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Quantum Mechanics
of Atoms
CHAPTER-OPENING QUESTION—Guess now!
The uncertainty principle states that

(a) no measurement can be perfect because it is technologically impossible to
make perfect measuring instruments.

(b) it is impossible to measure exactly where a particle is, unless it is at rest.
(c) it is impossible to simultaneously know both the position and the momen-

tum of a particle with complete certainty.
(d) a particle cannot actually have a completely certain value of momentum.

B ohr’s model of the atom gave us a first (though rough) picture of what an
atom is like. It proposed explanations for why there is emission and absorp-
tion of light by atoms at only certain wavelengths. The wavelengths of the

line spectra and the ionization energy for hydrogen (and one-electron ions) are
in excellent agreement with experiment. But the Bohr model had important 
limitations. It was not able to predict line spectra for more complex atoms—atoms
with more than one electron—not even for the neutral helium atom, which has only
two electrons. Nor could it explain why emission lines, when viewed with great
precision, consist of two or more very closely spaced lines (referred to as fine
structure). The Bohr model also did not explain why some spectral lines were
brighter than others. And it could not explain the bonding of atoms in molecules
or in solids and liquids.

From a theoretical point of view, too, the Bohr model was not satisfactory: it
was a strange mixture of classical and quantum ideas. Moreover, the wave–particle
duality was not really resolved.
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A neon tube is a thin glass tube,
moldable into various shapes,
filled with neon (or other) gas
that glows with a particular color
when a current at high voltage
passes through it. Gas atoms,
excited to upper energy levels,
jump down to lower energy
levels and emit light (photons)
whose wavelengths (color) are
characteristic of the type of gas.

In this Chapter we study what
quantum mechanics tells us
about atoms, their energy levels,
and the effect of the exclusion
principle for atoms with more
than one electron. We also
discuss interesting applications
such as lasers and holography.



We mention these limitations of the Bohr model not to disparage it—for it
was a landmark in the history of science. Rather, we mention them to show why,
in the early 1920s, it became increasingly evident that a new, more comprehensive
theory was needed. It was not long in coming. Less than two years after de Broglie
gave us his matter–wave hypothesis, Erwin Schrödinger (1887–1961; Fig. 28–1)
and Werner Heisenberg (1901–1976; Fig. 28–2) independently developed a new
comprehensive theory.

28–1 Quantum Mechanics—A New Theory
The new theory, called quantum mechanics, has been extremely successful. It
unifies the wave–particle duality into a single consistent theory and has success-
fully dealt with the spectra emitted by complex atoms, even the fine details. It
explains the relative brightness of spectral lines and how atoms form molecules.
It is also a much more general theory that covers all quantum phenomena from
blackbody radiation to atoms and molecules. It has explained a wide range of
natural phenomena and from its predictions many new practical devices have
become possible. Indeed, it has been so successful that it is accepted today by
nearly all physicists as the fundamental theory underlying physical processes.

Quantum mechanics deals mainly with the microscopic world of atoms and
light. But this new theory, when it is applied to macroscopic phenomena, must be
able to produce the old classical laws. This, the correspondence principle (already
mentioned in Section 27–12), is satisfied fully by quantum mechanics.

This doesn’t mean we should throw away classical theories such as Newton’s
laws. In the everyday world, classical laws are far easier to apply and they give
sufficiently accurate descriptions. But when we deal with high speeds, close to
the speed of light, we must use the theory of relativity; and when we deal with the
tiny world of the atom, we use quantum mechanics.

Although we won’t go into the detailed mathematics of quantum mechanics,
we will discuss the main ideas and how they involve the wave and particle
properties of matter to explain atomic structure and other applications.

28–2 The Wave Function and Its
Interpretation; the Double-Slit Experiment
The important properties of any wave are its wavelength, frequency, and ampli-
tude. For an electromagnetic wave, the frequency (or wavelength) determines
whether the light is in the visible spectrum or not, and if so, what color it is. We
also have seen that the frequency is a measure of the energy of the corresponding
photon, (Eq. 27–4). The amplitude or displacement of an electromagnetic
wave at any point is the strength of the electric (or magnetic) field at that point,
and is related to the intensity of the wave (the brightness of the light).

E = hf
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FIGURE 28–2 Werner Heisenberg (center) on Lake Como (Italy)
with Enrico Fermi (left) and Wolfgang Pauli (right).

FIGURE 28–1 Erwin Schrödinger with Lise Meitner
(codiscoverers of nuclear fission, Chapter 31).



For material particles such as electrons, quantum mechanics relates the 
wavelength to momentum according to de Broglie’s formula, Eq. 27–8.
But what corresponds to the amplitude or displacement of a matter wave? The ampli-
tude of an electromagnetic wave is represented by the electric and magnetic fields,
E and B. In quantum mechanics, this role is played by the wave function, which 
is given the symbol (the Greek capital letter psi, pronounced “sigh”). Thus 
represents the wave displacement, as a function of time and position, of a new
kind of field which we might call a “matter” field or a matter wave.

To understand how to interpret the wave function we make an analogy
with light using the wave–particle duality.

We saw in Chapter 11 that the intensity I of any wave is proportional to the
square of the amplitude. This holds true for light waves as well, as we saw in
Chapter 22. That is,

where E is the electric field strength. From the particle point of view, the intensity
of a light beam (of given frequency) is proportional to the number of photons, N,
that pass through a given area per unit time. The more photons there are, the
greater the intensity. Thus

This proportion can be turned around so that we have

That is, the number of photons (striking a page of this book, say) is proportional
to the square of the electric field strength.

If the light beam is very weak, only a few photons will be involved. Indeed, it
is possible to “build up” a photograph in a camera using very weak light so the
effect of photons arriving can be seen. If we are dealing with only one photon,
the relationship above can be interpreted in a slightly different way. At
any point, the square of the electric field strength is a measure of the probability
that a photon will be at that location. At points where is large, there is a high
probability the photon will be there; where is small, the probability is low.

We can interpret matter waves in the same way, as was first suggested by
Max Born (1882–1970) in 1927. The wave function may vary in magnitude
from point to point in space and time. If describes a collection of many electrons,
then at any point will be proportional to the number of electrons expected to
be found at that point. When dealing with small numbers of electrons we can’t
make very exact predictions, so takes on the character of a probability. If 
which depends on time and position, represents a single electron (say, in an atom),
then is interpreted like this: at a certain point in space and time represents
the probability of finding the electron at the given position and time. Thus is
often referred to as the probability density or probability distribution.

Double-Slit Interference Experiment for Electrons
To understand this better, we take as a thought experiment the familiar double-slit
experiment, and consider it both for light and for electrons.

Consider two slits whose size and separation are on the order of the wave-
length of whatever we direct at them, either light or electrons, Fig. 28–3. We
know very well what would happen in this case for light, since this is just Young’s
double-slit experiment (Section 24–3): an interference pattern would be seen 
on the screen behind. If light were replaced by electrons with wavelength
comparable to the slit size, they too would produce an interference pattern
(recall Fig. 27–12). In the case of light, the pattern would be visible to the eye or
could be recorded on film, semiconductor sensor, or screen. For electrons, a fluores-
cent screen could be used (it glows where an electron strikes).
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FIGURE 28–3 Parallel beam, of
light or electrons, falls on two slits
whose sizes are comparable to the
wavelength. An interference pattern
is observed.

Light or
electrons

Intensity
on screen



If we reduced the flow of electrons (or photons) so they passed through the
slits one at a time, we would see a flash each time one struck the screen. At first,
the flashes would seem random. Indeed, there is no way to predict just where any
one electron would hit the screen. If we let the experiment run for a long time,
and kept track of where each electron hit the screen, we would soon see a pattern
emerging—the interference pattern predicted by the wave theory; see Fig. 28–4.
Thus, although we could not predict where a given electron would strike the
screen, we could predict probabilities. (The same can be said for photons.) The
probability, as we saw, is proportional to Where is zero, we would get a
minimum in the interference pattern. And where is a maximum, we would get
a peak in the interference pattern.

The interference pattern would thus occur even when electrons (or photons)
passed through the slits one at a time. So the interference pattern could not arise
from the interaction of one electron with another. It is as if an electron passed
through both slits at the same time, interfering with itself. This is possible because
an electron is not precisely a particle. It is as much a wave as it is a particle, and 
a wave could travel through both slits at once. But what would happen if we 
covered one of the slits so we knew that the electron passed through the other slit,
and a little later we covered the second slit so the electron had to have passed
through the first slit? The result would be that no interference pattern would be
seen. We would see, instead, two bright areas (or diffraction patterns) on the
screen behind the slits.

If both slits are open, the screen shows an interference pattern as if each
electron passed through both slits, like a wave. Yet each electron would make a
tiny spot on the screen as if it were a particle.

The main point of this discussion is this: if we treat electrons (and other
particles) as if they were waves, then represents the wave amplitude. If we
treat them as particles, then we must treat them on a probabilistic basis. The
square of the wave function, gives the probability of finding a given electron
at a given point. We cannot predict—or even follow—the path of a single 
electron precisely through space and time.

28–3 The Heisenberg Uncertainty Principle
Whenever a measurement is made, some uncertainty is always involved. For
example, you cannot make an absolutely exact measurement of the length of a
table. Even with a measuring stick that has markings 1 mm apart, there will be an
inaccuracy of perhaps or so. More precise instruments will produce more
precise measurements. But there is always some uncertainty involved in a
measurement, no matter how good the measuring device. We expect that by
using more precise instruments, the uncertainty in a measurement can be made
indefinitely small.

But according to quantum mechanics, there is actually a limit to the precision
of certain measurements. This limit is not a restriction on how well instruments
can be made; rather, it is inherent in nature. It is the result of two factors: the
wave–particle duality, and the unavoidable interaction between the thing observed
and the observing instrument. Let us look at this in more detail.

To make a measurement on an object without disturbing it, at least a little, is
not possible. Consider trying to locate a lost Ping-pong ball in a dark room: you
could probe about with your hand or a stick, or you could shine a light and detect
the photons reflecting off the ball. When you search with your hand or a stick,
you find the ball’s position when you touch it, but at the same time you unavoid-
ably bump it, and give it some momentum. Thus you won’t know its future
position. If you search for the Ping-pong ball using light, in order to “see” the ball
at least one photon (really, quite a few) must scatter from it, and the reflected
photon must enter your eye or some other detector. When a photon strikes an
ordinary-sized object, it only slightly alters the motion or position of the object.
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FIGURE 28–4 Young’s double-slit
experiment done with electrons—
note that the pattern is not evident
with only a few electrons (top
photo), but with more and more
electrons (second and third photos),
the familiar double-slit interference
pattern (Chapter 24) is seen.



But a photon striking a tiny object like an electron transfers enough momentum
to greatly change the electron’s motion and position in an unpredictable way. The
mere act of measuring the position of an object at one time makes our knowledge
of its future position imprecise.

Now let us see where the wave–particle duality comes in. Imagine a thought
experiment in which we are trying to measure the position of an object, say an
electron, with photons, Fig. 28–5. (The arguments would be similar if we were
using, instead, an electron microscope.) As we saw in Chapter 25, objects can be
seen to a precision at best of about the wavelength of the radiation used due to
diffraction. If we want a precise position measurement, we must use a short
wavelength. But a short wavelength corresponds to high frequency and large
momentum and the more momentum the photons have, the more
momentum they can give the object when they strike it. If we use photons of
longer wavelength, and correspondingly smaller momentum, the object’s motion
when struck by the photons will not be affected as much. But the longer wave-
length means lower resolution, so the object’s position will be less accurately
known. Thus the act of observing produces an uncertainty in both the position
and the momentum of the electron. This is the essence of the uncertainty principle
first enunciated by Heisenberg in 1927.

