
198

Rotational Motion
CHAPTER-OPENING QUESTION—Guess now!
A solid ball and a solid cylinder roll down a ramp. They both start from rest at the
same time and place. Which gets to the bottom first?

(a) They get there at the same time.
(b) They get there at almost exactly the same time except for frictional differences.
(c) The ball gets there first.
(d) The cylinder gets there first.
(e) Can’t tell without knowing the mass and radius of each.

U ntil now, we have been concerned mainly with translational motion. We
discussed the kinematics and dynamics of translational motion (the role 
of force). We also discussed the energy and momentum for translational

motion. In this Chapter we will deal with rotational motion. We will discuss the
kinematics of rotational motion and then its dynamics (involving torque), as well 
as rotational kinetic energy and angular momentum (the rotational analog of 
linear momentum). Our understanding of the world around us will be increased
significantly—from rotating bicycle wheels and compact discs to amusement park 
rides, a spinning skater, the rotating Earth, and a centrifuge—and there may be a
few surprises.

We will consider mainly the rotation of rigid objects about a fixed axis.
A rigid object is an object with a definite shape that doesn’t change, so that the
particles composing it stay in fixed positions relative to one another. Any real
object is capable of vibrating or deforming when a force is exerted on it. But these
effects are often very small, so the concept of an ideal rigid object is very useful as
a good approximation.
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You too can experience rapid
rotation—if your stomach can 
take the high angular velocity 
and centripetal acceleration of 
some of the faster amusement 
park rides. If not, try the slower 
merry-go-round or Ferris 
wheel. Rotating carnival rides 
have rotational kinetic energy 
as well as angular momentum.
Angular acceleration is 
produced by a net torque, and 
rotating objects have rotational 
kinetic energy.
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8–1 Angular Quantities
The motion of a rigid object can be analyzed as the translational motion of the
object’s center of mass, plus rotational motion about its center of mass (Section 7–8).
We have already discussed translational motion in detail, so now we focus on
purely rotational motion. By purely rotational motion we mean that all points in
the object move in circles, such as the point P in the rotating wheel of Fig. 8–1,
and that the centers of these circles all lie on one line called the axis of rotation.
In Fig. 8–1 the axis of rotation is perpendicular to the page and passes through
point O.

Every point in an object rotating about a fixed axis moves in a circle (shown
dashed in Fig. 8–1 for point P) whose center is on the axis of rotation and whose
radius is r, the distance of that point from the axis of rotation. A straight line
drawn from the axis to any point in the object sweeps out the same angle in the
same time interval.

To indicate the angular position of a rotating object, or how far it has rotated,
we specify the angle of some particular line in the object (red in Fig. 8–1) with
respect to a reference line, such as the x axis in Fig. 8–1. A point in the object,
such as P in Fig. 8–1, moves through an angle when it travels the distance 
measured along the circumference of its circular path. Angles are commonly
measured in degrees, but the mathematics of circular motion is much simpler if
we use the radian for angular measure. One radian (abbreviated rad) is defined
as the angle subtended by an arc whose length is equal to the radius. For
example, in Fig. 8–1b, point P is a distance r from the axis of rotation, and it has
moved a distance along the arc of a circle. The arc length is said to “subtend”
the angle In radians, any angle is given by

[ in radians] (8;1a)

where r is the radius of the circle, and is the arc length subtended by the angle 
specified in radians. If then 

The radian is dimensionless since it is the ratio of two lengths. Nonetheless
when giving an angle in radians, we always mention rad to remind us it is not
degrees. It is often useful to rewrite Eq. 8–1a in terms of arc length 

(8;1b)

Radians can be related to degrees in the following way. In a complete circle there
are 360°, which must correspond to an arc length equal to the circumference of the
circle, For a full circle, . Thus

One radian is then An object that makes one
complete revolution (rev) has rotated through 360°, or radians:

1 rev = 360° = 2p rad.

2p
360°�2p L 360°�6.28 L 57.3°.

360° = 2p rad.

u = l�r = 2pr�r = 2p radl = 2pr.

l = ru.
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u = 1 rad.l = r,
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l
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FIGURE 8;1 Looking at a wheel
that is rotating counterclockwise
about an axis through the wheel’s
center at O (axis perpendicular to
the page). Each point, such as 
point P, moves in a circular path;

is the distance P travels as the
wheel rotates through the angle u.
l

C A U T I O N

Use radians in 
calculating, not degrees

Bike wheel. A bike wheel rotates 4.50 revolutions. How many
radians has it rotated?

APPROACH All we need is a conversion of units using

SOLUTION

4.50 revolutions = (4.50 rev) a2p 
rad
rev b = 9.00p rad = 28.3 rad.

1 revolution = 360° = 2p rad = 6.28 rad.

EXAMPLE 8;1



Birds of prey—in radians. A particular bird’s eye can just
distinguish objects that subtend an angle no smaller than about 
(a) How many degrees is this? (b) How small an object can the bird just distin-
guish when flying at a height of 100 m (Fig. 8–2a)?

APPROACH For (a) we use the relation For (b) we use Eq. 8–1b,
to find the arc length.

SOLUTION (a) We convert to degrees:

(b) We use Eq. 8–1b, For small angles, the arc length and the chord
length are approximately† the same (Fig. 8–2b). Since and

we find

A bird can distinguish a small mouse (about 3 cm long) from a height of 100 m.
That is good eyesight.

NOTE Had the angle been given in degrees, we would first have had to convert
it to radians to make this calculation. Equations 8–1 are valid only if the angle is
specified in radians. Degrees (or revolutions) won’t work.

To describe rotational motion, we make use of angular quantities, such as
angular velocity and angular acceleration. These are defined in analogy to the
corresponding quantities in linear motion, and are chosen to describe the rotat-
ing object as a whole, so they are the same for each point in the rotating object.
Each point in a rotating object may also have translational velocity and acceleration,
but they have different values for different points in the object.

When an object such as the bicycle wheel in Fig. 8–3 rotates from some 
initial position, specified by to some final position, its angular displacement
is

The angular velocity (denoted by the Greek lowercase letter omega) is
defined in analogy with linear (translational) velocity that was discussed in 
Chapter 2. Instead of linear displacement, we use the angular displacement. Thus
the average angular velocity of an object rotating about a fixed axis is defined as

(8;2a)

where is the angle through which the object has rotated in the time interval 
The instantaneous angular velocity is the limit of this ratio as approaches zero:

(8;2b)

Angular velocity is generally specified in radians per second (rad/s). Note that all
points in a rigid object rotate with the same angular velocity, since every position
in the object moves through the same angle in the same time interval.

An object such as the wheel in Fig. 8–3 can rotate about a fixed axis either
clockwise or counterclockwise. The direction can be specified with a or sign.
The usual convention is to choose the angular displacement and angular velocity 
as positive when the wheel rotates counterclockwise. If the rotation is clockwise,
then would decrease, so and would be negative.v¢uu

v¢u
–±

v = lim
¢tS 0

¢u
¢t

.

¢t
¢t.¢u

j =
¢u
¢t

,

v,

¢u = u2 - u1 .

u2 ,u1 ,

l = ru = (100 m)A3 * 10–4 radB = 3 * 10–2 m = 3 cm.

u = 3 * 10–4 rad,
r = 100 m
ll = ru.

A3 * 10–4 radB a 360°
2p rad

b = 0.017°.

3 * 10–4 rad

l = ru,
360° = 2p rad.

3 * 10–4 rad.
EXAMPLE 8;2
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†Even for an angle as large as 15°, the error in making this estimate is only 1%, but for larger angles
the error increases rapidly. (The chord is the straight-line distance between the ends of the arc.)
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FIGURE 8;2 (a) Example 8–2.
(b) For small angles, arc length and
the chord length (straight line) are
nearly equal.
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FIGURE 8;3 A wheel rotates 
about its axle from (a) initial
position to (b) final position 
The angular displacement is
¢u = u2 - u1 .

u2 .u1



Angular acceleration (denoted by the Greek lowercase letter alpha), in analogy
to linear acceleration, is defined as the change in angular velocity divided by the
time required to make this change. The average angular acceleration is defined as

(8;3a)

where is the angular velocity initially, and is the angular velocity after a
time interval Instantaneous angular acceleration is defined as the limit of this
ratio as approaches zero:

(8;3b)

Since is the same for all points of a rotating object, Eq. 8–3 tells us that also
will be the same for all points. Thus, and are properties of the rotating object
as a whole. With measured in radians per second and in seconds, has units 
of radians per second squared 

Each point or particle of a rotating object has, at any moment, a linear velocity v
and a linear acceleration a. We can now relate the linear quantities at each point,
v and a, to the angular quantities, and for a rigid object rotating about a 
fixed axis. Consider a point P located a distance r from the axis of rotation, as in
Fig. 8–4. If the object rotates with angular velocity any point will have a linear
velocity whose direction is tangent to its circular path. The magnitude of that
point’s linear velocity is From Eq. 8–1b, a change in rotation 
angle (in radians) is related to the linear distance traveled by Hence

or (since ) 

(8;4)

In this very useful Eq. 8–4, r is the distance of a point from the rotation axis 
and is given in rad/s. Thus, although is the same for every point in the rotating
object at any instant, the linear velocity v is greater for points farther from the 
axis (Fig. 8–5). Note that Eq. 8–4 is valid both instantaneously and on average.

vv

v = rv.

¢u�¢t = v

v =
¢l
¢t

= r
¢u
¢t

¢l = r ¢u.¢u
v = ¢l�¢t.

v,

a,v

Arad�s2B. atv

av

av

a = lim
¢tS 0

¢v
¢t

.

¢t
¢t.

v2v1

k =
v2 - v1

¢t
=
¢v
¢t

,

a,
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FIGURE 8;5 A wheel rotating 
uniformly counterclockwise. Two
points on the wheel, at distances 
and from the center, have the
same angular velocity because
they travel through the same angle 
in the same time interval. But the
two points have different linear
velocities because they travel 
different distances in the same time
interval. Since and

then vB 7 vA .rB 7 rA ,
v = rv
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FIGURE 8;4 A point P on a 
rotating wheel has a linear 
velocity at any moment.vB

If the angular velocity of a rotating object changes, the object as a whole—
and each point in it—has an angular acceleration. Each point also has a linear
acceleration whose direction is tangent to that point’s circular path. We use 
Eq. 8–4 to see that the angular acceleration is related to the tan-
gential linear acceleration of a point in the rotating object by

or (using Eq. 8–3)
(8;5)

In this equation, r is the radius of the circle in which the particle is moving, and
the subscript “tan” in stands for “tangential.”atan

atan = ra.

atan =
¢v

¢t
= r

¢v
¢t

atan

a(v = rv)

Is the lion faster than the horse? On a
rotating carousel or merry-go-round, one child sits on a horse near the outer
edge and another child sits on a lion halfway out from the center. (a) Which child
has the greater linear velocity? (b) Which child has the greater angular velocity?

RESPONSE (a) The linear velocity is the distance traveled divided by the time
interval. In one rotation the child on the outer edge travels a longer distance
than the child near the center, but the time interval is the same for both. Thus the
child at the outer edge, on the horse, has the greater linear velocity.
(b) The angular velocity is the angle of rotation of the carousel as a whole divided
by the time interval. For example, in one rotation both children rotate through the
same angle ( or radians). The two children have the same angular velocity.2p360°

CONCEPTUAL EXAMPLE 8;3



The total linear acceleration of a point in the rotating object is the vector sum
of two components:

where the radial component, is the radial or “centripetal” acceleration and 
its direction is toward the center of the point’s circular path; see Fig. 8–6. We saw
in Chapter 5 (Eq. 5–1) that a particle moving in a circle of radius r with linear
speed v has a radial acceleration We can rewrite this in terms of 
using Eq. 8–4:

(8;6)

Thus the centripetal acceleration is greater the farther you are from the axis of
rotation: the children farthest out on a carousel feel the greatest acceleration.

Equations 8–1, 8–4, 8–5, and 8–6 relate the angular quantities describing the 
rotation of an object to the linear quantities for each point of a rotating object.
Table 8–1 summarizes these relationships.

aR =
v2

r
=

(rv)2

r
= v2r.

vaR = v2�r.

aBR ,

aB = aBtan + aBR ,

202 CHAPTER 8 Rotational Motion

TABLE 8;1 Linear and Rotational Quantities

Linear Type Rotational Relation‡

x displacement
v velocity

acceleration
‡ You must use radians.

atan = raaatan

v = rvv

x = ruu

ω P

   R

   tanaB

aB

FIGURE 8;6 On a rotating wheel
whose angular speed is increasing,
a point P has both tangential and
radial (centripetal) components of
linear acceleration. (See also 
Chapter 5.)

Angular and linear velocities. A carousel is initially at rest.
At it is given a constant angular acceleration which
increases its angular velocity for 8.0 s. At determine (a) the angular
velocity of the carousel, and (b) the linear velocity of a child (Fig. 8–7a) located
2.5 m from the center, point P in Fig. 8–7b.

APPROACH The angular acceleration is constant, so we can use 
(Eq. 8–3a) to solve for after a time With this , we determine the
linear velocity using Eq. 8–4, .

SOLUTION (a) In Eq. 8–3a, we put
and Solving for we get

During the 8.0-s time interval, the carousel accelerates from to
.

(b) The linear velocity of the child with at time is found 
using Eq. 8–4:

Note that the “rad” has been omitted in the final result because it is dimensionless
(and only a reminder)—it is a ratio of two distances, Eq. 8–1a.

Angular and linear accelerations. For the child on the
rotating carousel of Example 8–4, determine that child’s (a) tangential (linear)
acceleration, (b) centripetal acceleration, (c) total acceleration.

