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Reflection from still water, as from
a glass mirror, can be analyzed using
the ray model of light.

Is this picture right side up, or
upside down? How can you tell?
What are the clues? Notice the
people and position of the Sun.
Ray diagrams, which we will learn to
draw in this Chapter, can provide
the answer. See Example 23–3.

In this first Chapter on light and
optics, we use the ray model of light
to understand the formation of
images by mirrors, both plane and
curved (spherical). We also study
refraction—how light rays bend
when they go from one medium to
another—and how, via refraction,
images are formed by lenses, which
are the crucial part of so many
optical instruments.

CHAPTER-OPENING QUESTIONS—Guess now!
1. A 2.0-m-tall person is standing 2.0 m from a flat vertical mirror staring at her
image. What minimum height must the mirror’s reflecting glass have if the
person is to see her entire body, from the top of her head to her feet? 

(a) 0.50 m. (b) 1.0 m. (c) 1.5 m. (d) 2.0 m. (e) 2.5 m.
2. The focal length of a lens is

(a) the diameter of the lens.
(b) the thickness of the lens.
(c) the distance from the lens at which incoming parallel rays bend to intersect

at a point.
(d) the distance from the lens at which all real images are formed.

T he sense of sight is extremely important to us, for it provides us with a large
part of our information about the world. How do we see? What is the some-
thing called light that enters our eyes and causes the sensation of sight?

How does light behave so that we can see everything that we do? We saw in
Chapter 22 that light can be considered a form of electromagnetic radiation. We
now examine the subject of light in detail in the next three Chapters.

We see an object in one of two ways: (1) the object may be a source of light,
such as a lightbulb, a flame, or a star, in which case we see the light emitted directly
from the source; or, more commonly, (2) we see an object by light reflected from it.



In the latter case, the light may have originated from the Sun, artificial lights,
or a campfire. An understanding of how objects emit light was not achieved until
the 1920s, and will be discussed in Chapter 27. How light is reflected from objects
was understood much earlier, and will be discussed in Section 23–2.

23–1 The Ray Model of Light
A great deal of evidence suggests that light travels in straight lines under a wide vari-
ety of circumstances.† For example, a source of light like the Sun (which at its great
distance from us is nearly a“point source”) casts distinct shadows, and the beam from
a laser pointer appears to be a straight line. In fact, we infer the positions of objects
in our environment by assuming that light moves from the object to our eyes in
straight-line paths. Our orientation to the physical world is based on this assumption.

This reasonable assumption is the basis of the ray model of light. This model
assumes that light travels in straight-line paths called light rays. Actually, a ray is
an idealization; it is meant to represent an extremely narrow beam of light. When
we see an object, according to the ray model, light reaches our eyes from each point
on the object. Although light rays leave each point in many different directions,
normally only a small bundle of these rays can enter the pupil of an observer’s
eye, as shown in Fig. 23–1. If the person’s head moves to one side, a different
bundle of rays will enter the eye from each point.

We saw in Chapter 22 that light can be considered as an electromagnetic wave.
Although the ray model of light does not deal with this aspect of light (we discuss
the wave nature of light in Chapter 24), the ray model has been very successful 
in describing many aspects of light such as reflection, refraction, and the formation
of images by mirrors and lenses. Because these explanations involve straight-line
rays at various angles, this subject is referred to as geometric optics.

23–2 Reflection; Image Formation
by a Plane Mirror

When light strikes the surface of an object, some of the light is reflected. The rest
can be absorbed by the object (and transformed to thermal energy) or, if the object
is transparent like glass or water, part can be transmitted through. For a very
smooth shiny object such as a silvered mirror, over 95% of the light may be reflected.
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This bundle
enters the eye

FIGURE 23–1 Light rays come from
each single point on an object. A small
bundle of rays leaving one point is
shown entering a person’s eye.
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FIGURE 23–2 Law of reflection:
(a) shows a 3-D view of an incident
ray being reflected at the top of a
flat surface; (b) shows a side or
“end-on” view, which we will usually
use because of its clarity.

When a narrow beam of light strikes a flat surface (Fig. 23–2), we define the
angle of incidence, to be the angle an incident ray makes with the normal
(perpendicular) to the surface, and the angle of reflection, to be the angle the
reflected ray makes with the normal. It is found that the incident and reflected rays
lie in the same plane with the normal to the surface, and that

the angle of reflection equals the angle of incidence,

This is the law of reflection, and it is depicted in Fig. 23–2. It was known to the
ancient Greeks, and you can confirm it yourself by shining a narrow flashlight
beam or a laser pointer at a mirror in a darkened room.

Ur � Ui .