Quantitatively, we can make an approximate calculation of the magnitude of
the uncertainties. If we use light of wavelength the position can be measured at
best to a precision of about That is, the uncertainty in the position measurement,

is approximately

Suppose that the object can be detected by a single photon. The photon has a
momentum (Eq. 27–6). When the photon strikes our object, it will
give some or all of this momentum to the object, Fig. 28–5. Therefore, the final
x momentum of our object will be uncertain in the amount

since we can’t tell how much momentum will be transferred. The product of
these uncertainties is

The uncertainties could be larger than this, depending on the apparatus and the
number of photons needed for detection. A more careful mathematical calcula-
tion shows the product of the uncertainties as, at best, about

(28;1)

This is a mathematical statement of the Heisenberg uncertainty principle, or, as it
is sometimes called, the indeterminancy principle. It tells us that we cannot measure
both the position and momentum of an object precisely at the same time. The
more accurately we try to measure the position, so that is small, the greater
will be the uncertainty in momentum, If we try to measure the momentum
very accurately, then the uncertainty in the position becomes large. The uncertainty
principle does not forbid individual precise measurements, however. For example,
in principle we could measure the position of an object exactly. But then its
momentum would be completely unknown. Thus, although we might know the
position of the object exactly at one instant, we could have no idea at all where it
would be a moment later. The uncertainties expressed here are inherent in nature,
and reflect the best precision theoretically attainable even with the best instruments.
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UNCERTAINTY PRINCIPLE 
(position and momentum)

C A U T I O N

Uncertainties not due 
to instrument deficiency,
but inherent in nature (wave–particle)

FIGURE 28–5 Thought experiment
for observing an electron with a
powerful light microscope. At least
one photon must scatter from the
electron (transferring some
momentum to it) and enter the
microscope.

Electron

Light
source

Light
source

(a) (b)



EXERCISE A Return to the Chapter-Opening Question, page 803, and answer it again
now. Try to explain why you may have answered differently the first time.

Another useful form of the uncertainty principle relates energy and time,
and we examine this as follows. The object to be detected has an uncertainty in
position The photon that detects it travels with speed c, and it takes a
time to pass through the distance of uncertainty. Hence, the
measured time when our object is at a given position is uncertain by about

Since the photon can transfer some or all of its energy to our
object, the uncertainty in energy of our object as a result is

The product of these two uncertainties is

A more careful calculation gives

(28;2)

This form of the uncertainty principle tells us that the energy of an object can be
uncertain (or can be interpreted as briefly nonconserved) by an amount for a
time

The quantity appears so often in quantum mechanics that for conven-
ience it is given the symbol (“h-bar”). That is,

By using this notation, Eqs. 28–1 and 28–2 for the uncertainty principle can be
written

and

We have been discussing the position and velocity of an electron as if it were
a particle. But it isn’t simply a particle. Indeed, we have the uncertainty principle
because an electron—and matter in general—has wave as well as particle prop-
erties. What the uncertainty principle really tells us is that if we insist on thinking
of the electron as a particle, then there are certain limitations on this simplified
view—namely, that the position and velocity cannot both be known precisely at
the same time; and even that the electron does not have a precise position and
momentum at the same time (because it is not simply a particle). Similarly, the
energy can be uncertain (or nonconserved) by an amount for a time

Because Planck’s constant, h, is so small, the uncertainties expressed in the
uncertainty principle are usually negligible on the macroscopic level. But at the
level of atomic sizes, the uncertainties are significant. Because we consider
ordinary objects to be made up of atoms containing nuclei and electrons, the
uncertainty principle is relevant to our understanding of all of nature. The
uncertainty principle expresses, perhaps most clearly, the probabilistic nature of
quantum mechanics. It thus is often used as a basis for philosophic discussion.

¢t L U�¢E.¢E

(¢E)(¢t) g U .

(¢x)A¢pxB g U

= 1.055 * 10–34 J�s.U =
h

2p
=

6.626 * 10–34 J�s
2p

U
(h�2p)

¢t L h�(2p ¢E).
¢E

(¢E)(¢t) g
h

2p
.

(¢E)(¢t) L a hc
l
b a lc b L h.

¢E L
hc
l

.

(= hf = hc�l)

¢t L
l

c
.

¢t L ¢x�c L l�c
¢x L l.

808 CHAPTER 28 Quantum Mechanics of Atoms

UNCERTAINTY PRINCIPLE 
(energy and time)



Position uncertainty of electron. An electron moves in a
straight line with a constant speed which has been measured
to a precision of 0.10%. What is the maximum precision with which its position
could be simultaneously measured?

APPROACH The momentum is and the uncertainty in p is
The uncertainty principle (Eq. 28–1) gives us the smallest uncer-

tainty in position using the equals sign.

SOLUTION The momentum of the electron is

The uncertainty in the momentum is 0.10% of this, or
From the uncertainty principle, the best simultaneous position measurement will
have an uncertainty of

or 110 nm.

NOTE This is about 1000 times the diameter of an atom.

EXERCISE B An electron’s position is measured with a precision of 
Find the minimum uncertainty in its momentum and velocity.

Position uncertainty of a baseball. What is the uncertainty
in position, imposed by the uncertainty principle, on a 150-g baseball thrown at

APPROACH The uncertainty in the speed is We multiply by m
to get and then use the uncertainty principle, solving for 

SOLUTION The uncertainty in the momentum is

Hence the uncertainty in a position measurement could be as small as

NOTE This distance is far smaller than any we could imagine observing or
measuring. It is trillions of trillions of times smaller than an atom. Indeed, the
uncertainty principle sets no relevant limit on measurement for macroscopic objects.

lifetime calculated. The meson,
discovered in 1974, was measured to have an average mass of (note
the use of energy units since ) and a mass “width” of By 
this we mean that the masses of different mesons were actually measured to
be slightly different from one another. This mass “width” is related to the very
short lifetime of the before it decays into other particles. From the uncertainty
principle, if the particle exists for only a time its mass (or rest energy) will
be uncertain by Estimate the lifetime.

APPROACH We use the energy–time version of the uncertainty principle,
Eq. 28–2.

SOLUTION The uncertainty of in the ’s mass is an uncertainty in
its rest energy, which in joules is

Then we expect its lifetime to be

Lifetimes this short are difficult to measure directly, and the assignment of very
short lifetimes depends on this use of the uncertainty principle.

t L
U
¢E

=
1.055 * 10–34 J�s

1.01 * 10–14 J
L 1 * 10–20 s.

t (= ¢t using Eq. 28–2)

¢E = A63 * 103 eVB  A1.60 * 10–19 J�eVB = 1.01 * 10–14 J.
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J�c
63 keV�c2.E = mc2

3100 MeV�c2
J�cJ�CEXAMPLE 28;3 ESTIMATE

¢x =
U
¢p

=
1.055 * 10–34 J�s

0.15 kg �m�s
= 7 * 10–34 m.

¢p = m ¢v = (0.150 kg)(1 m�s) = 0.15 kg �m�s.
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¢v¢v = 1 m�s.

(9362) mi�h = (4261) m�s?

EXAMPLE 28;2

0.50 * 10–10 m.

¢x L
U
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=
1.055 * 10–34 J�s

1.0 * 10–27 kg �m�s
= 1.1 * 10–7 m,

¢p = 1.0 * 10–27 kg �m�s.

p = mv = A9.11 * 10–31 kgB A1.10 * 106 m�sB = 1.00 * 10–24 kg �m�s.

¢x
¢p = 0.0010p.

p = mv,

v = 1.10 * 106 m�s
EXAMPLE 28;1
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28–4 Philosophic Implications;
Probability versus Determinism

The classical Newtonian view of the world is a deterministic one (see Section 5–8).
One of its basic ideas is that once the position and velocity of an object are
known at a particular time, its future position can be predicted if the forces on it
are known. For example, if a stone is thrown a number of times with the same
initial velocity and angle, and the forces on it remain the same, the path of the
projectile will always be the same. If the forces are known (gravity and air resis-
tance, if any), the stone’s path can be precisely predicted. This mechanistic view
implies that the future unfolding of the universe, assumed to be made up of
particulate objects, is completely determined.

This classical deterministic view of the physical world has been radically altered
by quantum mechanics. As we saw in the analysis of the double-slit experiment
(Section 28–2), electrons all treated in the same way will not all end up in the same
place. According to quantum mechanics, certain probabilities exist that an elec-
tron will arrive at different points. This is very different from the classical view, in
which the path of a particle is precisely predictable from the initial position and
velocity and the forces exerted on it. According to quantum mechanics, the position
and velocity of an object cannot even be known accurately at the same time.
This is expressed in the uncertainty principle, and arises because basic entities,
such as electrons, are not considered simply as particles: they have wave properties
as well. Quantum mechanics allows us to calculate only the probability† that, say,
an electron (when thought of as a particle) will be observed at various places.
Quantum mechanics says there is some inherent unpredictability in nature. This
is very different from the deterministic view of classical mechanics.

Because matter is considered to be made up of atoms, even ordinary-sized
objects are expected to be governed by probability, rather than by strict deter-
minism. For example, quantum mechanics predicts a finite (but negligibly small)
probability that when you throw a stone, its path might suddenly curve upward
instead of following the downward-curved parabola of normal projectile motion.
Quantum mechanics predicts with extremely high probability that ordinary objects
will behave just as the classical laws of physics predict. But these predictions are
considered probabilities, not absolute certainties. The reason that macroscopic
objects behave in accordance with classical laws with such high probability is due
to the large number of molecules involved: when large numbers of objects are
present in a statistical situation, deviations from the average (or most probable)
approach zero. It is the average configuration of vast numbers of molecules that
follows the so-called fixed laws of classical physics with such high probability,
and gives rise to an apparent “determinism.” Deviations from classical laws are
observed when small numbers of molecules are dealt with. We can say, then, that
although there are no precise deterministic laws in quantum mechanics, there are
statistical laws based on probability.

It is important to note that there is a difference between the probability
imposed by quantum mechanics and that used in the nineteenth century to
understand thermodynamics and the behavior of gases in terms of molecules
(Chapters 13 and 15). In thermodynamics, probability is used because there are
far too many particles to keep track of. But the molecules are still assumed to
move and interact in a deterministic way following Newton’s laws. Probability in
quantum mechanics is quite different; it is seen as inherent in nature, and not as a
limitation on our abilities to calculate or to measure.

810 CHAPTER 28 Quantum Mechanics of Atoms

†Note that these probabilities can be calculated precisely, just like predictions of probabilities at
rolling dice or dealing cards; but they are unlike predictions of probabilities at sporting events, which
are only estimates.
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FIGURE 28–6 Electron cloud or
“probability distribution” for the
ground state of the hydrogen atom,
as seen from afar. The dots represent
a hypothetical detection of an
electron at each point: dots closer
together represent more probable
presence of an electron (denser
cloud). The dashed circle represents
the Bohr radius r0 .

The view presented here is the generally accepted one and is called the
Copenhagen interpretation of quantum mechanics in honor of Niels Bohr’s home,
since it was largely developed there through discussions between Bohr and other
prominent physicists.

Because electrons are not simply particles, they cannot be thought of as
following particular paths in space and time. This suggests that a description of
matter in space and time may not be completely correct. This deep and far-reaching
conclusion has been a lively topic of discussion among philosophers. Perhaps the
most important and influential philosopher of quantum mechanics was Bohr. He
argued that a space–time description of actual atoms and electrons is not possible.
Yet a description of experiments on atoms or electrons must be given in terms of
space and time and other concepts familiar to ordinary experience, such as waves
and particles. We must not let our descriptions of experiments lead us into believ-
ing that atoms or electrons themselves actually move in space and time as classical
particles.