APPROACH We use the relations discussed above, Eqs. 8–5 and 8–6.

SOLUTION (a) The child’s tangential acceleration is given by Eq. 8–5:

and it is the same throughout the 8.0-s acceleration period.
(b) The child’s centripetal acceleration at is given by Eq. 8–6:

aR =
v2

r
=

(1.2 m�s)2

(2.5 m)
= 0.58 m�s2.

t = 8.0 s

atan = ra = (2.5 m)A0.060 rad�s2B = 0.15 m�s2,

EXAMPLE 8;5

v = rv = (2.5 m)(0.48 rad�s) = 1.2 m�s.

t = 8.0 sr = 2.5 m
v2 = 0.48 rad�s

v1 = 0

v2 = v1 + k ¢t = 0 + A0.060 rad�s2B(8.0 s) = 0.48 rad�s.

v2 ,v1 = 0.0.060 rad�s2,
k =¢t = 8.0 s,k = Av2 - v1B�¢t ,

v = rv
vt = 8.0 s.v

a = ¢v�¢ta

t = 8.0 s,
a = 0.060 rad�s2,t = 0

EXAMPLE 8;4
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B

atan
B
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(b)

θ

(a)

FIGURE 8;7 Examples 8–4 and 8–5.
The total acceleration vector is

at t = 8.0 s.aB = aBtan + aBR ,



(c) The two components of linear acceleration calculated in parts (a) and (b) are
perpendicular to each other. Thus the total linear acceleration at has
magnitude

NOTE The linear acceleration at this chosen instant is mostly centripetal, and
keeps the child moving in a circle with the carousel. The tangential component
that speeds up the circular motion is smaller.

NOTE The direction of the linear acceleration (magnitude calculated above as
) is at the angle shown in Fig. 8–7b:

so

We can relate the angular velocity to the frequency of rotation, f. The 
frequency is the number of complete revolutions (rev) per second, as we saw in
Chapter 5. One revolution (of a wheel, say) corresponds to an angle of radians,
and thus Hence, in general, the frequency f is related to the
angular velocity by

or
(8;7)

The unit for frequency, revolutions per second (rev s), is given the special name
the hertz (Hz). That is,

Note that “revolution” is not really a unit, so we can also write 
The time required for one complete revolution is called the period T, and it

is related to the frequency by

(8;8)

If a particle rotates at a frequency of three revolutions per second, then the
period of each revolution is 13 s.

T =
1
f

.

1 Hz = 1 s–1.

1 Hz = 1 rev�s.

�

v = 2pf.

f =
v

2p

v

1 rev�s = 2p rad�s.
2p

v

u L 15°.

u = tan–1 a atan

aR
b = tan–1 a 0.15 m�s2

0.58 m�s2
b = 0.25 rad,

u0.60 m�s2

a = 3atan
2 + aR

2 = 3 A0.15 m�s2B2 + A0.58 m�s2B2 = 0.60 m�s2.

t = 8.0 s
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EXERCISE A In Example 8–4 we found that the carousel, after 8.0 s, rotates at an 
angular velocity and continues to do so after because the
acceleration ceased. What are the frequency and period of the carousel when rotating 
at this constant angular velocity ?v = 0.48 rad�s

t = 8.0 sv = 0.48 rad�s,

8–2 Constant Angular Acceleration
In Chapter 2, we derived the useful kinematic equations (Eqs. 2–11) that relate
acceleration, velocity, distance, and time for the special case of uniform linear
acceleration. Those equations were derived from the definitions of linear 
velocity and acceleration, assuming constant acceleration. The definitions of
angular velocity and angular acceleration (Eqs. 8–2 and 8–3) are just like those
for their linear counterparts, except that replaces the linear displacement x,

replaces v, and replaces a. Therefore, the angular equations for 
constant angular acceleration will be analogous to Eqs. 2–11 with x replaced
by v by and a by and they can be derived in exactly the same way.a,v,u,

av

u



We summarize these angular equations here, opposite their linear equivalents,
Eqs. 2–11 (for simplicity we choose and at the initial time ):

Angular Linear

[constant ] (8;9a)

[constant ] (8;9b)

[constant ] (8;9c)

[constant ] (8;9d)

Note that represents the angular velocity at whereas and represent
the angular position and velocity, respectively, at time . Since the angular accel-
eration is constant, a = k.

t
vut0 = 0,v0

a, av =
v + v0

2
j =

v + v0

2

a, av2 = v2
0 + 2axv2 = v2

0 + 2au

a, ax = v0 t + 1
2 at2u = v0 t + 1

2at2

a, av = v0 + atv = v0 + at

t0 = 0x0 = 0u0 = 0
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Kinematic equations

for constant

angular acceleration

u0 = 0][x0 = 0,

P H Y S I C S  A P P L I E D

Centrifuge

8–3 Rolling Motion (Without Slipping)
The rolling motion of a ball or wheel is familiar in everyday life: a ball rolling
across the floor, or the wheels and tires of a car or bicycle rolling along the pave-
ment. Rolling without slipping depends on static friction between the rolling object
and the ground. The friction is static because the rolling object’s point of contact
with the ground is at rest at each moment.

Rolling without slipping involves both rotation and translation. There is a simple
relation between the linear speed v of the axle and the angular velocity of the
rotating wheel or sphere: namely, (where r is the radius) as we now show.v = rv

v

Centrifuge acceleration. A centrifuge rotor is accelerated
for 30 s from rest to 20,000 rpm (revolutions per minute). (a) What is its average
angular acceleration? (b) Through how many revolutions has the centrifuge rotor
turned during its acceleration period, assuming constant angular acceleration?

APPROACH To determine we need the initial and final angular
velocities. For (b), we use Eqs. 8–9 (recall that one revolution corresponds to

).

SOLUTION (a) The initial angular velocity is The final angular velocity is

Then, since and we have

That is, every second the rotor’s angular velocity increases by or by
revolutions per second.

(b) To find we could use either Eq. 8–9b or 8–9c (or both to check our answer).
The former gives

where we have kept an extra digit because this is an intermediate result. To find
the total number of revolutions, we divide by and obtain

NOTE Let us calculate using Eq. 8–9c:

which checks our answer above from Eq. 8–9b perfectly.

u =
v2 - v0

2

2a
=

(2100 rad�s)2 - 0

2A70 rad�s2B = 3.15 * 104 rad

u

3.15 * 104 rad
2p rad�rev

= 5.0 * 103 rev.

2p rad�rev

0 + 1
2 A70 rad�s2B A30 sB2 = 3.15 * 104 rad,u = v0 t + 1

2at2 =

u

(70 rad�s)(1 rev�2p rad) = 11
70 rad�s,

k =
v - v0

¢t
=

2100 rad�s - 0
30 s

= 70 rad�s2.

¢t = 30 s,k = ¢v�¢t

v = 2pf = (2p rad�rev)
(20,000 rev�min)

(60 s�min)
= 2100 rad�s.

v0 = 0.

u = 2p rad

k = ¢v�¢t,

EXAMPLE 8;6
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Figure 8–8a shows a wheel rolling to the right without slipping. At the instant
shown, point P on the wheel is in contact with the ground and is momentarily 
at rest. (If P was not at rest, the wheel would be slipping.) The velocity of the axle
at the wheel’s center C is In Fig. 8–8b we have put ourselves in the reference
frame of the wheel—that is, we are moving to the right with velocity relative to
the ground. In this reference frame the axle C is at rest, whereas the ground and
point P are moving to the left with velocity as shown. In Fig. 8–8b we are
seeing pure rotation. So we can use Eq. 8–4 to obtain where r is the
radius of the wheel. This is the same v as in Fig. 8–8a, so we see that the linear
speed v of the axle relative to the ground is related to the angular velocity of the
wheel by

[rolling without slipping]

This relationship is valid only if there is no slipping.

Bicycle. A bicycle slows down uniformly from 
to rest over a distance of 115 m, Fig. 8–9. Each wheel and tire has an overall
diameter of 68.0 cm. Determine (a) the angular velocity of the wheels at the 
initial instant (b) the total number of revolutions each wheel rotates
before coming to rest; (c) the angular acceleration of the wheel; and (d) the time
it took to come to a stop.

APPROACH We assume the bicycle wheels roll without slipping and the tire is
in firm contact with the ground. The speed of the bike v and the angular velocity
of the wheels are related by The bike slows down uniformly, so the
angular acceleration is constant and we can use Eqs. 8–9.

SOLUTION (a) The initial angular velocity of the wheel, whose radius is 34.0 cm, is

(b) In coming to a stop, the bike passes over 115 m of ground. The circumference
of the wheel is so each revolution of the wheel corresponds to a distance
traveled of Thus the number of revolutions the wheel
makes in coming to a stop is

(c) The angular acceleration of the wheel can be obtained from Eq. 8–9c, for
which we set and Because each revolution corresponds
to radians of angle, then and

(d) Equation 8–9a or b allows us to solve for the time. The first is easier:

NOTE When the bike tire completes one revolution, the bike advances linearly
a distance equal to the outer circumference of the tire, as long as there is
no slipping or sliding.

(2pr)

t =
v - v0

a
=

0 - 24.7 rad�s

–0.902 rad�s2
= 27.4 s.

a =
v2 - v0

2

2u
=

0 - (24.7 rad�s)2

2(2p rad�rev)(53.8 rev)
= –0.902 rad�s2.

u = 2p rad�rev * 53.8 rev  (= 338 rad)2p
v0 = 24.7 rad�s.v = 0

115 m
2pr

=
115 m

(2p)(0.340 m)
= 53.8 rev.

2pr = (2p)(0.340 m).
2pr,

v0 =
v0

r
=

8.40 m�s
0.340 m

= 24.7 rad�s.

v = rv.v

(t = 0);

v0 = 8.40 m�sEXAMPLE 8;7

v = rv.

v

v = rv,
–vB

vB
vB.

v0 = 8.40 m/s

Bike as seen from the ground at t = 0

115 m

FIGURE 8;9 Example 8–7.
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(a)

C

P

(b)

−vB

vB

P
r

FIGURE 8;8 (a) A wheel rolling to
the right. Its center C moves with
velocity Point P is at rest at the
instant shown. (b) The same wheel
as seen from a reference frame in
which the axle of the wheel C is at
rest—that is, we are moving to the
right with velocity relative to the
ground. Point P, which was at rest 
in (a), here in (b) is moving to the
left with velocity as shown.
(See also Section 3–8 on relative
velocity.) Thus  v = rv.

–vB

vB

vB.



8–4 Torque
We have so far discussed rotational kinematics—the description of rotational
motion in terms of angular position, angular velocity, and angular acceleration.
Now we discuss the dynamics, or causes, of rotational motion. Just as we found
analogies between linear and rotational motion for the description of motion, so
rotational equivalents for dynamics exist as well.

To make an object start rotating about an axis clearly requires a force. But 
the direction of this force, and where it is applied, are also important. Take, for
example, an ordinary situation such as the overhead view of the door in Fig. 8–10.
If you apply a force perpendicular to the door as shown, you will find that the
greater the magnitude, the more quickly the door opens. But now if you apply
the same force at a point closer to the hinge—say, in Fig. 8–10—the door 
will not open so quickly. The effect of the force is less: where the force acts, as
well as its magnitude and direction, affects how quickly the door opens. Indeed,
if only this one force acts, the angular acceleration of the door is proportional 
not only to the magnitude of the force, but is also directly proportional to 
the perpendicular distance from the axis of rotation to the line along which the
force acts. This distance is called the lever arm, or moment arm, of the force,
and is labeled and for the two forces in Fig. 8–10. Thus, if in Fig. 8–10
is three times larger than then the angular acceleration of the door will be
three times as great, assuming that the magnitudes of the forces are the same.
To say it another way, if then must be three times as large as to
give the same angular acceleration. (Figure 8–11 shows two examples of tools
whose long lever arms are very effective.)

The angular acceleration, then, is proportional to the product of the force
times the lever arm. This product is called the moment of the force about the 
axis, or, more commonly, it is called the torque, and is represented by (Greek
lowercase letter tau). Thus, the angular acceleration of an object is directly 
proportional to the net applied torque 

and we see that it is torque that gives rise to angular acceleration. This is the 
rotational analog of Newton’s second law for linear motion,

We defined the lever arm as the perpendicular distance from the axis of rota-
tion to the line of action of the force—that is, the distance which is perpendicular
both to the axis of rotation and to an imaginary line drawn along the direction of
the force. We do this to take into account the effect of forces acting at an angle. It
is clear that a force applied at an angle, such as in Fig. 8–12, will be less effec-
tive than the same magnitude force applied perpendicular to the door, such as 
(Fig. 8–12a). And if you push on the end of the door so that the force is directed
at the hinge (the axis of rotation), as indicated by the door will not rotate at all.

The lever arm for a force such as is found by drawing a line along the
direction of (this is the “line of action” of ). Then we draw another line,
perpendicular to this line of action, that goes to the axis of rotation and is 
perpendicular also to it. The length of this second line is the lever arm for and
is labeled in Fig. 8–12b. The lever arm for is the full distance from the hinge
to the doorknob, (just as in Fig. 8–10). Thus is much smaller than .rArCrA
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FIGURE 8;11 (a) A plumber can
exert greater torque using a wrench
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iron too can have a long lever arm.
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The magnitude of the torque associated with is then This short lever
arm and the corresponding smaller torque associated with are consistent
with the observation that is less effective in accelerating the door than is 
with its larger lever arm. When the lever arm is defined in this way, experiment
shows that the relation is valid in general. Notice in Fig. 8–12 that the line
of action of the force passes through the hinge, and hence its lever arm is zero.
Consequently, zero torque is associated with and it gives rise to no angular
acceleration, in accord with everyday experience (you can’t get a door to start
moving by pushing directly at the hinge).

