–6.

u0 .v0

h = 1.2 * (5.0)2 = 30 m.
t = 5.0 s,

t

h L   1.2 t2 m,

2. Two balls are thrown in the air at different angles, but each
reaches the same height. Which ball remains in the air longer?
Explain, using equations.

3. Show that the speed with which a projectile leaves the
ground is equal to its speed just before it strikes the
ground at the end of its journey, assuming the firing level
equals the landing level.

4. The initial angle of projectile A is 30°, while that of projec-
tile B is 60°. Both have the same level horizontal range.
How do the initial velocities and flight times (elapsed time
from launch until landing) compare for A and B?

5. You are driving south on a highway at (approxi-
mately ) in a snowstorm. When you last stopped,
you noticed that the snow was coming down vertically, but
it is passing the windows of the moving car at an angle of
7.0° to the horizontal. Estimate the speed of the vertically
falling snowflakes relative to the ground. [Hint: Construct
a relative velocity diagram similar to Fig. 3–29 or 3–30. Be
careful about which angle is the angle given.]

25 mi�h
12 m�s

Search and Learn 

A:
B: (a).
C: They hit at the same time.

3.022 L 4.2 units. D: (i) Nowhere; (ii) at the highest point; (iii) nowhere.
E: (d). It provides the initial velocity of the box.
F: (a) , horizontal; (b) down.9.80 m�s2v = vx 0 = 16.0 m�s
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