28–5 Quantum-Mechanical View 
of Atoms

At the beginning of this Chapter, we discussed the limitations of the Bohr model
of atomic structure. Now we examine the quantum-mechanical theory of atoms,
which is a far more complete theory than the old Bohr model. Although the Bohr
model has been discarded as an accurate description of nature, nonetheless, quan-
tum mechanics reaffirms certain aspects of the older theory, such as that electrons
in an atom exist only in discrete states of definite energy, and that a photon of
light is emitted (or absorbed) when an electron makes a transition from one state to
another. But quantum mechanics is a much deeper theory, and has provided us
with a very different view of the atom. According to quantum mechanics, electrons
do not exist in well-defined circular orbits as in the Bohr model. Rather, the 
electron (because of its wave nature) can be thought of as spread out in space as
a “cloud.” The size and shape of the electron cloud can be calculated for a given
state of an atom. For the ground state in the hydrogen atom, the electron cloud 
is spherically symmetric, as shown in Fig. 28–6. The electron cloud at its higher
densities roughly indicates the “size” of an atom. But just as a cloud may not 
have a distinct border, atoms do not have a precise boundary or a well-defined
size. Not all electron clouds have a spherical shape, as we shall see later in this
Chapter.

The electron cloud can be interpreted from either the particle or the wave
viewpoint. Remember that by a particle we mean something that is localized in
space—it has a definite position at any given instant. By contrast, a wave is
spread out in space. The electron cloud, spread out in space as in Fig. 28–6, is a
result of the wave nature of electrons. Electron clouds can also be interpreted as
probability distributions (or probability density) for a particle. As we saw in
Section 28–3, we cannot predict the path an electron will follow (thinking of it as
a particle). After one measurement of its position we cannot predict exactly where
it will be at a later time. We can only calculate the probability that it will be found
at different points. If you were to make 500 different measurements of the position
of an electron in a hydrogen atom, the majority of the results would show the
electron at points where the probability is high (dark area in Fig. 28–6). Only 
occasionally would the electron be found where the probability is low. The
electron cloud or probability distribution becomes small (or thin) at places,
especially far away, but never becomes zero. So quantum mechanics suggests
that an atom is not mostly empty space, and that there is no truly empty space in
the universe.

SECTION 28–5 Quantum-Mechanical View of Atoms 811



28–6 Quantum Mechanics of the 
Hydrogen Atom; Quantum Numbers
We now look more closely at what quantum mechanics tells us about the
hydrogen atom. Much of what we say here also applies to more complex atoms,
which are discussed in the next Section.

Quantum mechanics is a much more sophisticated and successful theory than
Bohr’s. Yet in a few details they agree. Quantum mechanics predicts the same
basic energy levels (Fig. 27–29) for the hydrogen atom as does the Bohr model.
That is,

where n is an integer. In the simple Bohr model, there was only one quantum
number, n. In quantum mechanics, four different quantum numbers are needed
to specify each state in the atom:

(1) The quantum number, n, from the Bohr model is found also in quantum
mechanics and is called the principal quantum number. It can have any
integer value from 1 to The total energy of a state in the hydrogen atom
depends on n, as we saw above.

(2) The orbital quantum number, is related to the magnitude of the angular
momentum of the electron; can take on integer values from 0 to 
For the ground state, can only be zero.† For can be 0, 1, or 2.
The actual magnitude of the angular momentum L is related to the quantum
number by

(28;3)

(where again ). The value of has almost no effect on the total energy
in the hydrogen atom; only n does to any appreciable extent (but see fine
structure below). In atoms with two or more electrons, the energy does depend
on as well as n, as we shall see.

(3) The magnetic quantum number, is related to the direction of the electron’s
angular momentum, and it can take on integer values ranging from to 
For example, if then can be or Since angular
momentum is a vector, it is not surprising that both its magnitude and its direc-
tion would be quantized. For the five different directions allowed can
be represented by the diagram of Fig. 28–7. This limitation on the direction
of is often called space quantization. In quantum mechanics, the direction
of the angular momentum is usually specified by giving its component 
along the z axis (this choice is arbitrary). Then is related to by the
equation

The values of and are not definite, however. The name for derives not
from theory (which relates it to ), but from experiment. It was found that
when a gas-discharge tube was placed in a magnetic field, the spectral lines
were split into several very closely spaced lines. This splitting, known as the
Zeeman effect, implies that the energy levels must be split (Fig. 28–8), and thus
that the energy of a state depends not only on n but also on when a mag-
netic field is applied—hence the name “magnetic quantum number.”

ml

Lz

mlLyLx

Lz = ml U .

mlLz

L
B

l = 2,

±2.–2, –1, 0, ±1,mll = 2,
±l.–l

ml ,

l

lU = h�2p

L = 2l(l + 1) U

l

n = 3, ln = 1, l
(n - 1).l

l,

q.

En = –
13.6 eV

n2
,  n = 1, 2, 3, p ,
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†This replaces Bohr theory, which assigned to the ground state (Eq. 27–11).l = 1

FIGURE 28–7 Quantization of
angular momentum direction for

(Magnitude of is
)L = 16 U .

L
B

l = 2.

FIGURE 28–8 Energy levels (not 
to scale). When a magnetic field is
applied, the energy
level is split into five separate levels,
corresponding to the five values of

An
level is split into three levels

Transitions can occur
between levels (not all transitions are
shown), with photons of several
slightly different frequencies being
given off (the Zeeman effect).

Aml = 1, 0, –1B.
l = 1

n = 2,ml (2, 1, 0, –1, –2).
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ml = 2
1
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−2
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(4) Finally, there is the spin quantum number, which for an electron can have
only two values, and The existence of this quantum
number did not come out of Schrödinger’s original wave theory, as did n,
and Instead, a subsequent modification by P. A. M. Dirac (1902–1984)
explained its presence as a relativistic effect. The first hint that was needed,
however, came from experiment. A careful study of the spectral lines of hydrogen
showed that each actually consisted of two (or more) very closely spaced lines
even in the absence of an external magnetic field. It was at first hypothesized
that this tiny splitting of energy levels, called fine structure, was due to angular
momentum associated with a spinning of the electron. That is, the electron might
spin on its axis as well as orbit the nucleus, just as the Earth spins on its axis
as it orbits the Sun. The interaction between the tiny current of the spinning
electron could then interact with the magnetic field due to the orbiting charge
and cause the small observed splitting of energy levels. (The energy thus depends
slightly on and )† Today we consider the picture of a spinning electron as
not legitimate. We cannot even view an electron as a localized object, much less
a spinning one. What is important is that the electron can have two different
states due to some intrinsic property that behaves like an angular momentum, and
we still call this property “spin.” The two possible values of ( and )
are often said to be “spin up” and “spin down,” referring to the two possible
directions of the spin angular momentum.

The possible values of the four quantum numbers for an electron in the
hydrogen atom are summarized in Table 28–1.

– 1
2± 1

2ms

ms .ml

ms

ml .
l,

ms = – 1
2 .ms = ± 1

2

ms ,

SECTION 28–6 813†Fine structure is said to be due to a spin–orbit interaction.

Possible states for How many dif-
ferent states are possible for an electron with principal quantum number

RESPONSE For can have the values For can
be which is five different possibilities. For each of these, can
be either up or down ( or ); so for there are states. For

can be and since can be or for each of these, we
have 6 more possible states. Finally, for can only be 0, and there are
only 2 states corresponding to and The total number of states is

as detailed in the following Table:10 + 6 + 2 = 18,
– 1

2 .ms = ± 1
2

l = 0,  ml
– 1

2± 1
2ms1, 0, –1,l = 1,  ml

2 * 5 = 10l = 2,– 1
2± 1

2

ms2, 1, 0, –1, –2,
l = 2,  mll = 2, 1, 0.n = 3, l

n = 3?
n � 3.CONCEPTUAL EXAMPLE 28;4

TABLE 28–1 Quantum Numbers for an Electron

Name Symbol Possible Values

Principal n

Orbital For a given n: can be 
Magnetic For given n and can be 
Spin For each set of n, and can be or – 1

2 .± 1
2ml : msl,ms

l, l - 1, p , 0, p , –l.l: mlml

0, 1, 2, p , n - 1.ll

1, 2, 3, p , q.

n

3 2 2
3 2 2

3 2 1
3 2 1

3 2 0
3 2 0

3 2
3 2

3 2
3 2 – 1

2–2

1
2–2

– 1
2–1

1
2–1

– 1
2

1
2

– 1
2

1
2

– 1
2

1
2

msmLL n

3 1 1
3 1 1

3 1 0
3 1 0

3 1
3 1

3 0 0
3 0 0 – 1

2

1
2

– 1
2–1

1
2–1

– 1
2

1
2

– 1
2

1
2

msmLL

EXERCISE C An electron has Which of the following values of are
possible: 4, 3, 2, 1, 0, –1, –2, –3, –4?

mln = 4, l = 2.



E and L for Determine (a) the energy and (b) the
orbital angular momentum for an electron in each of the hydrogen atom states
with , as in Example 28–4.

APPROACH The energy of a state depends only on n, except for the very small
corrections mentioned above, which we will ignore. Energy is calculated as in the
Bohr model, For angular momentum we use Eq. 28–3.

SOLUTION (a) Since for all these states, they all have the same energy,

(b) For Eq. 28–3 gives

For

For

NOTE Atomic angular momenta are generally given as a multiple of ( or
in this case), rather than in SI units.

EXERCISE D What are the energy and angular momentum of the electron in a hydrogen
atom with

Although and do not significantly affect the energy levels in hydrogen,
they do affect the electron probability distribution in space. For and 
can only be zero and the electron distribution is as shown in Fig. 28–6. For

can be 0 or 1. The distribution for is shown in Fig. 28–9a,
and it is seen to differ from that for the ground state (Fig. 28–6), although it is still
spherically symmetric. For the distributions are not spherically
symmetric as shown in Figs. 28–9b (for ) and 28–9c (for or ).

Although the spatial distributions of the electron can be calculated for the
various states, it is difficult to measure them experimentally. Most of the experi-
mental information about atoms has come from a careful examination of the
emission spectra under various conditions as in Figs. 27–23 and 24–28.

[Chemists refer to atomic states, and especially the shape in space of their
probability distributions, as orbitals. Each atomic orbital is characterized by its
quantum numbers n, and and can hold one or two electrons ( or

); s-orbitals are spherically symmetric, Figs. 28–6 and 28–9a;
p-orbitals can be dumbbell shaped with lobes, Fig. 28–9b, or donut shaped
if combining and Fig. 28–9c.]

Selection Rules: Allowed and Forbidden Transitions
Another prediction of quantum mechanics is that when a photon is emitted or
absorbed, transitions can occur only between states with values of that differ by
exactly one unit:

According to this selection rule, an electron in an state can jump only to a
state with or It cannot jump to a state with or A tran-
sition such as to is called a forbidden transition. Actually, such a
transition is not absolutely forbidden and can occur, but only with very low
probability compared to allowed transitions—those that satisfy the selection rule

Since the orbital angular momentum of an H atom must change by
one unit when it emits a photon, conservation of angular momentum tells us that
the photon must carry off angular momentum. Indeed, experimental evidence of
many sorts shows that the photon can be assigned a spin angular momentum of 1U .

¢l = &1.

l = 0l = 2
l = 0.l = 2l = 3.l = 1

l = 2

¢l = &1.

l

ml = –1,ml = ±1
(l = 1)

(l = 0)ms = – 1
2

ms = ± 1
2ml ,l,

–1ml = ±1ml = 0
n = 2,  l = 1,

n = 2,  l = 0n = 2,  l

mln = 1,  l
mll

n = 6, l = 4?

16 U
12 UU

l = 2,  L = 22(2 + 1) U = 26 U .