In general, then, we can write the magnitude of the torque about a given axis as

(8;10a)

where is the lever arm, and the perpendicular symbol reminds us that we
must use the distance from the axis of rotation that is perpendicular to the line of
action of the force (Fig. 8–13a).

An equivalent way of determining the torque associated with a force is to
resolve the force into components parallel and perpendicular to the line that con-
nects the axis to the point of application of the force, as shown in Fig. 8–13b. The
component exerts no torque since it is directed at the rotation axis (its lever
arm is zero). Hence the torque will be equal to times the distance r from the
axis to the point of application of the force:

(8;10b)

This gives the same result as Eq. 8–10a because and 
Thus

(8;10c)

in either case. [Note that is the angle between the directions of and r (radial
line from the axis to the point where acts).] We can use any of Eqs. 8–10 to 
calculate the torque, whichever is easiest.

Because torque is a distance times a force, it is measured in units of in
SI units,† in the cgs system, and in the English system.ft� lbcm�dyne
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†Note that the units for torque are the same as those for energy. We write the unit for torque here as
(in SI) to distinguish it from energy because the two quantities are very different. The

special name joule is used only for energy (and for work), never for torque.(1 J = 1 N�m)
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FIGURE 8;14 Example 8–8.

Biceps torque. The biceps muscle exerts a vertical force on
the lower arm, bent as shown in Figs. 8–14a and b. For each case, calculate the
torque about the axis of rotation through the elbow joint, assuming the muscle
is attached 5.0 cm from the elbow as shown.

APPROACH The force is given, and the lever arm in (a) is given. In (b) we have
to take into account the angle to get the lever arm.

SOLUTION (a) and so

(b) Because the arm is at an angle below the horizontal, the lever arm is shorter
(Fig. 8–14c) than in part (a): where is the
angle between and r. F is still 700 N, so

The arm can exert less torque at this angle than when it is at 90°. Weight machines
at gyms are often designed to take this variation with angle into account.

NOTE In (b), we could instead have used As shown in Fig. 8–14d,
Then gives the

same result.
t = rF⊥ = rF sin u = (0.050 m)(700 N)(0.866)F⊥ = F sin 60°.

t = rF⊥ .

t = (0.050 m)(0.866)(700 N) = 30 m�N.

F
B

u = 60°r⊥ = (0.050 m)(sin 60°),

t = r⊥ F = (0.050 m)(700 N) = 35 m�N.

r⊥ = 0.050 m,F = 700 N

EXAMPLE 8;8



EXERCISE B Two forces ( and ) are applied to a meter stick which
can rotate about its left end, Fig. 8–15. Force is applied perpendicularly at the mid-
point. Which force exerts the greater torque: or both the same?

When more than one torque acts on an object, the angular acceleration is
found to be proportional to the net torque. If all the torques acting on an object
tend to rotate it in the same direction about a fixed axis of rotation, the net
torque is the sum of the torques. But if, say, one torque acts to rotate an object 
in one direction, and a second torque acts to rotate the object in the opposite
direction, the net torque is the difference of the two torques. We normally assign
a positive sign to torques that act to rotate the object counterclockwise (just as 

is usually positive counterclockwise), and a negative sign to torques that act
to rotate the object clockwise.

Forces that Act to Tilt the Axis
We have been considering only rotation about a fixed axis, and so we considered only
forces that act in a plane perpendicular to the axis of rotation. If there is a force
(or component of a force) acting parallel to the axis of rotation, it will tend to tilt
the axis of rotation—the component in Fig. 8–16 is an example. Since we are
assuming the axis remains fixed in direction, either there can be no such forces 
or else the axis must be mounted in bearings or hinges that hold the axis fixed.
Thus, only a force, or component of a force ( in Fig. 8–16), in a plane perpen-
dicular to the axis will give rise to rotational acceleration about the axis.

8–5 Rotational Dynamics;
Torque and Rotational Inertia

We discussed in Section 8–4 that the angular acceleration of a rotating object is
proportional to the net torque applied to it:

We write to remind us that it is the net torque (sum of all torques acting on 
the object) that is proportional to This corresponds to Newton’s second law 
for translational motion, In the translational case, the acceleration is
not only proportional to the net force, but it is also inversely proportional to the
inertia of the object, which we call its mass, m. Thus we wrote . But
what plays the role of mass for the rotational case? That is what we now set out 
to determine. At the same time, we will see that the relation follows
directly from Newton’s second law,

We first examine a very simple case: a particle of mass m revolving in a circle
of radius r at the end of a string or rod whose mass we can ignore compared to m
(Fig. 8–17). Consider a force F that acts on the mass m tangent to the circle as shown.
The torque that gives rise to an angular acceleration is If we use Newton’s
second law for linear quantities, and Eq. 8–5 relating the angular
acceleration to the tangential linear acceleration, then we have

When we multiply both sides of this equation by r, we find that the torque 

or
[single particle] (8;11)

Here at last we have a direct relation between the angular acceleration and the
applied torque The quantity represents the rotational inertia of the particle
and is called its moment of inertia.

mr2t.

t = mr2a.

t = rF = r(mra),
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Now let us consider a rotating rigid object, such as a wheel rotating about a
fixed axis (an axle) through its center. We can think of the wheel as consist-
ing of many particles located at various distances from the axis of rotation.
We can apply Eq. 8–11 to each particle of the object, and then sum over all the
particles. The sum of the various torques is the net torque, so we obtain:

(8;12)

where we factored out because it is the same for all the particles of a rigid
object. The sum represents the sum of the masses of each particle in the
object multiplied by the square of the distance of that particle from the axis 
of rotation. If we assign each particle a number then 

This sum is called the moment of inertia (or rotational
inertia) I of the object:

(8;13)

Combining Eqs. 8–12 and 8–13, we can write

(8;14)

This is the rotational equivalent of Newton’s second law. It is valid for the rota-
tion of a rigid object about a fixed axis. [It is also valid when the object is rotating
while translating with acceleration, as long as I and are calculated about the
center of mass of the object, and the rotation axis through the CM doesn’t change
direction. A ball rolling down a ramp is an example.]

We see that the moment of inertia, I, which is a measure of the rotational
inertia of an object, plays the same role for rotational motion that mass does for
translational motion. As can be seen from Eq. 8–13, the rotational inertia of a
rigid object depends not only on its mass, but also on how that mass is distributed 
with respect to the axis. For example, a large-diameter cylinder will have greater
rotational inertia than one of equal mass but smaller diameter, Fig. 8–18. The
former will be harder to start rotating, and harder to stop. When the mass is 
concentrated farther from the axis of rotation, the rotational inertia is greater. For
rotational motion, the mass of an object can not be considered as concentrated 
at its center of mass.

Two weights on a bar: different axis, different I. Two
small “weights,” of mass 5.0 kg and 7.0 kg, are mounted 4.0 m apart on a light
rod (whose mass can be ignored), as shown in Fig. 8–19. Calculate the moment
of inertia of the system (a) when rotated about an axis halfway between the
weights, Fig. 8–19a, and (b) when rotated about an axis 0.50 m to the left of the
5.0-kg mass (Fig. 8–19b).

APPROACH In each case, the moment of inertia of the system is found by 
summing over the two parts using Eq. 8–13.

SOLUTION (a) Both weights are the same distance, 2.0 m, from the axis of rota-
tion. Thus

(b) The 5.0-kg mass is now 0.50 m from the axis, and the 7.0-kg mass is 4.50 m
from the axis. Then

NOTE This Example illustrates two important points. First, the moment of
inertia of a given system is different for different axes of rotation. Second, we
see in part (b) that mass close to the axis of rotation contributes little to the total
moment of inertia; here, the 5.0-kg object contributed less than 1% to the total.

= 1.3 kg �m2 + 142 kg �m2 = 143 kg �m2.

I = ©mr2 = (5.0 kg)(0.50 m)2 + (7.0 kg)(4.5 m)2

= 20 kg �m2 + 28 kg �m2 = 48 kg �m2.

I = ©mr2 = (5.0 kg)(2.0 m)2 + (7.0 kg)(2.0 m)2

EXAMPLE 8;9

a

©t = Ia.

I = ©mr2 = m1 r1
2 + m2 r2

2 + p .

m1 r1
2 + m2 r2

2 + m3 r3
2 + p .

©mr2 =(1,  2,  3, p ),

©mr2
a

©t = A©mr2Ba
©t,

SECTION 8–5 Rotational Dynamics; Torque and Rotational Inertia 209

FIGURE 8;18 A large-diameter
cylinder has greater rotational iner-
tia than one of smaller diameter but
equal mass.
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FIGURE 8;19 Example 8–9:
calculating the moment of inertia.
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C A U T I O N

I depends on axis of rotation 
and on distribution of mass



For most ordinary objects, the mass is distributed continuously, and the calcu-
lation of the moment of inertia, can be difficult. Expressions can, however,
be worked out (using calculus) for the moments of inertia of regularly shaped
objects in terms of the dimensions of the objects. Figure 8–20 gives these expres-
sions for a number of solids rotated about the axes specified. The only one for
which the result is obvious is that for the thin hoop or ring rotated about an axis
passing through its center perpendicular to the plane of the hoop (Fig. 8–20a). For
a hoop, all the mass is concentrated at the same distance from the axis, R. Thus

where M is the total mass of the hoop. In Fig. 8–20, we
use capital R to refer to the outer radius of an object (in (d) also the inner radius).

When calculation is difficult, I can be determined experimentally by measuring
the angular acceleration about a fixed axis due to a known net torque, and
applying Newton’s second law, Eq. 8–14.

8–6 Solving Problems in 
Rotational Dynamics

When working with torque and angular acceleration (Eq. 8–14), it is important to
use a consistent set of units, which in SI is: in in and the moment
of inertia, I, in kg �m2.

m�N;trad�s2;a

I = ©t�a,
©t,a

©mr2 = (©m)R2 = MR2,

©mr2,
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directions of rotation (counterclockwise and clock-
wise), and assign the correct sign to each torque.

5. Apply Newton’s second law for rotation,
If the moment of inertia is not given, and it is not
the unknown sought, you need to determine it first.
Use consistent units, which in SI are: in 

in and I in
6. Also apply Newton’s second law for translation,

and other laws or principles as needed.
7. Solve the resulting equation(s) for the unknown(s).
8. Do a rough estimate to determine if your answer is

reasonable.

©F
B

= maB,

kg �m2.m�N;t

rad�s2;a

©t = Ia.

P
R

O
B

L
E

M
S O LV I N G

Rotational Motion
1. As always, draw a clear and complete diagram.
2. Choose the object or objects that will be the system

to be studied.
3. Draw a free-body diagram for the object under 

consideration (or for each object, if more than one),
showing all (and only) the forces acting on that
object and exactly where they act, so you can deter-
mine the torque due to each. Gravity acts at the CM

of the object (Section 7–8).
4. Identify the axis of rotation and determine the

torques about it. Choose positive and negative

A heavy pulley. A 15.0-N force (represented by ) is applied
to a cord wrapped around a pulley of mass and radius 
Fig. 8–21. The pulley accelerates uniformly from rest to an angular speed of

in 3.00 s. If there is a frictional torque at the axle,
determine the moment of inertia of the pulley. The pulley rotates about its center.

APPROACH We follow the steps of the Problem Solving Strategy above.

SOLUTION

1. Draw a diagram. The pulley and the attached cord are shown in Fig. 8–21.
2. Choose the system: the pulley.
3. Draw a free-body diagram. The force that the cord exerts on the pulley is

shown as in Fig. 8–21. The friction force acts all around the axle, retarding
the motion, as suggested by in Fig. 8–21. We are given only its torque,
which is what we need. Two other forces could be included in the diagram:
the force of gravity mg down and whatever force keeps the axle in place
(they balance each other). They do not contribute to the torque (their lever
arms are zero) and so we omit them to keep our diagram simple.

4. Determine the torques. The cord exerts a force that acts at the edge of the
pulley, so its lever arm is R. The torque exerted by the cord equals and 
is counterclockwise, which we choose to be positive. The frictional torque is
given as  it opposes the motion and is negative.

5. Apply Newton’s second law for rotation. The net torque is

The angular acceleration is found from the given data that it takes 3.00 s to
accelerate the pulley from rest to

Newton’s second law, can be solved for I which is the unknown:

6. Other calculations: None needed.
7. Solve for unknowns. From Newton’s second law,

8. Do a rough estimate. We can do a rough estimate of the moment of inertia by
assuming the pulley is a uniform cylinder and using Fig. 8–20c:

This is the same order of magnitude as our result, but numerically somewhat
less. This makes sense, though, because a pulley is not usually a uniform
cylinder but instead has more of its mass concentrated toward the outside
edge. Such a pulley would be expected to have a greater moment of inertia
than a solid cylinder of equal mass. A thin hoop, Fig. 8–20a, ought to have a
greater I than our pulley, and indeed it does: I = MR2 = 0.436 kg �m2.

I L 1
2 MR2 = 1

2 (4.00 kg)(0.330 m)2 = 0.218 kg �m2.

I =
©t
a

=
3.85 m�N

10.0 rad�s2
= 0.385 kg �m2.

I = ©t�a.
©t = Ia,

a =
¢v
¢t

=
30.0 rad�s - 0

3.00 s
= 10.0 rad�s2.

v = 30.0 rad�s:
a

©t = RFT - tfr = (0.330 m)(15.0 N) - 1.10 m�N = 3.85 m�N.

tfr = 1.10 m�N;
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F
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FIGURE 8;21 Example 8–10.