L = 21(1 + 1) U = 22 U = 1.49 * 10–34 J�s.

l = 1,

L = 2l(l + 1) U = 0.

l = 0,

E3 = –
13.6 eV

(3)2
= –1.51 eV.

n = 3

En = –13.6 eV�n2.

n = 3

n � 3.EXAMPLE 28;5
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FIGURE 28–9 Electron cloud, or
probability distribution, for 
states in hydrogen. [The donut-
shaped orbit in (c) is the sum of two
dumbbell-shaped orbits, as in (b),
along the x and y axes added
together.]
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28–7 Multielectron Atoms;
the Exclusion Principle

We have discussed the hydrogen atom in detail because it is the simplest to deal
with. Now we briefly discuss more complex atoms, those that contain more than
one electron. Their energy levels can be determined experimentally from an analysis
of their emission spectra. The energy levels are not the same as in the H atom,
because the electrons interact with each other as well as with the nucleus. Each
electron in a complex atom still occupies a particular state characterized by the
quantum numbers n, and For atoms with more than one electron,
the energy levels depend on both n and

The number of electrons in a neutral atom is called its atomic number, Z;
Z is also the number of positive charges (protons) in the nucleus, and determines
what kind of atom it is. That is, Z determines the fundamental properties that dis-
tinguish one type of atom from another.

To understand the possible arrangements of electrons in an atom, a new 
principle was needed. It was introduced by Wolfgang Pauli (1900–1958; Fig. 28–2)
and is called the Pauli exclusion principle. It states:

No two electrons in an atom can occupy the same quantum state.

Thus, no two electrons in an atom can have exactly the same set of the quantum
numbers n, and The Pauli exclusion principle forms the basis not only
for understanding atoms, but also for understanding molecules and bonding, and
other phenomena as well. (See also note at end of this Section.)

Let us now look at the structure of some of the simpler atoms when they are
in the ground state. After hydrogen, the next simplest atom is helium with two
electrons. Both electrons can have because one can have spin up 
and the other spin down thus satisfying the exclusion principle.
Since then and must be zero (Table 28–1, page 813). Thus the two
electrons have the quantum numbers indicated at the top of Table 28–2.

Lithium has three electrons, two of which can have But the third
cannot have without violating the exclusion principle. Hence the third
electron must have It happens that the level has a lower
energy than So the electrons in the ground state have the quantum
numbers indicated in Table 28–2. The quantum numbers of the third electron
could also be, say, But the atom in this case would
be in an excited state, because it would have greater energy. It would not be long
before it jumped to the ground state with the emission of a photon. At room
temperature, unless extra energy is supplied (as in a discharge tube), the vast
majority of atoms are in the ground state.

We can continue in this way to describe the quantum numbers of each elec-
tron in the ground state of larger and larger atoms. The quantum numbers for
sodium, with its eleven electrons, are shown in Table 28–2.

EXERCISE E Construct a Table of the ground-state quantum numbers for beryllium,
(like those in Table 28–2).

Figure 28–10 shows a simple energy level diagram where occupied states are
shown as up or down arrows and possible empty states are
shown as a small circle.

Ams = ± 1
2  or  – 1

2B,
Z = 4

An, l, ml , msB = A3, 1, –1, 1
2B.

n = 2,  l = 1.
n = 2,  l = 0n = 2.

n = 1
n = 1.

mlln = 1,
Ams = – 1

2B,
Ams = ± 1

2Bn = 1,

ms .l, ml ,

l.
ms .l, ml ,
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TABLE 28–2 Ground-State
Quantum Numbers

Helium,

n

1 0 0

1 0 0

Lithium,

n

1 0 0

1 0 0

2 0 0

Sodium,

n

1 0 0

1 0 0

2 0 0

2 0 0

2 1 1

2 1 1

2 1 0

2 1 0

2 1

2 1

3 0 0 1
2

– 1
2–1

1
2–1

– 1
2

1
2

– 1
2

1
2

– 1
2

1
2

– 1
2

1
2
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1
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– 1
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1
2

msmLL
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FIGURE 28–10 Energy level
diagrams (not to scale) showing
occupied states (arrows) and
unoccupied states ( ) for the ground
states of He, Li, and Na. Note that
we have shown the 
level of Li even though it is empty.
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The ground-state configuration for all atoms is given in the Periodic Table, which
is displayed inside the back cover of this book, and discussed in the next Section.

[The exclusion principle applies to identical particles whose spin quantum num-
ber is a half-integer ( and so on), including electrons, protons, and neutrons;
such particles are called fermions, after Enrico Fermi who derived a statistical
theory describing them. A basic assumption is that all electrons are identical, indis-
tinguishable one from another. Similarly, all protons are identical, all neutrons are
identical, and so on. The exclusion principle does not apply to particles with integer
spin (0, 1, 2, and so on), such as the photon and meson, all of which are referred
to as bosons (after Satyendranath Bose, who derived a statistical theory for them).]

28–8 The Periodic Table of Elements
More than a century ago, Dmitri Mendeleev (1834–1907) arranged the (then)
known elements into what we now call the Periodic Table of the elements. The
atoms were arranged according to increasing mass, but also so that elements with
similar chemical properties would fall in the same column. Today’s version is shown
inside the back cover of this book. Each square contains the atomic number Z,
the symbol for the element, and the atomic mass (in atomic mass units). Finally,
the lower left corner shows the configuration of the ground state of the atom. This
requires some explanation. Electrons with the same value of n are referred to as
being in the same shell. Electrons with are in one shell (the K shell), those
with are in a second shell (the L shell), those with are in the 
third (M) shell, and so on. Electrons with the same values of n and are referred
to as being in the same subshell. Letters are often used to specify the value of 
as shown in Table 28–3. That is, is the s subshell; is the p subshell;

is the d subshell; beginning with the letters follow the alphabet,
f, g, h, i, and so on. (The first letters s, p, d, and f were originally abbreviations 
of “sharp,” “principal,” “diffuse,” and “fundamental,” terms referring to the experi-
mental spectra.)

The Pauli exclusion principle limits the number of electrons possible in each
shell and subshell. For any value of there are possible values ( can
be any integer from 1 to from to or zero), and two possible values.
There can be, therefore, at most electrons in any subshell. For 
example, for five values are possible and for each 
of these, can be or for a total of states. Table 28–3 lists the
maximum number of electrons that can occupy each subshell.

Because the energy levels depend almost entirely on the values of n and it
is customary to specify the electron configuration simply by giving the n value and
the appropriate letter for with the number of electrons in each subshell given as 
a superscript. The ground-state configuration of sodium, for example, is written as

This is simplified in the Periodic Table by specifying the configuration
only of the outermost electrons and any other nonfilled subshells (see Table 28–4
here, and the Periodic Table inside the back cover).

Electron configurations. Which of the
following electron configurations are possible, and which are not: (a)
(b) (c)

RESPONSE (a) This is not allowed, because too many electrons (three) are
shown in the s subshell of the M shell. The s subshell has with
two slots only, for “spin up” and “spin down” electrons.
(b) This is allowed, but it is an excited state. One of the electrons from the 
3p subshell has jumped up to the 4s subshell. Since there are 19 electrons, the
element is potassium.
(c) This is not allowed, because there is no d subshell in the shell
(Table 28–1). The outermost electron will have to be (at least) in the 
shell.

n = 3
n = 2(l = 2)

ml = 0,(n = 3)

1s22s22p62d1?1s22s22p63s23p54s2;
1s22s22p63s3;

CONCEPTUAL EXAMPLE 28;6

1s22s22p63s1.
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TABLE 28–3 Value of 

Maximum
Number of

Value Letter Electrons in 
of Symbol Subshell

0 s 2
1 p 6
2 d 10
3 f 14
4 g 18
5 h 22

ooo

L

L

TABLE 28–4

Electron Configuration 
of Some Elements

Ground
State

Z Configuration
(Number of (outer 
Electrons) Element† electrons)

1 H
2 He
3 Li
4 Be
5 B
6 C
7 N
8 O
9 F

10 Ne
11 Na
12 Mg
13 Al
14 Si
15 P
16 S
17 Cl
18 Ar
19 K
20 Ca
21 Sc
22 Ti
23 V
24 Cr
25 Mn
26 Fe

†Names of elements can be found in
Appendix B.

3d64s2

3d54s2

3d54s1

3d34s2

3d24s2

3d14s2

4s23d0

4s13d0

3s23p6

3s23p5

3s23p4

3s23p3

3s23p2

3s23p1

3s2

3s1

2s22p6

2s22p5

2s22p4

2s22p3

2s22p2

2s22p1

2s2

2s1

1s2

1s1



EXERCISE F Write the complete ground-state configuration for gallium, with its 31
electrons.

The grouping of atoms in the Periodic Table is according to increasing atomic
number, Z. It was designed to also show regularity according to chemical prop-
erties. Although this is treated in chemistry textbooks, we discuss it here briefly
because it is a result of quantum mechanics. See the Periodic Table inside the
back cover.

All the noble gases (in column VIII of the Periodic Table) have completely
filled shells or subshells. That is, their outermost subshell is completely full, and
the electron distribution is spherically symmetric. With such full spherical sym-
metry, other electrons are not attracted nor are electrons readily lost (ionization
energy is high). This is why the noble gases are chemically inert (more on this
when we discuss molecules and bonding in Chapter 29). Column VII contains the
halogens, which lack one electron from a filled shell. Because of the shapes of
the orbits (see Section 29–1), an additional electron can be accepted from
another atom, and hence these elements are quite reactive. They have a valence
of meaning that when an extra electron is acquired, the resulting ion has a
net charge of Column I of the Periodic Table contains the alkali metals, all
of which have a single outer s electron. This electron spends most of its time
outside the inner closed shells and subshells which shield it from most of the
nuclear charge. Indeed, it is relatively far from the nucleus and is attracted to it
by a net charge of only about because of the shielding effect of the other
electrons. Hence this outer electron is easily removed and can spend much of its
time around another atom, forming a molecule. This is why the alkali metals are
very chemically reactive and have a valence of The other columns of the
Periodic Table can be treated similarly.

The presence of the transition elements in the center of the Periodic Table, as
well as the lanthanides (rare earths) and actinides below, is a result of incomplete
inner shells. For the lowest Z elements, the subshells are filled in a simple order:
first 1s, then 2s, followed by 2p, 3s, and 3p. You might expect that 3d
would be filled next, but it isn’t. Instead, the 4s level actually has a slightly lower
energy than the 3d (due to electrons interacting with each other), so it fills first
(K and Ca). Only then does the 3d shell start to fill up, beginning with Sc, as can
be seen in Table 28–4. (The 4s and 3d levels are close, so some elements have
only one 4s electron, such as Cr.) Most of the chemical properties of these transi-
tion elements are governed by the relatively loosely held 4s electrons, and hence
they usually have valences of or A similar effect is responsible for the
lanthanides and actinides, which are shown at the bottom of the Periodic Table
for convenience. All have very similar chemical properties, which are determined
by their two outer 6s or 7s electrons, whereas the different numbers of electrons
in the unfilled inner shells have little effect.

28–9 X-Ray Spectra and 
Atomic Number

The line spectra of atoms in the visible, UV, and IR regions of the EM spectrum
are mainly due to transitions between states of the outer electrons. Much of the
positive charge of the nucleus is shielded from these electrons by the negative
charge on the inner electrons. But the innermost electrons in the shell “see”
the full charge of the nucleus. Since the energy of a level is proportional to 
(see Eq. 27–15), for an atom with we would expect wavelengths about

times shorter than those found in the Lyman series of hydrogen
(around 100 nm), or to Such short wavelengths
lie in the X-ray region of the spectrum.

10–1 nm.(100 nm)�(2500) L 10–2
502 = 2500

Z = 50,
Z2

n = 1

*

±2.±1

(n = 3, l = 2)

±1.

±1e,

–1e.
–1,
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X-rays are produced when electrons accelerated by a high voltage strike the
metal target inside an X-ray tube (Section 25–11). If we look at the spectrum of
wavelengths emitted by an X-ray tube, we see that the spectrum consists of two
parts: a continuous spectrum with a cutoff at some which depends only on the
voltage across the tube, and a series of peaks superimposed. A typical example is
shown in Fig. 28–11. The smooth curve and the cutoff wavelength move to the
left as the voltage across the tube increases. The sharp lines or peaks (labeled 
and in Fig. 28–11), however, remain at the same wavelength when the voltage
is changed, although they are located at different wavelengths when different tar-
get materials are used. This observation suggests that the peaks are characteristic of
the target material used. Indeed, we can explain the peaks by imagining that the
electrons accelerated by the high voltage of the tube can reach sufficient energies
that, when they collide with the atoms of the target, they can knock out one of 
the very tightly held inner electrons. Then we explain these characteristic X-rays
(the peaks in Fig. 28–11) as photons emitted when an electron in an upper state
drops down to fill the vacated lower state. The K lines result from transitions into
the K shell The line consists of photons emitted in a transition that
originates from the (L) shell and drops to the (K) shell. On the other
hand, the line reflects a transition from the (M) shell down to the K shell.
An L line is due to a transition into the L shell, and so on.

Measurement of the characteristic X-ray spectra has allowed a determina-
tion of the inner energy levels of atoms. It has also allowed the determination of
Z values for many atoms, because (as we have seen) the wavelength of the shortest
characteristic X-rays emitted will be inversely proportional to Actually,
for an electron jumping from, say, the to the level ( line), the
wavelength is inversely proportional to because the nucleus is shielded
by the one electron that still remains in the 1s level. In 1914, H. G. J. Moseley
(1887–1915) found that a plot of vs. Z produced a straight line, Fig. 28–12,
where is the wavelength of the line. The Z values of a number of elements
were determined by fitting them to such a Moseley plot. The work of Moseley put
the concept of atomic number on a firm experimental basis.
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FIGURE 28–11 Spectrum of X-rays
emitted from a molybdenum target
in an X-ray tube operated at 50 kV.
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FIGURE 28–12 Plot of vs. Z
for X-ray lines.Ka
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X-ray wavelength. Estimate the wavelength for an
to transition in molybdenum What is the energy of such a
photon?

APPROACH We use the Bohr formula, Eq. 27–16 for with replaced by

SOLUTION Equation 27–16 gives

where , , and . We substitute in values:

So

This is close to the measured value (Fig. 28–11) of 0.071 nm. Each of these
photons would have energy (in eV) of:

The denominator includes the conversion factor from joules to eV.

E = hf =
hc
l

=
A6.63 * 10–34 J�sB A3.00 * 108 m�sB
A7.2 * 10–11 mB A1.60 * 10–19 J�eVB = 17 keV.

l =
1

1.38 * 1010 m–1
= 0.072 nm.

1
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Determining atomic number. High-energy electrons are
used to bombard an unknown material. The strongest peak is found for X-rays
emitted with an energy of 66.3 keV. Guess what the material is.

APPROACH The highest intensity X-rays are generally for the line (see
Fig. 28–11) which occurs when high-energy electrons knock out K shell elec-
trons (the innermost orbit, ) and their place is taken by electrons from
the L shell We use the Bohr model, and assume the electrons of the
unknown atoms (Z) “see” a nuclear charge of (screened by one electron).

SOLUTION The hydrogen transition to would yield
(see Fig. 27–29 or Example 27–13). Energy

of our unknown is proportional to (Eq. 27–15), or rather 
because the nucleus is shielded by the one electron in a 1s state (see above), so
we can use ratios:

so and which makes it lead.

Now we briefly analyze the continuous part of an X-ray spectrum
(Fig. 28–11) based on the photon theory of light. When electrons strike the
target, they collide with atoms of the material and give up most of their energy as
heat (about 99%, so X-ray tubes must be cooled). Electrons can also give up
energy by emitting a photon of light: an electron decelerated by interaction with
atoms of the target (Fig. 28–13) emits radiation because of its deceleration
(Chapter 22), and in this case it is called bremsstrahlung (German for “braking
radiation”). Because energy is conserved, the energy of the emitted photon, hf,
equals the loss of kinetic energy of the electron, so

An electron may lose all or a part of its energy in such a collision. The continuous
X-ray spectrum (Fig. 28–11) is explained as being due to such bremsstrahlung
collisions in which varying amounts of energy are lost by the electrons. The
shortest-wavelength X-ray (the highest frequency) must be due to an electron
that gives up all its kinetic energy to produce one photon in a single collision.
Since the initial kinetic energy of an electron is equal to the energy given it by the
accelerating voltage, V, then In a single collision in which the electron
is brought to rest then and

We set where is the cutoff wavelength (Fig. 28–11) and find

(28;4)

This prediction for corresponds precisely with that observed experimentally.
This result is further evidence that X-rays are a form of electromagnetic radiation
(light) and that the photon theory of light is valid.

Cutoff wavelength. What is the shortest-wavelength 
X-ray photon emitted in an X-ray tube subjected to 50 kV?

APPROACH The electrons striking the target will have a ke of 50 keV. The
shortest-wavelength photons are due to collisions in which all of the electron’s
KE is given to the photon so

SOLUTION From Eq. 28–4,

or 0.025 nm.

NOTE This result agrees well with experiment, Fig. 28–11.

l0 =
hc
eV

=
A6.63 * 10–34 J �sB A3.0 * 108 m�sB
A1.6 * 10–19 CB A5.0 * 104 VB = 2.5 * 10–11 m,

ke = eV = hf0 .

EXAMPLE 28;9

l0

l0 =
hc
eV

.

l0f0 = c�l0

hf0 = eV.

¢ke = eV(ke¿ = 0),
ke = eV.

hf = ¢ke.

¢ke = ke - ke¿,

Z = 82,Z - 1 = 16500 = 81,

EZ

EH
=

(Z - 1)2

12
=

66.3 * 103 eV
10.2 eV

= 6.50 * 103,

(Z - 1)2Z2EZ

EH = 13.6 eV - 3.4 eV = 10.2 eV
n = 1n = 2

Z - 1
(n = 2).

n = 1

Ka

EXAMPLE 28;8
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FIGURE 28–13 Bremsstrahlung
photon produced by an electron
decelerated by interaction with a
target atom.
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28–10 Fluorescence and Phosphorescence
When an atom is excited from one energy state to a higher one by the absorption
of a photon, it may return to the lower level in a series of two (or more) 
transitions if there is at least one energy level in between (Fig. 28–14). The 
photons emitted will consequently have lower energy and frequency than the
absorbed photon. When the absorbed photon is in the UV and the emitted photons
are in the visible region of the spectrum, this phenomenon is called fluorescence
(Fig. 28–15).

The wavelength for which fluorescence will occur depends on the energy levels
of the particular atoms. Because the frequencies are different for different sub-
stances, and because many substances fluoresce readily, fluorescence is a powerful
tool for identification of compounds. It is also used for assaying—determining
how much of a substance is present—and for following substances along a natural
metabolic pathway in biological organisms. For detection of a given compound, the
stimulating light must be monochromatic, and solvents or other materials present
must not fluoresce in the same region of the spectrum. Sometimes the observation
of fluorescent light being emitted is sufficient to detect a compound. In other
cases, spectrometers are used to measure the wavelengths and intensities of the
emitted light.

Fluorescent lightbulbs work in a two-step process. The applied voltage accel-
erates electrons that strike atoms of the gas in the tube and cause them to be
excited. When the excited atoms jump down to their normal levels, they emit UV 
photons which strike a fluorescent coating on the inside of the tube. The light we
see is a result of this material fluorescing in response to the UV light striking it.

Materials such as those used for luminous watch dials, and other glow-in-
the-dark products, are said to be phosphorescent. When an atom is raised to a
normal excited state, it drops back down within about In phosphorescent
substances, atoms can be excited by photon absorption to energy levels called
metastable, which are states that last much longer because to jump down is a
“forbidden” transition (Section 28–6). Metastable states can last even a few
seconds or longer. In a collection of such atoms, many of the atoms will descend
to the lower state fairly soon, but many will remain in the excited state for over
an hour. Hence light will be emitted even after long periods. When you put a
luminous watch dial close to a bright lamp, many atoms are excited to metastable
states, and you can see the glow for a long time afterward.

28–11 Lasers
A laser is a device that can produce a very narrow intense beam of monochromatic
coherent light. (By coherent, we mean that across any cross section of the beam, all
parts have the same phase.†) The emitted beam is a nearly perfect plane wave.
An ordinary light source, on the other hand, emits light in all directions (so the
intensity decreases rapidly with distance), and the emitted light is incoherent (the
different parts of the beam are not in phase with each other). The excited atoms that
emit the light in an ordinary lightbulb act independently, so each photon emitted
can be considered as a short wave train lasting about Different wave trains
bear no phase relation to one another. Just the opposite is true of lasers.

The action of a laser is based on quantum theory. We have seen that a photon
can be absorbed by an atom if (and only if) the photon energy hf corresponds to
the energy difference between an occupied energy level of the atom and an avail-
able excited state, Fig. 28–16a. If the atom is already in the excited state, it may
jump down spontaneously (i.e., no stimulus) to the lower state with the emission
of a photon. However, if a photon with this same energy strikes the excited 
atom, it can stimulate the atom to make the transition sooner to the lower state,
Fig. 28–16b. This phenomenon is called stimulated emission: not only do we still
have the original photon, but also a second one of the same frequency as a result

10–8 s.

10–8 s.

*
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Fluorescence analysis and
fluorescent lightbulbs

FIGURE 28–14 Fluorescence.

FIGURE 28–15 When UV light 
(a range of wavelengths) illuminates
these various “fluorescent” rocks,
they fluoresce in the visible region
of the spectrum.

FIGURE 28–16 (a) Absorption of a
photon. (b) Stimulated emission.

and refer to “upper” and
“lower” energy states.
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†See also Section 24–3.



of the atom’s transition. These two photons are exactly in phase, and they are
moving in the same direction. This is how coherent light is produced in a laser.
The name “laser” is an acronym for Light Amplification by Stimulated Emission
of Radiation.

Normally, most atoms are in the lower state, so the majority of incident pho-
tons will be absorbed. To obtain the coherent light from stimulated emission, two
conditions must be satisfied. First, the atoms must be excited to the higher state so
that an inverted population is produced in which more atoms are in the upper 
state than in the lower one (Fig. 28–17). Then emission of photons will dominate
over absorption. And second, the higher state must be a metastable state—a state
in which the electrons remain longer than usual† so that the transition to the lower
state occurs by stimulated emission rather than spontaneously.

Figure 28–18 is a schematic diagram of a laser: the “lasing” material is placed
in a long narrow tube at the ends of which are two mirrors, one of which is partially
transparent (transmitting perhaps 1 or 2%). Some of the excited atoms drop
down fairly soon after being excited. One of these is the blue atom shown on the far
left in Fig. 28–18. If the emitted photon strikes another atom in the excited state,
it stimulates this atom to emit a photon of the same frequency, moving in the same
direction, and in phase with it. These two photons then move on to strike other
atoms causing more stimulated emission. As the process continues, the number of
photons multiplies. When the photons strike the end mirrors, most are reflected
back, and as they move in the opposite direction, they continue to stimulate more
atoms to emit photons. As the photons move back and forth between the mirrors,
a small percentage passes through the partially transparent mirror at one end.
These photons make up the narrow coherent external laser beam. (Inside the
tube, some spontaneously emitted photons will be emitted at an angle to the axis,
and these will merely go out the side of the tube and not affect the narrow width
of the main beam.)

SECTION 28–11 Lasers 821

†An excited atom may land in such a state and can jump to a lower state only by a so-called forbidden
transition (Section 28–6), which is why its lifetime is longer than normal.