Additional Example—a bit more challenging

Pulley and bucket. Consider again the pulley in Example 8–10.
But instead of a constant 15.0-N force being exerted on the cord, we now have a
bucket of weight (mass ) hanging from the cord.
See Fig. 8–22a. We assume the cord has negligible mass and does not stretch or slip
on the pulley. Calculate the angular acceleration of the pulley and the linear accel-
eration a of the bucket. Assume the same frictional torque acts.
APPROACH This situation looks a lot like Example 8–10, Fig. 8–21. But there is
a big difference: the tension in the cord is now an unknown, and it is no longer
equal to the weight of the bucket if the bucket accelerates. Our system has two
parts: the bucket, which can undergo translational motion (Fig. 8–22b is its free-
body diagram); and the pulley. The pulley does not translate, but it can rotate.
We apply the rotational version of Newton’s second law to the pulley,
and the linear version to the bucket,
SOLUTION Let be the tension in the cord. Then a force acts at the edge of the
pulley, and we apply Newton’s second law, Eq. 8–14, for the rotation of the pulley:

[pulley]
Next we look at the (linear) motion of the bucket of mass m. Figure 8–22b, the
free-body diagram for the bucket, shows that two forces act on the bucket:
the force of gravity mg acts downward, and the tension of the cord pulls
upward. Applying Newton’s second law, for the bucket, we have
(taking downward as positive):

[bucket]
Note that the tension which is the force exerted on the edge of the pulley, is
not equal to the weight of the bucket There must be a net
force on the bucket if it is accelerating, so We can also see this from
the last equation above,

To obtain we note that the tangential acceleration of a point on the 
edge of the pulley is the same as the acceleration of the bucket if the cord 
doesn’t stretch or slip. Hence we can use Eq. 8–5, Substituting

into the first equation above (Newton’s second
law for rotation of the pulley), we obtain

The unknown appears on the left and in the second term on the far right, so we
bring that term to the left side and solve for 

The numerator is the net torque, and the denominator 
is the total rotational inertia of the system. With 
and, from Example 8–10, and , then

The angular acceleration is somewhat less in this case than the of
Example 8–10. Why? Because is less than the
15.0-N force in Example 8–10. The linear acceleration of the bucket is

NOTE The tension in the cord is less than mg because the bucket accelerates.

8–7 Rotational Kinetic Energy
The quantity is the kinetic energy of an object undergoing translational
motion. An object rotating about an axis is said to have rotational kinetic energy.
By analogy with translational kinetic energy, we might expect this to be given 
by the expression where I is the moment of inertia of the object and is 
its angular velocity. We can indeed show that this is true.

v1
2 Iv2,

1
2 mv2

FT

a = Ra = (0.330 m)A6.98 rad�s2B = 2.30 m�s2.

FT (= mg - ma = 15.0 N - ma)
10.0 rad�s2

a =
(15.0 N)(0.330 m) - 1.10 m�N

0.385 kg �m2 + (1.53 kg)(0.330 m)2
= 6.98 rad�s2.

tfr = 1.10 m�NI = 0.385 kg �m2
(m = 1.53 kg)mg = 15.0 N
AI + mR2BAmgR - tfrB

a =
mgR - tfr

I + mR2
.

a:
a

Ia = ©t = RFT - tfr = R(mg - mRa) - tfr = mgR - mR2a - tfr .

FT = mg - ma = mg - mRa
atan = a = Ra.

a,
FT = mg - ma.

FT 6 mg.
(= mg = 15.0 N).

FT ,
mg - FT = ma.

©F = ma,
FT

Ia = ©t = RFT - tfr .

FTFT

©F = ma.
©t = Ia,

tfr = 1.10 m�N
a

m = w�g = 1.53 kgw = 15.0 N
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(a) Pulley and falling bucket of 
mass m. This is also the free-body
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Consider any rigid rotating object as made up of many tiny particles, each of
mass m. If we let r represent the distance of any one particle from the axis of
rotation, then its linear velocity is The total kinetic energy of the whole
object will be the sum of the kinetic energies of all its particles:

We have factored out the and the since they are the same for every particle 
of a rigid object. Since the moment of inertia, we see that the kinetic
energy of a rigid rotating object is

(8;15)
The units are joules, as with all other forms of energy.

An object that rotates while its center of mass (CM) undergoes translational
motion will have both translational and rotational kinetic energy. Equation 8–15
gives the rotational kinetic energy if the rotation axis is fixed. If the object is
moving, such as a wheel rolling down a hill, this equation is still valid as long as
the rotation axis is fixed in direction. Then the total kinetic energy is

(8;16)
where is the linear velocity of the center of mass, is the moment of inertia
about an axis through the center of mass, is the angular velocity about this axis,
and M is the total mass of the object.

Sphere rolling down an incline. What will be the speed
of a solid sphere of mass M and radius R when it reaches the bottom of an
incline if it starts from rest at a vertical height H and rolls without slipping?
See Fig. 8–23. (Assume sufficient static friction so no slipping occurs: we will
see shortly that static friction does no work.) Compare your result to that for an
object sliding down a frictionless incline.

APPROACH We use the law of conservation of energy with gravitational poten-
tial energy, now including rotational kinetic energy as well as translational KE.

SOLUTION The total energy at any point a vertical distance y above the base
of the incline is

where v is the speed of the center of mass, and Mgy is the gravitational potential
energy. Applying conservation of energy, we equate the total energy at the top

to the total energy at the bottom 

[energy conservation]

The moment of inertia of a solid sphere about an axis through its center of mass
is Fig. 8–20e. Since the sphere rolls without slipping, we have

(recall Fig. 8–8). Hence

Canceling the M’s and R’s, we obtain

or

[rolling sphere]

We can compare this result for the speed of a rolling sphere to that for an object
sliding down a plane without rotating and without friction, (see
our energy conservation equation above, removing the rotational term). For the
sliding object, which is greater than our result for a rolling sphere

An object sliding without friction or rotation transforms its initial
potential energy entirely into translational kinetic energy (none into rotational
kinetic energy), so the speed of its center of mass is greater.

NOTE Our result for the rolling sphere shows (perhaps surprisingly) that v is
independent of both the mass M and the radius R of the sphere.

(2 7 10�7).
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Rotational energy adds 
to other forms of energy 
to get the total energy 
which is conserved

FIGURE 8;23 A sphere rolling
down a hill has both translational
and rotational kinetic energy.
Example 8–12.
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Which is fastest? Several objects roll with-
out slipping down an incline of vertical height H, all starting from rest at the
same moment. The objects are a thin hoop (or a plain wedding band), a spherical
marble, a solid cylinder (a D-cell battery), and an empty soup can. In addition,
a greased box slides down without friction. In what order do they reach the
bottom of the incline?

RESPONSE We use conservation of energy with gravitational potential energy
plus rotational and translational kinetic energy. The sliding box would be fastest
because the potential energy loss (MgH) is transformed completely into transla-
tional kinetic energy of the box, whereas for rolling objects the initial potential
energy is shared between translational and rotational kinetic energies, and so the
speed of the CM is less. For each of the rolling objects we can state that the decrease in
potential energy equals the increase in translational plus rotational kinetic energy:

For all our rolling objects, the moment of inertia is a numerical factor times
the mass M and the radius (Fig. 8–20). The mass M is in each term, so the
translational speed v doesn’t depend on M; nor does it depend on the radius R
since so cancels out for all the rolling objects. Thus the speed v at
the bottom of the incline depends only on that numerical factor in which
expresses how the mass is distributed. The hoop, with all its mass concentrated
at radius R has the largest moment of inertia; hence it will have
the lowest speed and will arrive at the bottom behind the D-cell 
which in turn will be behind the marble The empty can, which is
mainly a hoop plus a thin disk, has most of its mass concentrated at R; so it will 
be a bit faster than the pure hoop but slower than the D-cell. See Fig. 8–24.

NOTE The rolling objects do not even have to have the same radius: the speed
at the bottom does not depend on the object’s mass M or radius R, but only 
on the shape (and the height of the incline H).

AIcm = 2
5 MR2B. AIcm = 1

2 MR2B,AIcm = MR2B,
Icm

R2v = v�R,

R2
Icm

MgH = 1
2 Mv2 + 1

2 Icmv
2.
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H

Hoop
Empty can

Solid cylinder (D-cell)
Sphere (marble)

Box (sliding)

FIGURE 8;24 Example 8–13.

BP

A

Sphere, rolling to the right

  frF
B

FIGURE 8;25 A sphere rolling to
the right on a plane surface. The
point in contact with the ground at
any moment, point P, is momentarily
at rest. Point A to the left of P is
moving nearly vertically upward at
the instant shown, and point B to 
the right is moving nearly vertically
downward. An instant later, point B
will touch the plane and be at rest
momentarily. Thus no work is done
by the force of static friction.

EXERCISE C Return to the Chapter-Opening Question, page 198, and answer it again
now. Try to explain why you may have answered differently the first time.

C
r

l θ��

F
B

Work Done by Torque
The work done on an object rotating about a fixed axis, such as the pulleys in
Figs. 8–21 and 8–22, can be written using angular quantities. As shown in
Fig. 8–26, a force F exerting a torque on a wheel does work 
in rotating the wheel a small distance at the point of application of The
wheel has rotated through a small angle (Eq. 8–1). Hence

Because then
(8;17)

is the work done by the torque when rotating the wheel through an angle 
Finally, power P is the rate work is done:

which is analogous to the translational version, (see Eq. 6–18).P = Fv

P = W�¢t = t ¢u�¢t = tv,

¢u.t

W = t ¢u
t = rF,

W = F ¢l = Fr ¢u.
¢u = ¢l�r

F
B

.¢l
W = F ¢lt = rF

FIGURE 8;26 Torque does
work when rotating a wheel equal to
W = F ¢l = Fr ¢u = t ¢u.

t = rF

If there had been little or no static friction between the rolling objects and the
plane in these Examples, the round objects would have slid rather than rolled, or a
combination of both. Static friction must be present to make a round object roll.
We did not need to take friction into account in the energy equation for the rolling
objects because it is static friction and does no work—the point of contact of a
sphere at each instant does not slide, but moves perpendicular to the plane (first
down and then up as shown in Fig. 8–25) as it rolls. Thus, no work is done by the
static friction force because the force and the motion (displacement) are perpen-
dicular. The reason the rolling objects in Examples 8–12 and 8–13 move down the
slope more slowly than if they were sliding is not because friction slows them
down. Rather, it is because some of the gravitional potential energy is converted
to rotational kinetic energy, leaving less for the translational kinetic energy.



8–8 Angular Momentum and
Its Conservation

Throughout this Chapter we have seen that if we use the appropriate angular
variables, the kinematic and dynamic equations for rotational motion are anal-
ogous to those for ordinary linear motion. We saw in the previous Section,
for example, that rotational kinetic energy can be written as which is
analogous to the translational kinetic energy, In like manner, the linear
momentum, has a rotational analog. It is called angular momentum, L.
For a symmetrical object rotating about a fixed axis through the CM, the angular
momentum is

(8;18)

where I is the moment of inertia and is the angular velocity about the axis of
rotation. The SI units for L are which has no special name.

We saw in Chapter 7 (Section 7–1) that Newton’s second law can be written
not only as but also more generally in terms of momentum (Eq. 7–2),

In a similar way, the rotational equivalent of Newton’s second
law, which we saw in Eq. 8–14 can be written as can also be written in
terms of angular momentum:

(8;19)

where is the net torque acting to rotate the object, and is the change in
angular momentum in a time interval Equation 8–14, is a special
case of Eq. 8–19 when the moment of inertia is constant. This can be seen as 
follows. If an object has angular velocity at time and angular velocity 
after a time interval then its angular acceleration (Eq. 8–3) is

Then from Eq. 8–19, we have

which is Eq. 8–14.
Angular momentum is an important concept in physics because, under 

certain conditions, it is a conserved quantity. We can see from Eq. 8–19 that if 
the net torque on an object is zero, then equals zero. That is,
so L does not change. This is the law of conservation of angular momentum for
a rotating object:

The total angular momentum of a rotating object remains constant if the net
torque acting on it is zero.

The law of conservation of angular momentum is one of the great conservation
laws of physics, along with those for energy and linear momentum.

When there is zero net torque acting on an object, and the object is rotating
about a fixed axis or about an axis through its center of mass whose direction
doesn’t change, we can write

(8;20)

and are the moment of inertia and angular velocity, respectively, about that
axis at some initial time and I and are their values at some other time.
The parts of the object may alter their positions relative to one another, so that I
changes. But then changes as well, so that the product remains constant.Ivv

v(t = 0),
v0I0

Iv = I0v0 = constant.
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FOR ROTATION

CONSERVATION OF 
ANGULAR MOMENTUM



Many interesting phenomena can be understood on the basis of conservation
of angular momentum. Consider a skater doing a spin on the tips of her skates,
Fig. 8–27. She rotates at a relatively low speed when her arms are outstretched;
when she brings her arms in close to her body, she suddenly spins much faster.
From the definition of moment of inertia, it is clear that when she
pulls her arms in closer to the axis of rotation, r is reduced for the arms so her
moment of inertia is reduced. Since the angular momentum remains constant
(we ignore the small torque due to friction), if I decreases, then the angular
velocity must increase. If the skater reduces her moment of inertia by a factor
of 2, she will then rotate with twice the angular velocity.

v

Iv

I = ©mr2,
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(a) (b)

ω
I large,
   small ω

I small,
   large

FIGURE 8;27 A skater spinning on
ice, illustrating conservation of angular
momentum: (a) I is large and is
small; (b) I is smaller so is larger.v

v

FIGURE 8;28 A diver rotates faster
when arms and legs are tucked in
than when they are outstretched.
Angular momentum is conserved.