FIGURE 28–17 Two energy levels
for a collection of atoms. Each dot
represents the energy state of one
atom. (a) A normal situation; (b) an
inverted population.

Normal
population

(a)

Inverted
population

(b)

FIGURE 28–18 Laser diagram, showing
excited atoms stimulated to emit light.

Mirror

Partially
transparent
mirror

Laser
output
beam

In a well-designed laser, the spreading of the beam is limited only by diffrac-
tion, so the angular spread is (see Eq. 24–3 or 25–7) where D is the diameter
of the end mirror. The diffraction spreading can be incredibly small. The light
energy, instead of spreading out in space as it does for an ordinary light source, can
be a pencil-thin beam.

Creating an Inverted Population
The excitation of the atoms in a laser can be done in several ways to produce the
necessary inverted population. In a ruby laser, the lasing material is a ruby rod
consisting of with a small percentage of aluminum (Al) atoms replaced by
chromium (Cr) atoms. The Cr atoms are the ones involved in lasing. In a process
called optical pumping, the atoms are excited by strong flashes of light of wave-
length 550 nm, which corresponds to a photon energy of 2.2 eV. As shown in
Fig. 28–19, the atoms are excited from state to state The atoms quickly
decay either back to or to the intermediate state which is metastable with a
lifetime of about (compared to for ordinary levels). With strong
pumping action, more atoms can be found in the state than are in the state.
Thus we have the inverted population needed for lasing. As soon as a few atoms
in the state jump down to they emit photons that produce stimulated 
emission of the other atoms, and the lasing action begins. A ruby laser thus emits a
beam whose photons have energy 1.8 eV and a wavelength of 694.3 nm (or
“ruby-red” light).

E0 ,E1

E0E1

10–8 s3 * 10–3 s
E1 ,E0

E2 .E0

Al2O3

L l�D

FIGURE 28–19 Energy levels of
chromium in a ruby crystal. Photons
of energy 2.2 eV “pump” atoms from

to which then decay to
metastable state Lasing action
occurs by stimulated emission of
photons in transition from to E0 .E1

E1 .
E2 ,E0

2.2 eV 1.8 eV

0.4 eV
E2

E1

E0

(metastable)

C A U T I O N

Laser: photons have
same frequency and direction,
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In a helium;neon laser (He–Ne), the lasing material is a gas, a mixture of
about 85% He and 15% Ne. The atoms are excited by applying a high voltage to
the tube so that an electric discharge takes place within the gas. In the process,
some of the He atoms are raised to the metastable state shown in Fig. 28–20,
which corresponds to a jump of 20.61 eV, almost exactly equal to an excited state
in neon, 20.66 eV. The He atoms do not quickly return to the ground state by
spontaneous emission, but instead often give their excess energy to a Ne atom
when they collide—see Fig. 28–20. In such a collision, the He drops to the ground
state and the Ne atom is excited to the state (the prime refers to neon states).
The slight difference in energy (0.05 eV) is supplied by the kinetic energy of the
moving atoms. In this manner, the state in Ne—which is metastable—becomes
more populated than the level. This inverted population between and 
is what is needed for lasing.

Very common now are semiconductor diode lasers, also called pn junction
lasers, which utilize an inverted population of electrons between the conduction
band and the lower-energy valence band (Section 29–9). When an electron jumps
down, a photon can be emitted, which in turn can stimulate another electron to
make the transition and emit another photon, in phase. The needed mirrors (as in
Fig. 28–18) are made by the polished ends of the pn crystal. Semiconductor lasers
are used in CD and DVD players (see below), and in many other applications.

Other types of laser include: chemical lasers, in which the energy input comes
from the chemical reaction of highly reactive gases; dye lasers, whose frequency 
is tunable; gas lasers, capable of high power output in the infrared; and 
rare-earth solid-state lasers such as the high-power Nd:YAG laser.

The excitation of the atoms in a laser can be done continuously or in pulses.
In a pulsed laser, the atoms are excited by periodic inputs of energy. In a
continuous laser, the energy input is continuous: as atoms are stimulated to jump
down to the lower level, they are soon excited back up to the upper level so the
output is a continuous laser beam.

No laser is a source of energy. Energy must be put in, and the laser converts
a part of it into an intense narrow beam output.

Applications
The unique feature of light from a laser, that it is a coherent narrow beam, has
found many applications. In everyday life, lasers are used as bar-code readers (at
store checkout stands) and in compact disc (CD) and digital video disc (DVD)
players. The laser beam reflects off the stripes and spaces of a bar code, or off the
tiny pits of a CD or DVD as shown in Fig. 28–21a. The recorded information on a
CD or DVD is a series of pits and spaces representing 0s and 1s (or “off” and “on”)
of a binary code (Section 17–10) that is decoded electronically before being sent
to the audio or video system. The laser of a CD player starts reading at the inside
of the disc which rotates at about 500 rpm at the start. As the disc rotates, the
laser follows the spiral track (Fig. 28–21b), and as it moves outward the disc must
slow down because each successive circumference is slightly longer
as r increases; at the outer edge, the disc is rotating about 200 rpm. A 1-hour CD
has a track roughly 5 km long; the track width is about and
the distance between pits is about 800 nm. DVDs contain much more information.

1600 nm (= 1.6 mm)

(C = 2pr)

*

CO2

Eœ2Eœ3Eœ2

Eœ3

Eœ3

E1

822 CHAPTER 28

C A U T I O N

Laser is not an energy source

P H Y S I C S  A P P L I E D

DVD and CD players,
bar codes

FIGURE 28–20 Energy levels for
He and Ne. He is excited in the
electric discharge to the state.
This energy is transferred to the 
level of the Ne by collision. is
metastable and decays to by
stimulated emission.
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FIGURE 28–21 (a) Reading a CD 
(or DVD). The fine beam of a laser,
focused even more finely with lenses,
is directed at the undersurface of a
rotating compact disc. The beam is
reflected back from the areas between
pits but reflects much less from pits.
The reflected light is detected as
shown, reflected by a half-reflecting
mirror MS. The strong and weak
reflections correspond to the 0s and 
1s of the binary code representing the
audio or video signal. (b) A laser
follows the CD track which starts near
the center and spirals outward.
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Holography

FIGURE 28–24 Making a hologram. Light
reflected from various points on the object
interferes (at the film) with light from the
direct beam.

FIGURE 28–22 Laser being used in
eye surgery.

Standard DVDs use a thinner track and shorter pit length (400 nm).
Blu-ray discs use a “blue” laser with a short wavelength (405 nm) and narrower
beam, allowing a narrower track that can store much more data for 
high definition. DVDs can also have two layers, one below the other. When 
the laser focuses on the second layer, the light passes through the semitransparent
surface layer. The second layer may start reading at the outer edge instead of
inside. DVDs can also have a single or double layer on both surfaces of the disc.

Lasers are a useful surgical tool. The narrow intense beam can be used to
destroy tissue in a localized area, or to break up gallstones and kidney stones.
Because of the heat produced, a laser beam can be used to “weld” broken tissue,
such as a detached retina, Fig. 28–22, or to mold the cornea of the eye (by vaporizing
tiny bits of material) to correct myopia and other eye defects (LASIK surgery). The
laser beam can be carried by an optical fiber (Section 23–6) to the surgical point,
sometimes as an additional fiber-optic path on an endoscope (again Section 23–6).
An example is the removal of plaque clogging human arteries. Lasers have been used
to destroy tiny organelles within a living cell by researchers studying how the
absence of that organelle affects the behavior of the cell. Laser beams are used 
to destroy cancerous and precancerous cells; and the heat seals off capillaries 
and lymph vessels, thus “cauterizing” the wound to prevent spread of the disease.

The intense heat produced in a small area by a laser beam is used for welding and
machining metals and for drilling tiny holes in hard materials. Because a laser beam is
coherent, monochromatic, narrow, and essentially parallel, lenses can be used to focus
the light into even smaller areas. The precise straightness of a laser beam is also useful
to surveyors for lining up equipment accurately, especially in inaccessible places.

28–12 Holography
One of the most interesting applications of laser light is the production of three-
dimensional images called holograms (see Fig. 28–23). In an ordinary photograph,
the film simply records the intensity of light reaching it at each point. When the
photograph or transparency is viewed, light reflecting from it or passing through
it gives us a two-dimensional picture. In holography, the images are formed by
interference, without lenses. A laser hologram is typically made on a photographic
emulsion (film). A broadened laser beam is split into two parts by a half-silvered
mirror, Fig. 28–24. One part goes directly to the film; the rest passes to the object
to be photographed, from which it is reflected to the film. Light from every point
on the object reaches each point on the film, and the interference of the two
beams allows the film to record both the intensity and relative phase of the light
at each point. It is crucial that the incident light be coherent—that is, in phase at
all points—which is why a laser is used. After the film is developed, it is placed
again in a laser beam and a three-dimensional image of the object is created. You
can walk around such an image and see it from different sides as if it were the
original object. Yet, if you try to touch it with your hand, there will be nothing
material there.

*

(0.3 mm)

(0.7 mm)

FIGURE 28–23 An athlete (race-car
driver) puts his hand on, or through,
a holographic image of himself.
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In 1925, Schrödinger and Heisenberg separately worked out a
new theory, quantum mechanics, which is now considered to
be the fundamental theory at the atomic level. It is a statistical
theory rather than a deterministic one.

An important aspect of quantum mechanics is the Heisen-
berg uncertainty principle. It results from the wave–particle
duality and the unavoidable interaction between an observed
object and the observer.

One form of the uncertainty principle states that the
position x and momentum of an object cannot both be
measured precisely at the same time. The products of the
uncertainties, can be no less than 

(28;1)

Another form of the uncertainty principle states that the
energy can be uncertain (or nonconserved) by an amount 
for a time where

(28;2)

According to quantum mechanics, the state of an electron in
an atom is specified by four quantum numbers: n, and 

(1) n, the principal quantum number, can take on any integer
value and corresponds to the quantum number
of the old Bohr model;

(2) the orbital quantum number, can take on values from 0
up to 

(3) the magnetic quantum number, can take on integer
values from to 

(4) the spin quantum number, can be or 

The energy levels in the hydrogen atom depend on n,
whereas in other atoms they depend on n and

The orbital angular momentum of an atom has magnitude
and z component

When an external magnetic field is applied, the spectral
lines are split (the Zeeman effect), indicating that the energy
depends also on in this case.ml

Lz = mlU .L = 2l(l + 1) U

l.

– 1
2 .± 1

2ms ,
±l;–l

ml ,
n - 1;

l,

(1, 2, 3, p)

ms :l, ml ,

(¢E)(¢t) g U .

¢t,
¢E

A¢pxB(¢x) g U .

U  (= h�2p):(¢x)A¢pxB,
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Even in the absence of a magnetic field, precise measure-
ments of spectral lines show a tiny splitting of the lines called
fine structure, whose explanation is that the energy depends
very slightly on and 

Transitions between states that obey the selection rule
are far more probable than other so-called

forbidden transitions.
The arrangement of electrons in multi-electron atoms is

governed by the Pauli exclusion principle, which states that no
two electrons can occupy the same quantum state—that is, they
cannot have the same set of quantum numbers n, and

As a result, electrons in multi-electron atoms are grouped
into shells (according to the value of n) and subshells (according
to ).

Electron configurations are specified using the numerical
values of n, and using letters for s, p, d, f, etc., for

and so on, plus a superscript for the number of
electrons in that subshell. Thus, the ground state of hydrogen 
is whereas that for oxygen is 

In the Periodic Table, the elements are arranged in horizontal
rows according to increasing atomic number ( number of elec-
trons in the neutral atom). The shell structure gives rise to a
periodicity in the properties of the elements, so that each vertical
column can contain elements with similar chemical properties.