MB

MA
v1

FIGURE 8;29 Example 8–14.

EXERCISE D When a spinning figure skater pulls in her arms, her moment of inertia
decreases; to conserve angular momentum, her angular velocity increases. Does her
rotational kinetic energy also increase? If so, where does the energy come from?

A similar example is the diver shown in Fig. 8–28. The push as she leaves the
board gives her an initial angular momentum about her center of mass. When 
she curls herself into the tuck position, she rotates quickly one or more times. She
then stretches out again, increasing her moment of inertia which reduces the
angular velocity to a small value, and then she enters the water. The change in
moment of inertia from the straight position to the tuck position can be a factor
of as much as 

Note that for angular momentum to be conserved, the net torque must be
zero; but the net force does not necessarily have to be zero. The net force on the
diver in Fig. 8–28, for example, is not zero (gravity is acting), but the net torque
about her CM is zero because the force of gravity acts at her center of mass.

3 1
2 .

Clutch. A simple clutch consists of two cylindrical plates
that can be pressed together to connect two sections of an axle, as needed, in 
a piece of machinery. The two plates have masses and
with equal radii They are initially separated (Fig. 8–29). Plate 
is accelerated from rest to an angular velocity in time 
Calculate (a) the angular momentum of and (b) the torque required to
accelerate from rest to (c) Next, plate initially at rest but 
free to rotate without friction, is placed in firm contact with freely rotating 
plate and the two plates then both rotate at a constant angular velocity 
which is considerably less than Why does this happen, and what is 

APPROACH We use angular momentum, (Eq. 8–18), plus Newton’s
second law for rotation, Eq. 8–19.

SOLUTION (a) The angular momentum of a cylinder, is

(b) The plate started from rest so the torque, assumed constant, was

(c) Initially, before contact, is rotating at constant (we ignore friction). When
plate B comes in contact, why is their joint rotation speed less? You might think in
terms of the torque each exerts on the other upon contact. But quantitatively,
it’s easier to use conservation of angular momentum, Eq. 8–20, since no external
torques are assumed to act. Thus

Solving for we find (after cancelling factors of )

v2 = ¢ IA

IA + IB
≤v1 = ¢ MA

MA + MB
≤v1 = a 6.0 kg

15.0 kg
b (7.2 rad�s) = 2.9 rad�s.

R2v2

IAv1 = AIA + IBBv2 .

 angular momentum before = angular momentum after

v1MA

t =
¢L
¢t

=
7.8 kg �m2�s - 0

2.0 s
= 3.9 m�N.

LA = IAv1 = 1
2 MA R2v1 = 1

2 (6.0 kg)(0.60 m)2(7.2 rad�s) = 7.8 kg �m2�s.

MA ,

L = Iv

v2 ?v1 .
v2 ,MA ,

MB ,v1 .MA

MA ,
¢t = 2.0 s.v1 = 7.2 rad�s

MAR = 0.60 m.
MB = 9.0 kg,MA = 6.0 kg
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Neutron star. Astronomers detect stars that
are rotating extremely rapidly, known as neutron stars. A neutron star is believed
to form from the inner core of a larger star that collapsed, under its own gravi-
tation, to a star of very small radius and very high density. Before collapse,
suppose the core of such a star is the size of our Sun with mass
2.0 times as great as the Sun, and is rotating at a frequency of 1.0 revolution every
100 days. If it were to undergo gravitational collapse to a neutron star of radius
10 km, what would its rotation frequency be? Assume the star is a uniform sphere
at all times, and loses no mass.

APPROACH We assume the star is isolated (no external forces), so we can use
conservation of angular momentum for this process.

SOLUTION From conservation of angular momentum, Eq. 8–20,

where the subscripts 1 and 2 refer to initial (normal star) and final (neutron star),
respectively. Then, assuming no mass is lost in the process ( ),

The frequency so

which is 600 Hz or (600 rev�s)(60 s�min) = 36,000 rpm.

= ¢ 7 * 105 km
10 km

≤ 2 ¢ 1.0 rev
100 d (24 h�d)(3600 s�h)

≤ L 6 * 102 rev�s,

f2 =
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2

R2
2
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2
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Neutron star

8–9 Vector Nature of 
Angular Quantities

Up to now we have considered only the magnitudes of angular quantities such 
as and L. But they have a vector aspect too, and now we consider the 
directions. In fact, we have to define the directions for rotational quantities. We
consider first the angular velocity,

Consider the rotating wheel shown in Fig. 8–30a. The linear velocities of 
different particles of the wheel point in all different directions. The only unique
direction in space associated with the rotation is along the axis of rotation, perpen-
dicular to the actual motion. We therefore choose the axis of rotation to be the
direction of the angular velocity vector, Actually, there is still an ambiguity
since could point in either direction along the axis of rotation (up or down 
in Fig. 8–30a). The convention we use, called the right-hand rule, is this: when 
the fingers of the right hand are curled around the rotation axis and point in the
direction of the rotation, then the thumb points in the direction of This is
shown in Fig. 8–30b. Note that points in the direction a right-handed screw
would move when turned in the direction of rotation. Thus, if the rotation of the
wheel in Fig. 8–30a is counterclockwise, the direction of is upward as shown in
Fig. 8–30b. If the wheel rotates clockwise, then points in the opposite direction,
downward. Note that no part of the rotating object moves in the direction of 

If the axis of rotation is fixed, then can change only in magnitude. Thus
must also point along the axis of rotation. If the rotation is counter-

clockwise as in Fig. 8–30a and the magnitude of is increasing, then points
upward; but if is decreasing (the wheel is slowing down), points downward.
If the rotation is clockwise, points downward if is increasing, and points
upward if is decreasing.v
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(a) (b)

FIGURE 8;30 (a) Rotating wheel.
(b) Right-hand rule for obtaining the
direction of VB .



Spinning bicycle wheel. Your physics
teacher is holding a spinning bicycle wheel while he stands on a stationary
frictionless turntable (Fig. 8–32). What will happen if the teacher suddenly flips
the bicycle wheel over so that it is spinning in the opposite direction?

RESPONSE We consider the system of turntable, teacher, and bicycle wheel.
The total angular momentum initially is vertically upward. That is also what
the system’s angular momentum must be afterward, since is conserved 
when there is no net torque. Thus, if the wheel’s angular momentum after being
flipped over is downward, then the angular momentum of teacher plus
turntable will have to be upward. We can safely predict that the teacher
(and turntable) will begin revolving in the same direction the wheel was spinning 
originally.

±2L
B

–L
B

L
B

L
B

CONCEPTUAL EXAMPLE 8;16

Angular momentum, like linear momentum, is a vector quantity. For a sym-
metrical object rotating about a symmetry axis (such as a wheel, cylinder, hoop,
or sphere), we can write the vector angular momentum as

(8;21)

The angular velocity vector (and therefore also ) points along the axis of rota-
tion in the direction given by the right-hand rule (Fig. 8–30b).

The vector nature of angular momentum can be used to explain a number 
of interesting (and sometimes surprising) phenomena. For example, consider a
person standing at rest on a circular platform capable of rotating without fric-
tion about an axis through its center (that is, a simplified merry-go-round). If 
the person now starts to walk along the edge of the platform, Fig. 8–31a, the 
platform starts rotating in the opposite direction. Why? One explanation is that
the person’s foot exerts a force on the platform. Another explanation (and this 
is the most useful analysis here) is that this is an example of the conservation of
angular momentum. If the person starts walking counterclockwise, the person’s
angular momentum will point upward along the axis of rotation (remember 
how we defined the direction of using the right-hand rule). The magnitude of
the person’s angular momentum will be where v is the
person’s speed (relative to the Earth, not to the platform), r is his distance from
the rotation axis, m is his mass, and is his moment of inertia if we consider
him a particle (mass concentrated at one point, Eq.8–11). The platform rotates in the
opposite direction, so its angular momentum points downward. If the total 
angular momentum of the system is initially zero (person and platform at rest),
it will remain zero after the person starts walking. That is, the upward angular
momentum of the person just balances the oppositely directed downward 
angular momentum of the platform (Fig. 8–31b), so the total vector angular
momentum remains zero. Even though the person exerts a force (and torque) 
on the platform, the platform exerts an equal and opposite torque on the person.
So the net torque on the system of person plus platform is zero (ignoring 
friction), and the total angular momentum remains constant.
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CM

person

Axis

platform

m

(a)

(b)

L
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L
B

vBr

L
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FIGURE 8;32 Example 8–16.

EXERCISE E In Example 8–16, what if he moves the axis only 90° so it is horizontal?
(a) The same direction and speed as above; (b) the same as above, but slower; (c) the
opposite result.

EXERCISE F Suppose you are standing on the edge of a large freely rotating turntable.
If you walk toward the center, (a) the turntable slows down; (b) the turntable speeds up;
(c) its rotation speed is unchanged; (d) you need to know the walking speed to answer.

One final note: the motion of particles and objects in rotating frames of 
reference is extremely interesting, though a bit advanced and so is treated at the
end of the book in Appendix C.

V
B

(a) (b)

FIGURE 8;30 (Repeated.)
(a) Rotating wheel. (b) Right-hand
rule for obtaining the direction of VB .

FIGURE 8;31 (a) A person standing 
on a circular platform, initially at 
rest, begins walking along the edge at
speed v. The platform, mounted on
nearly friction-free bearings, begins
rotating in the opposite direction,
so that (b) the total angular momentum
remains zero ( ).L

B

platform = –L
B

person
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When a rigid object rotates about a fixed axis, each point of the
object moves in a circular path. Lines drawn perpendicularly
from the rotation axis to various points in the object all sweep
out the same angle in any given time interval.

Angles are conventionally measured in radians, where one
radian is the angle subtended by an arc whose length is equal
to the radius, or

Angular velocity, is defined as the rate of change of
angular position:

(8;2)

All parts of a rigid object rotating about a fixed axis have the
same angular velocity at any instant.

Angular acceleration, is defined as the rate of change of
angular velocity:

(8;3)

The linear velocity v and acceleration a of a point located
a distance r from the axis of rotation are related to and 
by

(8;4)
(8;5)

(8;6)

where and are the tangential and radial (centripetal)
components of the linear acceleration, respectively.

The frequency f is related to by

(8;7)

and to the period T by

(8;8)

If a rigid object undergoes uniformly accelerated rotational
motion equations analogous to those for linear
motion are valid:

(8;9)

The torque due to a force exerted on a rigid object is
equal to

(8;10)

where called the lever arm, is the perpendicular distance
from the axis of rotation to the line along which the force acts,
and is the angle between and r.F
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The rotational equivalent of Newton’s second law is

(8;14)

where is the moment of inertia of the object about
the axis of rotation. I depends not only on the mass of the
object but also on how the mass is distributed relative to the
axis of rotation. For a uniform solid cylinder or sphere of
radius R and mass M, I has the form or
respectively (see Fig. 8–20).

The rotational kinetic energy of an object rotating about a
fixed axis with angular velocity is

(8;15)

For an object both translating and rotating, the total
kinetic energy is the sum of the translational kinetic energy of
the object’s center of mass plus the rotational kinetic energy 
of the object about its center of mass:

(8;16)

as long as the rotation axis is fixed in direction.

The angular momentum L of an object rotating about a
fixed rotation axis is given by

(8;18)

Newton’s second law, in terms of angular momentum, is

(8;19)

If the net torque on an object is zero, so
This is the law of conservation of angular

momentum for a rotating object.

The following Table summarizes angular (or rotational)
quantities, comparing them to their translational analogs.

Translation Rotation Connection

x

v

a

m I

F

[*Angular velocity, angular acceleration, and angular
momentum are vectors. For a rigid object rotating about a
fixed axis, the vectors , and point along the rotation 
axis. The direction of or is given by the right-hand rule.]L
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14. We claim that momentum and angular momentum are
conserved. Yet most moving or rotating objects eventually
slow down and stop. Explain.

15. Can the diver of Fig. 8–28 do a somersault without having
any initial rotation when she leaves the board? Explain.

16. When a motorcyclist leaves the ground on a jump and
leaves the throttle on (so the rear wheel spins), why does
the front of the cycle rise up?

17. A shortstop may leap into the air to catch a ball and throw
it quickly. As he throws the ball, the upper part of his body
rotates. If you look quickly you will notice that his hips and
legs rotate in the opposite direction (Fig. 8–35). Explain.
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7. This book has three symmetry axes through its center, all
mutually perpendicular. The book’s moment of inertia
would be smallest about which of the three? Explain.

8. Can the mass of a rigid object be considered concentrated
at its CM for rotational motion? Explain.

9. The moment of inertia of a rotating solid disk about an axis
through its CM is (Fig. 8–20c). Suppose instead that
a parallel axis of rotation passes through a point on the
edge of the disk. Will the moment of inertia be the same,
larger, or smaller? Explain why.

10. Two inclines have the same height but make different
angles with the horizontal. The same steel ball rolls without
slipping down each incline. On which incline will the speed
of the ball at the bottom be greater? Explain.

11. Two spheres look identical and have the same mass. How-
ever, one is hollow and the other is solid. Describe an
experiment to determine which is which.

12. A sphere and a cylinder have the same radius and the same
mass. They start from rest at the top of an incline. (a) Which
reaches the bottom first? (b) Which has the greater speed at the
bottom? (c) Which has the greater total kinetic energy at the
bottom? (d) Which has the greater rotational kinetic energy?
Explain your answers.