X-rays, which are a form of electromagnetic radiation of
very short wavelength, are produced when high-speed electrons
strike a target. The spectrum of X-rays so produced consists of
two parts, a continuous spectrum produced when the electrons
are decelerated by atoms of the target, and peaks representing
photons emitted by atoms of the target after being excited by
collision with the high-speed electrons. Measurement of these
peaks allows determination of inner energy levels of atoms and
determination of atomic number Z.

[ Fluorescence occurs when absorbed UV photons are
followed by emission of visible light, due to the special
arrangement of energy levels of atoms of the material.
Phosphorescent materials have metastable states (long-lived)
that emit light seconds or minutes after absorption of light.]

Lasers produce a narrow beam of monochromatic
coherent light (light waves in phase).

[*Holograms are images with a 3-dimensional quality,
formed by interference of laser light.]

*

=
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l
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ms .ml

Summary

Volume or white-light holograms do not require a laser to see the image, but
can be viewed with ordinary white light (preferably a nearly point source, such as
the Sun or a clear bulb with a small bright filament). Such holograms must be
made, however, with a laser. They are made not on thin film, but on a thick emul-
sion. The interference pattern in the film emulsion can be thought of as an array
of bands or ribbons where constructive interference occurred. This array, and the
reconstruction of the image, can be compared to Bragg scattering of X-rays from
the atoms in a crystal (see Section 25–11). White light can reconstruct the image
because the Bragg condition selects out the appropriate single
wavelength. If the hologram is originally produced by lasers emitting the three
additive primary colors (red, green, and blue), the three-dimensional image can
be seen in full color when viewed with white light.

(ml = 2d sin u)
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1. Compare a matter wave to (a) a wave on a string, (b) an
EM wave. Discuss similarities and differences.

2. Explain why Bohr’s theory of the atom is not compatible
with quantum mechanics, particularly the uncertainty
principle.

3. Explain why it is that the more massive an object is, the
easier it becomes to predict its future position.

4. In view of the uncertainty principle, why does a baseball
seem to have a well-defined position and speed, whereas an
electron does not?

5. Would it ever be possible to balance a very sharp needle
precisely on its point? Explain.

6. A cold thermometer is placed in a hot bowl of soup. Will
the temperature reading of the thermometer be the same
as the temperature of the hot soup before the measurement
was made? Explain.

7. Does the uncertainty principle set a limit to how well you
can make any single measurement of position? Explain.

8. If you knew the position of an object precisely, with no
uncertainty, how well would you know its momentum?

9. When you check the pressure in a tire, doesn’t some air
inevitably escape? Is it possible to avoid this escape of air
altogether? What is the relation to the uncertainty principle?

10. It has been said that the ground-state energy in the hydrogen
atom can be precisely known but the excited states have
some uncertainty in their values (an “energy width”). Is this
consistent with the uncertainty principle in its energy form?
Explain.

11. Which model of the hydrogen atom, the Bohr model or
the quantum-mechanical model, predicts that the electron
spends more time near the nucleus? Explain.

12. The size of atoms varies by only a factor of three or so,
from largest to smallest, yet the number of electrons varies
from one to over 100. Explain.

13. Excited hydrogen and excited helium atoms both radiate
light as they jump down to the state.
Why do the two elements have very different emission spectra?

14. How would the Periodic Table look if there were no electron
spin but otherwise quantum mechanics were valid? Consider
the first 20 elements or so.

n = 1,  l = 0,  ml = 0

° 15. Which of the following electron configurations are 
not allowed: (a) (b)
(c) If not allowed, explain why.

16. In what column of the Periodic Table would you expect to
find the atom with each of the following configurations:
(a) (b) (c)
(d)

17. Why do chlorine and iodine exhibit similar properties?
18. Explain why potassium and sodium exhibit similar

properties.
19. Why are the chemical properties of the rare earths so similar?

[Hint: Examine the Periodic Table.]
20. The ionization energy for neon is 21.6 eV, and that

for sodium is 5.1 eV. Explain the large difference.
21. Why do we expect electron transitions deep within an atom

to produce shorter wavelengths than transitions by outer
electrons?

22. Does the Bohr model of the atom violate the uncertainty
principle? Explain.

23. Briefly explain why noble gases are nonreactive and why
alkali metals are highly reactive. (See Section 28–8.)

24. Compare spontaneous emission to stimulated emission.
25. How does laser light differ from ordinary light? How is it

the same?
26. Explain how a 0.0005-W laser beam, photographed at a

distance, can seem much stronger than a 1000-W street
lamp at the same distance.

27. Does the intensity of light from a laser fall off as the inverse
square of the distance? Explain.

28. Why does the cutoff wavelength in Fig. 28–11 imply a
photon nature for light?

29. Why do we not expect perfect agreement between meas-
ured values of characteristic X-ray line wavelengths and
those calculated using the Bohr model, as in Example 28–7?

30. How would you figure out which lines in an X-ray spec-
trum correspond to etc., transitions?Ka ,  Kb , L,

*

*

*

(Z = 11)
(Z = 10)

1s22s22p63s23p64s1?
1s22s22p63s23p6;1s22s22p63s2;1s22s22p5;

1s22s22p63s23p54s24d54f1?
1s22s22p83s1;1s22s22p43s24p2;

Questions

1. An atom has the electron configuration 
How many electrons does this atom have?
(a) 15. (b) 19. (c) 30. (d) 46.

2. For the electron configuration of MisConceptual Question 1,
what orbital quantum numbers do the electrons have?
(a) 0. (d) 0 and 1 and 2 and 3.
(b) 0 and 1. (e) 0 and 1 and 2 and 3 and 4.
(c) 0 and 1 and 2.

3. If a beam of electrons is fired through a slit,
(a) the electrons can be deflected because of their wave

properties.
(b) only electrons that hit the edge of the slit are deflected.
(c) electrons can interact with electromagnetic waves in the

slit, forming a diffraction pattern.
(d) the probability of an electron making it through the slit

depends on the uncertainty principle.

1s22s22p63s23p64s1. 4. What is meant by the ground state of an atom?
(a) All of the quantum numbers have their lowest values

(b) The principal quantum number of the electrons in the
outer shell is 1.

(c) All of the electrons are in the lowest energy state,
consistent with the exclusion principle.

(d) The electrons are in the lowest state allowed by the
uncertainty principle.

5. The Pauli exclusion principle applies to all electrons
(a) in the same shell, but not electrons in different shells.
(b) in the same container of atoms.
(c) in the same column of the Periodic Table.
(d) in incomplete shells.
(e) in the same atom.

An = 1,  l = ml = 0B.

MisConceptual Questions
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28–2 Wave Function, Double-Slit

1. (II) The neutrons in a parallel beam, each having kinetic
energy 0.025 eV, are directed through two slits 0.40 mm
apart. How far apart will the interference peaks be on a
screen 1.0 m away? [Hint: First find the wavelength of the
neutron.]

2. (II) Pellets of mass 2.0 g are fired in parallel paths with
speeds of through a hole 3.0 mm in diameter.
How far from the hole must you be to detect a 1.0-cm-
diameter spread in the beam of pellets?

28–3 Uncertainty Principle

3. (I) A proton is traveling with a speed of
With what maximum precision

can its position be ascertained? [Hint: ]
4. (I) If an electron’s position can be measured to a precision

of how precisely can its speed be known?
5. (I) An electron remains in an excited state of an atom for

typically What is the minimum uncertainty in the
energy of the state (in eV)?

6. (II) The boson, discovered in 1985, is the mediator of
the weak nuclear force, and it typically decays very quickly.
Its average rest energy is 91.19 GeV, but its short lifetime
shows up as an intrinsic width of 2.5 GeV. What is the life-
time of this particle? [Hint: See Example 28–3.]

7. (II) What is the uncertainty in the mass of a muon
specified in given its lifetime

of 2.20 ms?
eV�c2,Am = 105.7 MeV�c2B,

Z0

10–8 s.

2.4 * 10–8 m,

¢p = m ¢v.
(8.66060.012) * 105 m�s.

120 m�s

8. (II) A free neutron has a mean life
of 880 s. What is the uncertainty in its mass (in kg)?

9. (II) An electron and a 140-g baseball are each traveling
measured to a precision of 0.065%. Calculate and

compare the uncertainty in position of each.

10. (II) A radioactive element undergoes an alpha decay with a
lifetime of If alpha particles are emitted with 5.5-MeV
kinetic energy, find the percent uncertainty in the
particle energy.

11. (II) If an electron’s position can be measured to a pre-
cision of 15 nm, what is the uncertainty in its speed?
Assuming the minimum speed must be at least equal to its
uncertainty, what is the electron’s minimum kinetic energy?

12. (II) Estimate the lowest possible energy of a neutron
contained in a typical nucleus of radius 
[Hint: Assume a particle can have an energy as large as its
uncertainty.]

13. (III) How precisely can the position of a 5.00-keV 
electron be measured assuming its energy is known to
1.00%?

14. (III) Use the uncertainty principle to show that if an
electron were present in the nucleus its
kinetic energy (use relativity) would be hundreds of MeV.
(Since such electron energies are not observed, we
conclude that electrons are not present in the nucleus.)
[Hint: Assume a particle can have an energy as large as its
uncertainty.]

Ar L 10–15 mB,

1.2 * 10–15 m.

¢E�E
12 ms.

120 m�s

Am = 1.67 * 10–27 kgB
Problems

6. Which of the following is the best paraphrasing of the
Heisenberg uncertainty principle?
(a) Only if you know the exact position of a particle can

you know the exact momentum of the particle.
(b) The larger the momentum of a particle, the smaller the

position of the particle.
(c) The more precisely you know the position of a particle,

the less well you can know the momentum of the
particle.

(d) The better you know the position of a particle, the
better you can know the momentum of the particle.

(e) How well you can determine the position and
momentum of a particle depends on the particle’s
quantum numbers.

7. Which of the following is required by the Pauli exclusion
principle?
(a) No electron in an atom can have the same set of

quantum numbers as any other electron in that 
atom.

(b) Each electron in an atom must have the same n value.
(c) Each electron in an atom must have different values.
(d) Only two electrons can be in any particular shell of an

atom.
(e) No two electrons in a collection of atoms can have the

exact same set of quantum numbers.

ml

8. Under what condition(s) can the exact location and velocity
of an electron be measured at the same time?
(a) The electron is in the ground state of the atom.
(b) The electron is in an excited state of the atom.
(c) The electron is free (not bound to an atom).
(d) Both (a) and (b).
(e) Never.

9. According to the uncertainty principle,
(a) there is always an uncertainty in a measurement of the

position of a particle.
(b) there is always an uncertainty in a measurement of the

momentum of a particle.
(c) there is always an uncertainty in a simultaneous

measurement of both the position and momentum of a
particle.

(d) All of the above.

10. Which of the following is not always a property of lasers?
(a) All of the photons in laser light have the same phase.
(b) All laser photons have nearly identical frequencies.
(c) Laser light moves as a beam, spreading out very slowly.
(d) Laser light is always brighter than other sources of

light.
(e) Lasers depend on an inverted population of atoms

where more atoms occupy a higher energy state than
some lower energy state.

For assigned homework and other learning materials, go to the MasteringPhysics website.
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28–6 to 28–8 Quantum Numbers, Exclusion Principle

15. (I) For what values can have?
16. (I) For what are the possible values of 

and
17. (I) How many electrons can be in the 

subshell?
18. (I) How many different states are possible for an electron

whose principal quantum number is Write down
the quantum numbers for each state.

19. (I) List the quantum numbers for each electron in the ground
state of (a) carbon (b) aluminum 

20. (I) List the quantum numbers for each electron in the
ground state of oxygen 

21. (I) Calculate the magnitude of the angular momentum of
an electron in the state of hydrogen.

22. (I) If a hydrogen atom has what are the possible
values for n, and 

23. (II) If a hydrogen atom has what are the possible
values of n, and 

24. (II) Show that there can be 18 electrons in a “g” subshell.
25. (II) What is the full electron configuration in the ground

state for elements with Z equal to (a) 26, (b) 34, (c) 38?
[Hint: See the Periodic Table inside the back cover.]

26. (II) What is the full electron configuration for (a) silver
(Ag), (b) gold (Au), (c) uranium (U)? [Hint: See the
Periodic Table inside the back cover.]

27. (II) A hydrogen atom is in the 5d state. Determine (a) the
principal quantum number, (b) the energy of the state, (c) the
orbital angular momentum and its quantum number and
(d) the possible values for the magnetic quantum number.

28. (II) Estimate the binding energy of the third electron in
lithium using the Bohr model. [Hint: This electron has

and “sees” a net charge of approximately ] The
measured value is 5.36 eV.

29. (II) Show that the total angular momentum is zero for a
filled subshell.

30. (II) For each of the following atomic transitions, state
whether the transition is allowed or forbidden, and why:
(a) (b) (c) (d)
(e)

31. (II) An electron has and is in its lowest possible
energy state. What are the values of n and for this electron?

32. (II) An excited H atom is in a 6d state. (a) Name all the
states to which the atom is “allowed” to make a
transition with the emission of a photon. (b) How many
different wavelengths are there (ignoring fine structure)?

(n, l)

l

ml = 2
4s S 2p.

5d S 3s;4d S 2d;3p S 1s;4p S 3p;

±1e.n = 2

l,

ms?l,
ml = –3,

ms?ml ,
l = 4,

n = 5,  l = 3

(Z = 8).

(Z = 13).(Z = 6),

n = 4?

n = 5,  l = 3
ms?

mln = 6,  l = 3,
ln = 6,

*28–9 X-Rays

*33. (I) What are the shortest-wavelength X-rays emitted by
electrons striking the face of a 28.5-kV TV picture tube?
What are the longest wavelengths?

*34. (I) If the shortest-wavelength bremsstrahlung X-rays emitted
from an X-ray tube have what is the voltage
across the tube?

*35. (I) Show that the cutoff wavelength in an X-ray spectrum
is given by

where V is the X-ray tube voltage in volts.
*36. (I) For the spectrum of X-rays emitted from a molybdenum

target (Fig. 28–11), determine the maximum and minimum
energy.

*37. (II) Use the result of Example 28–7 to estimate
the X-ray wavelength emitted when a cobalt atom 
makes a transition from to

*38. (II) Estimate the wavelength for an to 
transition in iron 

*39. (II) Use the Bohr model to estimate the wavelength for an
to transition in molybdenum The

measured value is 0.063 nm. Why do we not expect perfect
agreement?

*40. (II) A mixture of iron and an unknown material is bom-
barded with electrons. The wavelengths of the lines are
194 pm for iron and 229 pm for the unknown. What is the
unknown material?

28–11 Lasers

41. (II) A laser used to weld detached retinas puts out 
25-ms-long pulses of 640-nm light which average 0.68-W
output during a pulse. How much energy can be deposited
per pulse and how many photons does each pulse contain?
[Hint: See Example 27–4.]

42. (II) A low-power laser used in a physics lab might have a
power of 0.50 mW and a beam diameter of 3.0 mm. Calcu-
late (a) the average light intensity of the laser beam, and
(b) compare it to the intensity of a lightbulb producing
100-W light viewed from 2.0 m.

43. (II) Calculate the wavelength of the He–Ne laser (see 
Fig. 28–20).

44. (II) Estimate the angular spread of a laser beam due to
diffraction if the beam emerges through a 3.0-mm-diameter
mirror. Assume that What would be the diam-
eter of this beam if it struck (a) a satellite 340 km above the
Earth, or (b) the Moon? [Hint: See Sections 24–5 and 25–7.]

l = 694 nm.

Ka

(Z = 42).n = 1n = 3

(Z = 26).
n = 2n = 3

n = 1.n = 2
(Z = 27)

(Z = 42)

l0 =
1240 nm

V
,

l0

l = 0.035 nm,

45. The magnitude of the orbital angular momentum in an
excited state of hydrogen is and the z com-
ponent is What are all the possible values
of n, and for this state?

46. An electron in the state of hydrogen remains there
on average about before jumping to the state.
(a) Estimate the uncertainty in the energy of the 
state. (b) What fraction of the transition energy is this?
(c) What is the wavelength, and width (in nm), of this line
in the spectrum of hydrogen?

47. What are the largest and smallest possible values for the
angular momentum L of an electron in the shell?n = 6

n = 2
n = 110–8 s

n = 2
mll,

2.11 * 10–34 J�s.
6.84 * 10–34 J�s

48. A 12-g bullet leaves a rifle at a speed of (a) What
is the wavelength of this bullet? (b) If the position of the
bullet is known to a precision of 0.60 cm (radius of the
barrel), what is the minimum uncertainty in its momentum?

49. If an electron’s position can be measured to a precision of
what is the uncertainty in its momentum?

Assuming its momentum must be at least equal to its
uncertainty, estimate the electron’s wavelength.

50. The ionization (binding) energy of the outermost electron
in boron is 8.26 eV. (a) Use the Bohr model to estimate the
“effective charge,” seen by this electron. (b) Estimate
the average orbital radius.

Zeff ,

2.0 * 10–8 m,

150 m�s.

General Problems



828 CHAPTER 28 Quantum Mechanics of Atoms

51. Using the Bohr formula for the radius of an electron orbit,
estimate the average distance from the nucleus for an
electron in the innermost orbit of a uranium atom

Approximately how much energy would be
required to remove this innermost electron?

52. Protons are accelerated from rest across 480 V. They are
then directed at two slits 0.70 mm apart. How far apart will
the interference peaks be on a screen 28 m away?

53. How many electrons can there be in an “h” subshell?
54. (a) Show that the number of different states possible for a

given value of is equal to (b) What is this
number for 1, 2, 3, 4, 5, and 6?

55. Show that the number of different electron states possible
for a given value of n is (See Problem 54.)

56. A beam of electrons with kinetic energy 45 keV is shot
through two narrow slits in a barrier. The slits are a dis-
tance apart. If a screen is placed 45.0 cm behind
the barrier, calculate the spacing between the “bright”
fringes of the interference pattern produced on the screen.

57. The angular momentum in the hydrogen atom is given
both by the Bohr model and by quantum mechanics.
Compare the results for 

58. The lifetime of a typical excited state in an atom is about
10 ns. Suppose an atom falls from one such excited state 
to a lower one, and emits a photon of wavelength about
500 nm. Find the fractional energy uncertainty and
wavelength uncertainty of this photon.¢l�l

¢E�E

n = 2.

2.0 * 10–6 m

2n2.

l = 0,
2(2l + 1).l

(Z = 92).
(n = 1)

59. A 1300-kg car is traveling with a speed of 
With what maximum precision can its position be determined?

60. An atomic spectrum contains a line with a wavelength
centered at 488 nm. Careful measurements show the line is
really spread out between 487 and 489 nm. Estimate the
lifetime of the excited state that produced this line.

61. An electron and a proton, each initially at rest, are acceler-
ated across the same voltage. Assuming that the uncertainty
in their position is given by their de Broglie wavelength,
find the ratio of the uncertainty in their momentum.

62. If the principal quantum number n were limited to the range
from 1 to 6, how many elements would we find in nature?

63. If your de Broglie wavelength were 0.50 m, how fast would
you be moving if your mass is 68.0 kg? Would you notice
diffraction effects as you walk through a doorway? Approx-
imately how long would it take you to walk through the
doorway?

64. Suppose that the spectrum of an unknown element shows
a series of lines with one out of every four matching a line
from the Lyman series of hydrogen. Assuming that the
unknown element is an ion with Z protons and one
electron, determine Z and the element in question.

*65. Photons of wavelength 0.154 nm are emitted from the
surface of a certain metal when it is bombarded with high-
energy radiation. If this photon wavelength corresponds to
the line, what is the element?Ka

(2260.22) m�s.

1. Use the uncertainty principle to estimate the position uncer-
tainty for the electron in the ground state of the hydrogen
atom. [Hint: Determine the momentum using the Bohr
model of Section 27–12 and assume the momentum can 
be anywhere between this value and zero.] How does this
result compare to the Bohr radius?

2. On what factors does the periodicity of the Periodic Table
depend? Consider the exclusion principle, quantization of
angular momentum, spin, and any others you can think of.

3. As discussed in Section 28–5: (a) List two aspects of the
Bohr model that the quantum-mechanical theory of the
atom retained. (b) Give one major difference between the
Bohr model and the quantum-mechanical theory of the atom.

4. Estimate (a) the quantum number for the orbital angular
momentum of the Earth about the Sun, and (b) the number
of possible orientations for the plane of Earth’s orbit.

5. Show that the diffraction spread of a laser beam,
(Section 28–11), is precisely what you might expect from
the uncertainty principle. See also Chapters 24 and 25.
[Hint: Since the beam’s width is constrained by the dimen-
sion of the aperture D, the component of the light’s
momentum perpendicular to the laser axis is uncertain.]

L l�D

l

6. For noble gases, the halogens, and the alkali metals, explain
the atomic structure that is common to each group and how
that structure explains a common property of the group.
(See Section 28–8.)

7. Imagine a line whose length equals the diameter of the
smallest orbit in the Bohr model. If we are told only that
an electron is located somewhere on this line, then the
electron’s position can be specified as where
the origin is at the line’s center and is the Bohr radius.
Such an electron can never be observed at rest, but instead
at a minimum will have a speed somewhere in the range
from to Determine 

8. What is uncertain in the Heisenberg uncertainty principle?
Explain. (See Section 28–3.)

¢v.0 + ¢v.v = 0 - ¢v

r1

x = 06r1 ,

Search and Learn

A: (c).
B: .
C: 2, 1, 0, –1, –2.

2.1 * 10–24 kg �m�s, 2.3 * 106 m�s
D: eV,
E: Add one line to Li in Table 28–2:
F: 1s22s22p63s23p63d104s24p1.

2, 0, 0, – 1
2 .

120 U .–0.38

A N S W E R S  TO  E X E R C I S E S
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Molecules and Solids
CHAPTER-OPENING QUESTION—Guess now!
What holds a solid together?

(a) Gravitational forces.
(b) Magnetic forces.
(c) Electric forces.
(d) Glue.
(e) Nuclear forces.

S ince its development in the 1920s, quantum mechanics has had a profound
influence on our lives, both intellectually and technologically. Even the way
we view the world has changed, as we have seen in the last few Chapters.

Now we discuss how quantum mechanics has given us an understanding of the
structure of molecules and matter in bulk, as well as a number of important applica-
tions including semiconductor devices and applications to biology. Semiconductor
devices, like transistors, now may be only a few atoms thick, which is the realm of
quantum mechanics.

29–1 Bonding in Molecules
One of the great successes of quantum mechanics was to give scientists, at last, an
understanding of the nature of chemical bonds. Because it is based in physics,
and because this understanding is so important in many fields, we discuss it here.

By a molecule, we mean a group of two or more atoms that are strongly held
together so as to function as a single unit. When atoms make such an attachment,
we say that a chemical bond has been formed. There are two main types of strong
chemical bond: covalent and ionic. Many bonds are actually intermediate between
these two types.

*
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29

This computer processor chip contains over 1.4 billion transistors, plus diodes and other
semiconductor electronic elements, all in a space of about 1 cm2. It uses 22-nm
technology, meaning the “wires” (conducting lines) are 22 nm wide.

Before discussing semiconductors and their applications, we study the quantum
theory description of bonding between atoms to form molecules, and how it explains
molecular behavior. We then examine how atoms and molecules form solids, with
emphasis on metals as well as on semiconductors and their use in electronics.