1
2 MR2

*18. The angular velocity of a wheel rotating on a horizontal
axle points west. In what direction is the linear velocity of
a point on the top of the wheel? If the angular acceleration
points east, describe the tangential linear acceleration of this
point at the top of the wheel. Is the angular speed increasing
or decreasing?

*19. In what direction is the Earth’s angular velocity vector as it
rotates daily about its axis, north or south?

*20. On the basis of the law of conservation of angular momen-
tum, discuss why a helicopter must have more than one
rotor (or propeller). Discuss one or more ways the second
propeller can operate in order to keep the helicopter stable.

FIGURE 8;33

Question 6.
A gazelle.

FIGURE 8;34 Question 13.

FIGURE 8;35 Question 17.
A shortstop in the air, throwing
the ball.

13. Why do tightrope walkers (Fig. 8–34) carry a long, narrow
rod?

1. A bicycle odometer (which counts revolutions and is cali-
brated to report distance traveled) is attached near the
wheel axle and is calibrated for 27-inch wheels. What 
happens if you use it on a bicycle with 24-inch wheels?

2. Suppose a disk rotates at constant angular velocity. (a) Does a
point on the rim have radial and or tangential acceler-
ation? (b) If the disk’s angular velocity increases uniformly,
does the point have radial and or tangential acceleration?
(c) For which cases would the magnitude of either component
of linear acceleration change?

3. Can a small force ever exert a greater torque than a larger
force? Explain.

4. Why is it more difficult to do a sit-up with your hands
behind your head than when your arms are stretched out
in front of you? A diagram may help you to answer this.

5. If the net force on a system is zero, is the net torque also zero?
If the net torque on a system is zero, is the net force zero?
Explain and give examples.

6. Mammals that depend on being able to run fast have slender
lower legs with flesh and muscle concentrated high, close to
the body (Fig. 8–33). On the basis of rotational dynamics,
explain why this distribution of mass is advantageous.

�

�

Questions
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1. Bonnie sits on the outer rim of a merry-go-round, and Jill
sits midway between the center and the rim. The merry-
go-round makes one complete revolution every 2 seconds.
Jill’s linear velocity is:
(a) the same as Bonnie’s.
(b) twice Bonnie’s.
(c) half of Bonnie’s.
(d) one-quarter of Bonnie’s.
(e) four times Bonnie’s.

2. An object at rest begins to rotate with a constant angular
acceleration. If this object rotates through an angle in
time , through what angle did it rotate in the time
(a) (b) (c) (d) (e)

3. A car speedometer that is supposed to read the linear speed
of the car uses a device that actually measures the angular
speed of the tires. If larger-diameter tires are mounted on
the car instead, how will that affect the speedometer reading?
The speedometer
(a) will still read the speed accurately.
(b) will read low.
(c) will read high.

4. The solid dot shown in Fig. 8–36 is a pivot point. The board
can rotate about the pivot. Which force shown exerts the
largest magnitude torque on the board?

4u.2u.u.1
4 u.

1
2 u.

1
2 t?t
u

8. If you used 1000 J of energy to throw a ball, would it 
travel faster if you threw the ball (ignoring air resistance) 
(a) so that it was also rotating?
(b) so that it wasn’t rotating?
(c) It makes no difference.

9. A small solid sphere and a small thin hoop are rolling along
a horizontal surface with the same translational speed when
they encounter a 20° rising slope. If these two objects roll up
the slope without slipping,which will rise farther up the slope?
(a) The sphere.
(b) The hoop.
(c) Both the same.
(d) More information about the objects’ mass and

diameter is needed.
10. A small mass m on a string is rotating without friction in a

circle. The string is shortened by pulling it through the axis
of rotation without any external torque, Fig. 8–39. What
happens to the angular velocity of the object?
(a) It increases.
(b) It decreases.
(c) It remains the same.

MisConceptual Questions

(a) 1000 N

(b) 500 N (c) 500 N

(e) 500 N

(d) 800 N

FIGURE 8;36 MisConceptual Question 4.

11. A small mass m on a string is rotating without friction in a
circle. The string is shortened by pulling it through the axis
of rotation without any external torque, Fig. 8–39. What
happens to the tangential velocity of the object?
(a) It increases.
(b) It decreases.
(c) It remains the same.

12. If there were a great migration of people toward the Earth’s
equator, the length of the day would
(a) increase because of conservation of angular momentum.
(b) decrease because of conservation of angular momentum.
(c) decrease because of conservation of energy.
(d) increase because of conservation of energy.
(e) remain unaffected.

13. Suppose you are sitting on a rotating stool holding a 2-kg
mass in each outstretched hand. If you suddenly drop the
masses, your angular velocity will 
(a) increase. (b) decrease. (c) stay the same.

6. Two spheres have the same radius and equal mass. One
sphere is solid, and the other is hollow and made of a denser
material. Which one has the bigger moment of inertia about
an axis through its center?
(a) The solid one.
(b) The hollow one.
(c) Both the same.

5. Consider a force applied to a beam as shown 
in Fig. 8–37. The length of the beam is and

, so that and . Of the 
following expressions, which ones give the correct torque
produced by the force around point P?
(a) 80 N.
(b) (80 N)(5.0 m).
(c) (80 N)(5.0 m)(sin 37°).
(d) (80 N)(4.0 m).
(e) (80 N)(3.0 m).
(f) (48 N)(5.0 m).
(g) (48 N)(4.0 m)(sin 37°).

F
B

y = 4.0 mx = 3.0 mu = 37°
l = 5.0 m,

F = 80 N

7. Two wheels having the same radius and mass rotate at the
same angular velocity (Fig. 8–38). One wheel is made with
spokes so nearly all the mass is at the rim. The other is a
solid disk. How do their rotational kinetic energies compare?
(a) They are nearly the same.
(b) The wheel with spokes has about twice the KE.
(c) The wheel with spokes has higher KE, but not twice as

high.
(d) The solid wheel has about twice the KE.
(e) The solid wheel has higher KE, but not twice as high.

P x

y
u

F
B

l

FIGURE 8;37

MisConceptual Question 5.

FIGURE 8;38

MisConceptual
Question 7.

m

FIGURE 8;39

MisConceptual
Questions 10 and 11.
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Problem 10.

Earth

Laser beam
θ

Moon

FIGURE 8;40 Problem 3.

4. (I) The blades in a blender rotate at a rate of 6500 rpm.
When the motor is turned off during operation, the blades
slow to rest in 4.0 s. What is the angular acceleration as the
blades slow down?

5. (II) The platter of the hard drive of a computer rotates 
at per minute
(a) What is the angular velocity of the platter? (b) If
the reading head of the drive is located 3.00 cm from the
rotation axis, what is the linear speed of the point on the plat-
ter just below it? (c) If a single bit requires of length
along the direction of motion, how many bits per second
can the writing head write when it is 3.00 cm from the axis?

6. (II) A child rolls a ball on a level floor 3.5 m to another
child. If the ball makes 12.0 revolutions, what is its diameter?

7. (II) (a) A grinding wheel 0.35 m in diameter rotates at
2200 rpm. Calculate its angular velocity in rad s. (b) What
are the linear speed and acceleration of a point on the
edge of the grinding wheel?

8. (II) A bicycle with tires 68 cm in diameter travels 9.2 km.
How many revolutions do the wheels make?

9. (II) Calculate the angular velocity (a) of a clock’s second
hand, (b) its minute hand, and (c) its hour hand. State in rad s.
(d) What is the angular acceleration in each case?

10. (II) A rotating merry-go-round makes one complete revo-
lution in 4.0 s (Fig. 8–41). (a) What is the linear speed 
of a child seated 1.2 m from the center? (b) What is her 
acceleration (give components)?

�

�

0.50 mm

(rad�s)
= rev�min).(rpm = revolutions7200 rpm
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8;1 Angular Quantities

1. (I) Express the following angles in radians: (a) 45.0°,
(b) 60.0°, (c) 90.0°, (d) 360.0°, and (e) 445°. Give as numer-
ical values and as fractions of 

2. (I) The Sun subtends an angle of about 0.5° to us on Earth,
150 million km away. Estimate the radius of the Sun.

3. (I) A laser beam is directed at the Moon, 380,000 km from
Earth. The beam diverges at an angle (Fig. 8–40) of

What diameter spot will
it make on the Moon?
1.4 * 10–5 rad.

u

p.

11. (II) What is the linear speed, due to the Earth’s rotation,
of a point (a) on the equator, (b) on the Arctic Circle 
(latitude 66.5° N), and (c) at a latitude of 42.0° N?

12. (II) Calculate the angular velocity of the Earth (a) in its
orbit around the Sun, and (b) about its axis.

13. (II) How fast (in rpm) must a centrifuge rotate if a particle
8.0 cm from the axis of rotation is to experience an accel-
eration of 100,000 g’s?

14. (II) A 61-cm-diameter wheel accelerates uniformly about its
center from 120 rpm to 280 rpm in 4.0 s. Determine (a) its
angular acceleration, and (b) the radial and tangential
components of the linear acceleration of a point on the edge
of the wheel 2.0 s after it has started accelerating.

15. (II) In traveling to the Moon, astronauts aboard the
Apollo spacecraft put the spacecraft into a slow rotation to
distribute the Sun’s energy evenly (so one side would not
become too hot). At the start of their trip, they accelerated
from no rotation to 1.0 revolution every minute during a 
12-min time interval. Think of the spacecraft as a cylinder 
with a diameter of 8.5 m rotating about its cylindrical axis.
Determine (a) the angular acceleration, and (b) the radial
and tangential components of the linear acceleration of a
point on the skin of the ship 6.0 min after it started this
acceleration.

16. (II) A turntable of radius is turned by a circular rubber
roller of radius in contact with it at their outer edges.
What is the ratio of their angular velocities,

8;2 and 8;3 Constant Angular Acceleration; Rolling

17. (I) An automobile engine slows down from 3500 rpm to
1200 rpm in 2.5 s. Calculate (a) its angular acceleration,
assumed constant, and (b) the total number of revolutions
the engine makes in this time.

18. (I) A centrifuge accelerates uniformly from rest to 15,000 rpm
in 240 s. Through how many revolutions did it turn in this
time?

19. (I) Pilots can be tested for the stresses of flying high-speed
jets in a whirling “human centrifuge,” which takes 1.0 min
to turn through 23 complete revolutions before reaching
its final speed. (a) What was its angular acceleration
(assumed constant), and (b) what was its final angular
speed in rpm?

20. (II) A cooling fan is turned off when it is running at
It turns 1250 revolutions before it comes to a

stop. (a) What was the fan’s angular acceleration, assumed
constant? (b) How long did it take the fan to come to a
complete stop?

21. (II) A wheel 31 cm in diameter accelerates uniformly from
240 rpm to 360 rpm in 6.8 s. How far will a point on the
edge of the wheel have traveled in this time?

22. (II) The tires of a car make 75 revolutions as the car
reduces its speed uniformly from to The
tires have a diameter of 0.80 m. (a) What was the angular
acceleration of the tires? If the car continues to decelerate
at this rate, (b) how much more time is required for it to
stop, and (c) how far does it go?

55 km�h.95 km�h

850 rev�min.

v1�v2?
R2

R1

Problems
For assigned homework and other learning materials, go to the MasteringPhysics website.
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23. (II) A small rubber wheel is used to drive a large pottery
wheel. The two wheels are mounted so that their circular
edges touch. The small wheel has a radius of 2.0 cm and
accelerates at the rate of and it is in contact with
the pottery wheel (radius 27.0 cm) without slipping. Calcu-
late (a) the angular acceleration of the pottery wheel, and
(b) the time it takes the pottery wheel to reach its required
speed of 65 rpm.

8;4 Torque

24. (I) A 52-kg person riding a bike puts all her weight on each
pedal when climbing a hill. The pedals rotate in a circle of
radius 17 cm. (a) What is the maximum torque she exerts?
(b) How could she exert more torque?

25. (II) Calculate the net torque about the axle of the wheel
shown in Fig. 8–42. Assume that a friction torque of

opposes the motion.0.60 m�N

7.2 rad�s2,

29. (II) Determine the net torque on
the 2.0-m-long uniform beam shown
in Fig. 8–45. All forces are shown.
Calculate about (a) point C, the CM,
and (b) point P at one end.

26. (II) A person exerts a horizontal force of 42 N on the end
of a door 96 cm wide. What is the magnitude of the torque
if the force is exerted (a) perpendicular to the door and 
(b) at a 60.0° angle to the face of the door?

27. (II) Two blocks, each of mass m, are attached to the ends
of a massless rod which pivots as shown in Fig. 8–43.
Initially the rod is held in the horizontal position and then
released. Calculate the magnitude and direction of the 
net torque on this system when it is first released.

18 N

35 N 28 N

24 cm

12 cm

135°

FIGURE 8;42 Problem 25.

m m

l1 l2

FIGURE 8;43 Problem 27.

28. (II) The bolts on the cylinder head of an engine require
tightening to a torque of If a wrench is 28 cm long,
what force perpendicular to the wrench must the mechanic
exert at its end? If the six-sided bolt head is 15 mm across
(Fig. 8–44), estimate the force applied near each of the six
points by a wrench.

95 m�N.

28 cm

15 mm

   on bolt

on wrench

F
B

F
B

FIGURE 8;44 Problem 28.

65 N

56 N

52 N

45°

58°

C

P

32°

FIGURE 8;45

Problem 29.

Triceps
muscle

Axis of rotation
(at elbow)2.5 cm

31 cm

8;5 and 8;6 Rotational Dynamics

30. (I) Determine the moment of inertia of a 10.8-kg sphere of
radius 0.648 m when the axis of rotation is through its center.

31. (I) Estimate the moment of inertia of a bicycle wheel 67 cm
in diameter. The rim and tire have a combined mass of
1.1 kg. The mass of the hub (at the center) can be ignored
(why?).

32. (II) A merry-go-round accelerates from rest to 
in 34 s. Assuming the merry-go-round is a uniform disk of
radius 7.0 m and mass 31,000 kg, calculate the net torque
required to accelerate it.

33. (II) An oxygen molecule consists of two oxygen atoms whose
total mass is and whose moment of inertia
about an axis perpendicular to the line joining the two atoms,
midway between them, is From these
data, estimate the effective distance between the atoms.

34. (II) A grinding wheel is a uniform cylinder with a radius of
8.50 cm and a mass of 0.380 kg. Calculate (a) its moment of
inertia about its center, and (b) the applied torque needed
to accelerate it from rest to 1750 rpm in 5.00 s. Take into
account a frictional torque that has been measured to slow
down the wheel from 1500 rpm to rest in 55.0 s.

35. (II) The forearm in Fig. 8–46 accelerates a 3.6-kg ball at
by means of the triceps muscle, as shown. Calcu-

late (a) the torque needed, and
(b) the force that must be exerted
by the triceps muscle. Ignore the
mass of the arm.

36. (II) Assume that a 1.00-kg ball
is thrown solely by the action
of the forearm, which
rotates about the elbow
joint under the action 
of the triceps muscle,
Fig. 8–46. The ball is
accelerated uniformly
from rest to in
0.38 s, at which point it
is released. Calculate (a) the angular acceleration of the arm,
and (b) the force required of the triceps muscle. Assume
that the forearm has a mass of 3.7 kg and rotates like a uni-
form rod about an axis at its end.

8.5 m�s

7.0 m�s2

1.9 * 10–46 kg �m2.

5.3 * 10–26 kg

0.68 rad�s

FIGURE 8;46

Problems 35 and 36.
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Rotor

m = 135 kg3.75 m
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42. (II) A 0.72-m-diameter solid sphere can be rotated about
an axis through its center by a torque of which
accelerates it uniformly from rest through a total of
160 revolutions in 15.0 s. What is the mass of the sphere?

43. (II) Let us treat a helicopter rotor blade as a long thin 
rod, as shown in Fig. 8–49. (a) If each of the three rotor
helicopter blades is 3.75 m long and has a mass of 135 kg,
calculate the moment of inertia of the three rotor blades
about the axis of rotation. (b) How much torque must the
motor apply to bring the blades from rest up to a speed
of in 8.0 s?6.0 rev�s

10.8 m�N

mA = 8.0 kg

a = 1.00 m/s2

mB = 10.0 kg

TB

TA

32° 61°

B
F
B

F
B

FIGURE 8;51 Problem 46.

37. (II) A softball player swings a bat, accelerating it from rest
to in a time of 0.20 s. Approximate the bat as 
a 0.90-kg uniform rod of length 0.95 m, and compute the
torque the player applies to one end of it.

38. (II) A small 350-gram ball on the end of a thin, light rod 
is rotated in a horizontal circle of radius 1.2 m. Calculate
(a) the moment of inertia of the ball about the center of
the circle, and (b) the torque needed to keep the ball 
rotating at constant angular velocity if air resistance exerts
a force of 0.020 N on the ball. Ignore air resistance on 
the rod and its moment of inertia.

39. (II) Calculate the moment of inertia of the array of point
objects shown in Fig. 8–47 about (a) the y axis, and (b) the
x axis. Assume and the objects are
wired together by very light, rigid pieces of wire. The array
is rectangular and is split through the middle by the x axis.
(c) About which axis would it be harder to accelerate this
array?

m = 2.2 kg,  M = 3.4 kg,

2.6 rev�s

FIGURE 8;49

Problem 43.

End view of
cylindrical

satellite

R

FIGURE 8;50

Problem 45.

44. (II) A centrifuge rotor rotating at 9200 rpm is shut off and
is eventually brought uniformly to rest by a frictional
torque of If the mass of the rotor is 3.10 kg and
it can be approximated as a solid cylinder of radius
0.0710 m, through how many revolutions will the rotor
turn before coming to rest, and how long will it take?

45. (II) To get a flat, uniform cylindrical satellite spinning at
the correct rate, engineers fire four tangential rockets as
shown in Fig. 8–50. Suppose that the satellite has a mass of
3600 kg and a radius of 4.0 m, and that the rockets each
add a mass of 250 kg. What is the steady force required of
each rocket if the satellite is to reach 32 rpm in 5.0 min,
starting from rest?

1.20 m�N.

46. (III) Two blocks are connected by a light string passing
over a pulley of radius 0.15 m and moment of inertia I.
The blocks move (towards the right) with an acceleration
of along their frictionless inclines (see Fig. 8–51).
(a) Draw free-body diagrams for each of the two blocks
and the pulley. (b) Determine and the tensions 
in the two parts of the string. (c) Find the net torque acting
on the pulley, and determine its moment of inertia, I.

FTB ,FTA

1.00 m�s2

41. (II) A dad pushes tangentially on a small hand-driven
merry-go-round and is able to accelerate it from rest to a
frequency of 15 rpm in 10.0 s. Assume the merry-go-round
is a uniform disk of radius 2.5 m and has a mass of 560 kg,
and two children (each with a mass of 25 kg) sit opposite
each other on the edge. Calculate the torque required
to produce the acceleration, neglecting frictional torque.
What force is required at the edge?

40. (II) A potter is shaping a bowl on a potter’s wheel rotating at
constant angular velocity of (Fig. 8–48). The friction
force between her hands and the clay is 1.5 N total. (a) How
large is her torque on the wheel, if the diameter of the bowl
is 9.0 cm? (b) How long would it take for the potter’s wheel 
to stop if the only torque acting on it is due to the potter’s
hands? The moment of inertia of the wheel and the bowl is
0.11 kg �m2.

1.6 rev�s

FIGURE 8;48

Problem 40.



Problems 225

47. (III) An Atwood machine consists of two masses,
and connected by a massless

inelastic cord that passes over a pulley free to rotate,
Fig. 8–52. The pulley is a solid cylin-
der of radius and mass
6.0 kg. (a) Determine the accelera-
tion of each mass. (b) What % error
would be made if the moment of
inertia of the pulley is ignored?
[Hint: The tensions and are
not equal. We discussed the Atwood
machine in Example 4–13, assuming

for the pulley.]I = 0

FTBFTA

R = 0.45 m

mB = 75 kg,mA = 65 kg
57. (II) A ball of radius r rolls on the inside of a track of

radius R (see Fig. 8–53). If the ball starts from rest at the
vertical edge of the track, what will be its speed when it
reaches the lowest point of the track, rolling without
slipping?

48. (III) A hammer thrower accelerates the hammer 
from rest within four full turns (revolutions) and

releases it at a speed of Assuming a uniform rate
of increase in angular velocity and a horizontal circular
path of radius 1.20 m, calculate (a) the angular acceleration,
(b) the (linear) tangential acceleration, (c) the centripetal
acceleration just before release, (d) the net force being
exerted on the hammer by the athlete just before release,
and (e) the angle of this force with respect to the radius of
the circular motion. Ignore gravity.

8;7 Rotational Kinetic Energy

49. (I) An automobile engine develops a torque of at
3350 rpm. What is the horsepower of the engine?

50. (I) A centrifuge rotor has a moment of inertia of
How much energy is required to bring

it from rest to 8750 rpm?
51. (I) Calculate the translational speed of a cylinder when it

reaches the foot of an incline 7.20 m high. Assume it starts
from rest and rolls without slipping.

52. (II) A bowling ball of mass 7.25 kg and radius 10.8 cm rolls
without slipping down a lane at Calculate its total
kinetic energy.

53. (II) Estimate the kinetic energy of the Earth with respect
to the Sun as the sum of two terms, (a) that due to its daily
rotation about its axis, and (b) that due to its yearly revolu-
tion about the Sun. [Assume the Earth is a uniform sphere
with and is

from the Sun.]
54. (II) A rotating uniform cylindrical platform of mass 220 kg

and radius 5.5 m slows down from to rest in 16 s
when the driving motor is disconnected. Estimate the power
output of the motor (hp) required to maintain a steady
speed of 

55. (II) A merry-go-round has a mass of 1440 kg and a radius
of 7.50 m. How much net work is required to accelerate it
from rest to a rotation rate of 1.00 revolution per 7.00 s?
Assume it is a solid cylinder.

56. (II) A sphere of radius and mass 
starts from rest and rolls without slipping down a 30.0°
incline that is 10.0 m long. (a) Calculate its translational
and rotational speeds when it reaches the bottom. (b) What
is the ratio of translational to rotational kinetic energy at
the bottom? Avoid putting in numbers until the end so you
can answer: (c) do your answers in (a) and (b) depend on
the radius of the sphere or its mass?

m = 1.80 kgr = 34.5 cm

3.8 rev�s.

3.8 rev�s

1.5 * 108 km
mass = 6.0 * 1024 kg,  radius = 6.4 * 106 m,

3.10 m�s.

3.25 * 10–2 kg �m2.

265 m�N

26.5 m�s.
7.30 kg)

(mass = 58. (II) Two masses, and are con-
nected by a rope that hangs over a pulley (as in Fig. 8–54).
The pulley is a uniform cylinder of radius 
and mass 3.1 kg. Initially is on
the ground and rests 2.5 m
above the ground. If the system 
is released, use conservation of
energy to determine the speed 
of just before it strikes the
ground. Assume the pulley bearing
is frictionless.

mB

mB

mA

R = 0.311 m

mB = 38.0 kg,mA = 32.0 kg

mA

mB

O RR

v

v

TA

TB

F
B

F
B

FIGURE 8;52 Problem 47.
Atwood machine.

8;8 Angular Momentum

60. (I) What is the angular momentum of a 0.270-kg ball revolv-
ing on the end of a thin string in a circle of radius 1.35 m at
an angular speed of 

61. (I) (a) What is the angular momentum of a 2.8-kg uniform
cylindrical grinding wheel of radius 28 cm when rotating at
1300 rpm? (b) How much torque is required to stop it in
6.0 s?

62. (II) A person stands, hands at his side, on a platform that 
is rotating at a rate of If he raises his arms to a
horizontal position, Fig. 8–55, the speed of rotation
decreases to (a) Why? (b) By what factor has
his moment of inertia changed?

0.60 rev�s.

0.90 rev�s.

10.4 rad�s?

mB

mA

R

2.5 m

FIGURE 8;54

Problem 58.

90°
R

R

FIGURE 8;53 Problem 57.

FIGURE 8;55

Problem 62.

59. (III) A 1.80-m-long pole is balanced vertically with its tip
on the ground. It starts to fall and its lower end does not slip.
What will be the speed of the upper end of the pole just
before it hits the ground? [Hint: Use conservation of energy.]



226 CHAPTER 8 Rotational Motion

63. (II) A nonrotating cylindrical disk of moment of inertia I
is dropped onto an identical disk rotating at angular 
speed Assuming no external torques, what is the final
common angular speed of the two disks?

64. (II) A diver (such as the one shown in Fig. 8–28) can reduce
her moment of inertia by a factor of about 3.5 when changing
from the straight position to the tuck position. If she makes
2.0 rotations in 1.5 s when in the tuck position, what is her
angular speed (rev s) when in the straight position?

65. (II) A figure skater can increase her spin rotation rate
from an initial rate of 1.0 rev every 1.5 s to a final rate of

If her initial moment of inertia was 
what is her final moment of inertia? How does she physi-
cally accomplish this change?

66. (II) (a) What is the angular momentum of a figure skater
spinning at with arms in close to her body,
assuming her to be a uniform cylinder with a height of
1.5 m, a radius of 15 cm, and a mass of 48 kg? (b) How
much torque is required to slow her to a stop in 4.0 s,
assuming she does not move her arms?

67. (II) A person of mass 75 kg stands at the center of a rotating
merry-go-round platform of radius 3.0 m and moment of
inertia The platform rotates without friction
with angular velocity The person walks radially
to the edge of the platform. (a) Calculate the angular
velocity when the person reaches the edge. (b) Calculate
the rotational kinetic energy of the system of platform plus
person before and after the person’s walk.

68. (II) A potter’s wheel is rotating around a vertical axis
through its center at a frequency of The wheel
can be considered a uniform disk of mass 5.0 kg and diam-
eter 0.40 m. The potter then throws a 2.6-kg chunk of clay,
approximately shaped as a flat disk of radius 7.0 cm, onto
the center of the rotating wheel. What is the frequency
of the wheel after the clay sticks to it? Ignore friction.

69. (II) A 4.2-m-diameter merry-go-round is rotating freely
with an angular velocity of Its total moment 
of inertia is Four people standing on the
ground, each of mass 65 kg, suddenly step onto the edge 
of the merry-go-round. (a) What is the angular velocity of 
the merry-go-round now? (b) What if the people were on it
initially and then jumped off in a radial direction (relative
to the merry-go-round)?

1360 kg �m2.
0.80 rad�s.

1.5 rev�s.

0.95 rad�s.
820 kg �m2.

3.0 rev�s

4.6 kg �m2,2.5 rev�s.

�

v.

70. (II) A uniform horizontal rod of mass M and length rotates
with angular velocity about a vertical axis through its
center. Attached to each end of the rod is a small mass m.
Determine the angular momentum of the system about the
axis.

71. (II) Suppose our Sun eventually collapses into a white dwarf,
losing about half its mass in the process, and winding up
with a radius 1.0% of its existing radius. Assuming the lost
mass carries away no angular momentum, (a) what would the
Sun’s new rotation rate be? Take the Sun’s current period to
be about 30 days. (b) What would be its final kinetic energy
in terms of its initial kinetic energy of today?

72. (II) A uniform disk turns at around a frictionless
central axis. A nonrotating rod, of the same mass as the disk
and length equal to the disk’s
diameter, is dropped onto the
freely spinning disk, Fig. 8–56.
They then turn together around
the axis with their centers 
superposed. What is the angular
frequency in of the
combination?

rev�s

3.3 rev�s

v

l

75. A merry-go-round with a moment of inertia equal to
and a radius of 2.5 m rotates with negligible

friction at A child initially standing still next to
the merry-go-round jumps onto the edge of the platform
straight toward the axis of rotation, causing the platform to
slow to What is her mass?

76. A 1.6-kg grindstone in the shape of a uniform cylinder of
radius 0.20 m acquires a rotational rate of from
rest over a 6.0-s interval at constant angular acceleration.
Calculate the torque delivered by the motor.

24 rev�s

1.35 rad�s.

1.70 rad�s.
1260 kg �m2

77. On a 12.0-cm-diameter audio compact disc (CD), digital
bits of information are encoded sequentially along an 
outward spiraling path. The spiral starts at radius

and winds its way out to radius 
To read the digital information, a CD player rotates the
CD so that the player’s readout laser scans along the
spiral’s sequence of bits at a constant linear speed of

Thus the player must accurately adjust the rota-
tional frequency f of the CD as the laser moves outward.
Determine the values for f (in units of rpm) when the 
laser is located at and when it is at R2 .R1

1.25 m�s.

R2 = 5.8 cm.R1 = 2.5 cm

General Problems

73. (III) An asteroid of mass traveling at a speed
of relative to the Earth, hits the Earth at the equa-
tor tangentially, in the direction of Earth’s rotation, and
is embedded there. Use angular momentum to estimate
the percent change in the angular speed of the Earth as a
result of the collision.

*8;9 Angular Quantities as Vectors

74. (III) Suppose a 65-kg person stands at the edge of a 5.5-m
diameter merry-go-round turntable that is mounted on
frictionless bearings and has a moment of inertia of

The turntable is at rest initially, but when the
person begins running at a speed of (with respect
to the turntable) around its edge, the turntable begins to
rotate in the opposite direction. Calculate the angular
velocity of the turntable.

4.0 m�s
1850 kg �m2.

35 km�s
1.0 * 105 kg,

FIGURE 8;56

Problem 72.
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This point on tire
at rest momentarily

a = 1.00 m/s2

v = ?

FIGURE 8;57

Problem 79.

82. Figure 8–59 illustrates an molecule. The bond
length is 0.096 nm and the bonds make an
angle of 104°. Calculate the moment of inertia of the 
molecule (assume the atoms are points) about an
axis passing through the center of the oxygen
atom (a) perpendicular to the plane of the 
molecule, and (b) in the plane of the molecule,
bisecting the bonds.H¬O¬H

H2O
H¬O¬H

O¬HH2O

FIGURE 8;59

Problem 82.

R

h

F
B

FIGURE 8;60 Problem 85.

4.00 kg
3.00 kg

V
B

FIGURE 8;61 Problem 87.

88. A small mass m attached to the end of a string revolves in a
circle on a frictionless tabletop. The other end of the string
passes through a hole in the table (Fig. 8–62). Initially,
the mass revolves with a speed  in a circle 
of radius The string is then pulled slowly
through the hole so that the radius is reduced to 
What is the speed, of the mass now?v2 ,

r2 = 0.48 m.
r1 = 0.80 m.

v1 = 2.4 m�s

r1

m v1

FIGURE 8;62

Problem 88.

FIGURE 8;58

Problem 81.

83. A hollow cylinder (hoop) is rolling on a horizontal surface
at speed when it reaches a 15° incline. (a) How
far up the incline will it go? (b) How long will it be on the
incline before it arrives back at the bottom?

84. Determine the angular momentum of the Earth (a) about
its rotation axis (assume the Earth is a uniform sphere),
and (b) in its orbit around the Sun (treat the Earth as a
particle orbiting the Sun).

85. A wheel of mass M has radius R. It is standing vertically on
the floor, and we want to exert a horizontal force F at its axle
so that it will climb a step against which it rests (Fig. 8–60).
The step has height h, where What minimum force F
is needed?

h 6 R.

v = 3.0 m�s

86. If the coefficient of static friction between a car’s tires and
the pavement is 0.65, calculate the minimum torque that
must be applied to the 66-cm-diameter tire of a 1080-kg
automobile in order to “lay rubber” (make the wheels spin,
slipping as the car accelerates). Assume each wheel supports
an equal share of the weight.

87. A 4.00-kg mass and a 3.00-kg mass are attached to opposite
ends of a very light 42.0-cm-long horizontal rod (Fig. 8–61).
The system is rotating at angular speed  
about a vertical axle at the center of the rod. Determine
(a) the kinetic energy KE of the system, and (b) the net
force on each mass.

v = 5.60 rad�s

80. Suppose David puts a 0.60-kg rock into a sling of length
1.5 m and begins whirling the rock in a nearly horizontal
circle, accelerating it from rest to a rate of 75 rpm after
5.0 s. What is the torque required to achieve this feat, and
where does the torque come from?

81. Bicycle gears: (a) How is the angular velocity of the
rear wheel of a bicycle related to the angular velocity 
of the front sprocket and pedals? Let and be the
number of teeth on the front and rear sprockets, respec-
tively, Fig. 8–58. The teeth are spaced the same on both
sprockets and the rear sprocket is firmly attached to the
rear wheel. (b) Evaluate the ratio when the front
and rear sprockets have 52 and 13 teeth, respectively, and
(c) when they have 42 and 28 teeth.

vR�vF

NRNF

vF

vR

78. (a) A yo-yo is made of two solid cylindrical disks, each of
mass 0.050 kg and diameter 0.075 m, joined by a (concen-
tric) thin solid cylindrical hub of mass 0.0050 kg and
diameter 0.013 m. Use conservation of energy to calculate
the linear speed of the yo-yo just before it reaches the end
of its 1.0-m-long string, if it is released from rest. (b) What
fraction of its kinetic energy is rotational?

79. A cyclist accelerates from rest at a rate of How
fast will a point at the top of the rim of the tire

be moving after 2.25 s? [Hint: At
any moment, the lowest point on the tire is in contact with
the ground and is at rest—see Fig. 8–57.]

(diameter = 68.0 cm)

1.00 m�s2.
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Problem 89.
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Problem 95.

89. A uniform rod of mass M and length can pivot freely 
(i.e., we ignore friction) about a hinge attached to a wall,
as in Fig. 8–63. The rod is held horizontally and then
released. At the moment of release, determine (a) the angular
acceleration of the rod, and (b) the linear acceleration 
of the tip of the rod. Assume that the force of gravity 
acts at the center of mass of the rod, as shown. [Hint: See
Fig. 8–20g.]

l

90. Suppose a star the size of our Sun, but with mass 8.0 times
as great, were rotating at a speed of 1.0 revolution every
9.0 days. If it were to undergo gravitational collapse to a
neutron star of radius 12 km, losing of its mass in the pro-
cess, what would its rotation speed be? Assume the star is a
uniform sphere at all times. Assume also that the thrown-
off mass carries off either (a) no angular momentum, or
(b) its proportional share of the initial angular momentum.

91. A large spool of rope rolls on the ground with the end of
the rope lying on the top edge of the spool. A person grabs
the end of the rope and walks a distance , holding onto it,
Fig. 8–64. The spool rolls behind the person
without slipping. What length of rope unwinds
from the spool? How far
does the spool’s center of
mass move?

l

A34B

3
4

94. Most of our Solar System’s mass is contained in the Sun,
and the planets possess almost all of the Solar System’s
angular momentum. This observation plays a key role in
theories attempting to explain the formation of our Solar
System. Estimate the fraction of the Solar System’s total
angular momentum that is possessed by planets using a
simplified model which includes only the large outer plan-
ets with the most angular momentum. The central Sun
(mass radius ) spins about its
axis once every 25 days and the planets Jupiter, Saturn,
Uranus, and Neptune move in nearly circular orbits
around the Sun with orbital data given in the Table below.
Ignore each planet’s spin about its own axis.

Mean Distance from Orbital Period Mass 
Planet Sun (Earth Years)

Jupiter 778 11.9 190
Saturn 1427 29.5 56.8
Uranus 2870 84.0 8.68
Neptune 4500 165 10.2

95. Water drives a waterwheel (or turbine) of radius 
as shown in Fig. 8–66. The water enters at a speed

and exits from the waterwheel at a speed
(a) If 85 kg of water passes through per

second, what is the rate at which the water delivers angu-
lar momentum to the waterwheel? (b) What is the torque
the water applies to the
waterwheel? (c) If the water
causes the waterwheel to
make one revolution every
5.5 s, how much power is
delivered to the wheel?

v2 = 3.8 m�s.
v1 = 7.0 m�s

R = 3.0 m

(� 1025 kg)(� 106 km)

6.96 * 108 m1.99 * 1030 kg,

r � 123 m

F � 285 NFIGURE 8;65

Problem 93.

F
B

92. The Moon orbits the Earth such that the same side always
faces the Earth. Determine the ratio of the Moon’s spin
angular momentum (about its own axis) to its orbital angu-
lar momentum. (In the latter case, treat the Moon as a
particle orbiting the Earth.)

93. A spherical asteroid with radius and mass
rotates about an axis at four revolu-

tions per day. A “tug” spaceship
attaches itself to the asteroid’s
south pole (as defined by the
axis of rotation) and fires
its engine, applying a
force F tangentially to
the asteroid’s surface as
shown in Fig. 8–65. If

how long
will it take the tug to
rotate the asteroid’s
axis of rotation through
an angle of 5.0° by this
method?

F = 285 N,

M = 2.25 * 1010 kg
r = 123 m 96. The radius of the roll of paper shown in Fig. 8–67 is 

7.6 cm and its moment of inertia is 
A force of 3.5 N is exerted on the end of the roll for 
1.3 s, but the paper does not tear so it begins to unroll.
A constant friction torque of is exerted on the
roll which gradually brings it to a stop. Assuming that the
paper’s thickness is negligible, calculate (a) the length of
paper that unrolls during the time that the
force is applied (1.3 s) and (b) the length
of paper that unrolls from the time the
force ends to the time when the roll
has stopped moving.

0.11 m�N

I = 3.3 * 10–3 kg �m2.

FIGURE 8;64

Problem 91.

FIGURE 8;67

Problem 96.
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1. Why are Eqs. 8–4 and 8–5 valid for radians but not for 
revolutions or degrees? Read Section 8–1 and follow the
derivations carefully to find the answer.

2. Total solar eclipses can happen on Earth because of 
amazing coincidences: for one, the sometimes near-perfect
alignment of Earth, Moon, and Sun. Secondly, using the
information inside the front cover, calculate the angular
diameters (in radians) of the Sun and the Moon, as seen
from Earth, and then comment.

3. Two uniform spheres simultaneously start rolling (from rest)
down an incline. One sphere has twice the radius and twice
the mass of the other. (a) Which reaches the bottom of the
incline first? (b) Which has the greater speed there? (c) Which
has the greater total kinetic energy at the bottom? Explain
your answers.

4. A bicyclist traveling with speed on a flat road
is making a turn with a radius There are three
forces acting on the cyclist and cycle: the normal force and
friction force exerted by the road on the tires; and 
the total weight of the cyclist and cycle. Ignore the small
mass of the wheels. (a) Explain carefully why the angle 
the bicycle makes with the vertical (Fig. 8–68) must be
given by if the cyclist is to maintain balance.
(b) Calculate for the values given. [Hint: Consider the
“circular” translational motion of the bicycle and rider.]
(c) If the coefficient of static friction between tires and road
is what is the minimum turning radius?ms = 0.65,

u

tan u = Ffr�FN

u

mgB,AFBfrB
AFBNB

r = 13 m.
v = 8.2 m�s

5. Model a figure skater’s body as a solid cylinder and her
arms as thin rods, making reasonable estimates for the dimen-
sions. Then calculate the ratio of the angular speeds for a
spinning skater with outstretched arms, and with arms held
tightly against her body. Check Sections 8–5 and 8–8.

6. One possibility for a low-pollution automobile is for it to
use energy stored in a heavy rotating flywheel. Suppose
such a car has a total mass of 1100 kg, uses a uniform cylin-
drical flywheel of diameter 1.50 m and mass 270 kg, and
should be able to travel 350 km without needing a flywheel
“spinup.” (a) Make reasonable assumptions (average fric-
tional retarding force on car thirty acceleration
periods from rest to equal uphill and downhill, and
that energy can be put back into the flywheel as the car goes
downhill), and estimate what total energy needs to be
stored in the flywheel. (b) What is the angular velocity of the
flywheel when it has a full “energy charge”? (c) About how
long would it take a 150-hp motor to give the flywheel a full
energy charge before a trip?

*7. A person stands on a platform, initially at rest, that can
rotate freely without friction. The moment of inertia of the
person plus the platform is The person holds a spinning
bicycle wheel with its axis horizontal. The wheel has moment
of inertia and angular velocity What will be the
angular velocity of the platform if the person moves 
the axis of the wheel so that it points (a) vertically upward,
(b) at a 60° angle to the vertical, (c) vertically downward?
(d) What will be if the person reaches up and stops the
wheel in part (a)? See Sections 8–8 and 8–9.

vP

vP

vW .IW

IP .

95 km�h,
= 450 N,
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A:
B:
C: (c).

F
B

A .
f = 0.076 Hz; T = 13 s. D: Yes; she does work to pull in her arms.

E: (b).
F: (b).
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