Ur ,
Ui ,

LAW OF REFLECTION

†In a uniform transparent medium such as air or glass: But not always, such as for nonuniform air 
that allows optical illusions and mirages which we discuss in Section 24–2 (Fig. 24–4).



When light is incident upon a rough surface, even microscopically rough such
as this page, it is reflected in many directions, as shown in Fig. 23–3. This is called
diffuse reflection. The law of reflection still holds, however, at each small section
of the surface. Because of diffuse reflection in all directions, an ordinary object
can be seen at many different angles by the light reflected from it. When you move
your head to the side, different reflected rays reach your eye from each point 
on the object (such as this page), Fig. 23–4a. Let us compare diffuse reflection to
reflection from a mirror, which is known as specular reflection. (“Speculum” is
Latin for mirror.) When a narrow beam of light shines on a mirror, the light 
will not reach your eye unless your eye is positioned at just the right place where
the law of reflection is satisfied, as shown in Fig. 23–4b. This is what gives rise to
the special image-forming properties of mirrors.
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FIGURE 23–3 Diffuse reflection
from a rough surface.
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FIGURE 23–4 A narrow beam of light shines on (a) white paper, and (b) a mirror. In part (a),
you can see with your eye the white light (and printed words) reflected at various positions
because of diffuse reflection. But in part (b), you see the reflected light only when your eye is
placed correctly mirror reflection is also known as specular reflection. (Galileo, using
similar arguments, showed that the Moon must have a rough surface rather than a highly
polished surface like a mirror, as some people thought.)
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FIGURE 23–5 Example 23–1.

Reflection from flat mirrors. Two flat mirrors are perpen-
dicular to each other. An incoming beam of light makes an angle of 15° with the
first mirror as shown in Fig. 23–5a. What angle will the outgoing beam make with
the second mirror?

APPROACH We sketch the path of the beam as it reflects off the two mirrors, and
draw the two normals to the mirrors for the two reflections. We use geometry and
the law of reflection to find the various angles.

EXAMPLE 23;1

SOLUTION In Fig. 23–5b, so by the law of reflection
too. Using the fact that the sum of the three angles of a triangle is

always 180°, and noting that the two normals to the two mirrors are perpendicular
to each other, we have . Thus
By the law of reflection, so is the angle the reflected
ray makes with the second mirror surface.

NOTE The outgoing ray is parallel to the incoming ray. Reflectors on bicycles,
cars, and other applications use this principle.

u5 = 75°u4 = u3 = 15°,
15°.u3 = 180° - 90° - 75° =u2 + u3 + 90° = 180°

u2 = u1 = 75°
u1 = 75°;u1 + 15° = 90°,
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FIGURE 23–7 Formation of a virtual
image by a plane mirror. Only the bundle
of rays from the top and bottom of the
object which reach the eye is shown.

Let us concentrate on the two rays that leave point A on the object in
Fig. 23–7, and strike the mirror at points B and We use geometry now, for the
rays at B. The angles ADB and CDB are right angles; and because of the law of
reflection, at point B. Therefore, by geometry, angles ABD and CBD are
also equal. The two triangles ABD and CBD are thus congruent, and the length

That is, the image appears as far behind the mirror as the object is 
in front. The image distance, (perpendicular distance from mirror to image,
Fig. 23–7), equals the object distance, (perpendicular distance from object to mir-
ror). From the geometry, we also can see that the height of the image is the same
as that of the object.

The light rays do not actually pass through the image location itself in Fig. 23–7.
(Note where the red lines are dashed to show they are our projections, not rays.)
The image would not appear on paper or film placed at the location of the image.
Therefore, it is called a virtual image. This is to distinguish it from a real image
in which the light does pass through the image and which therefore could appear
on a white surface, or on film or on an electronic sensor placed at the image position.
Our eyes can see both real and virtual images, as long as the diverging rays enter
our pupils. We will see that curved mirrors and lenses can form real images, as well
as virtual. A movie projector lens, for example, produces a real image that is
visible on the screen.

do

di

AD = CD.

ui = ur

B¿.
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When you look straight into a mirror, you see what appears to be yourself as
well as various objects around and behind you, Fig. 23–6. Your face and the other
objects look as if they are in front of you, beyond the mirror. But what you see in
the mirror is an image of the objects, including yourself, that are in front of the
mirror. Also, you don’t see yourself as others see you, because left and right appear
reversed in the image.

A plane mirror is one with a smooth flat reflecting surface. Figure 23–7 shows
how an image is formed by a plane mirror according to the ray model. We are
viewing the mirror, on edge, in the diagram of Fig. 23–7, and the rays are shown
reflecting from the front surface. (Good mirrors are generally made by putting a
highly reflective metallic coating on one surface of a very flat piece of glass.) Rays
from two different points on an object (the bottle on the left in Fig. 23–7) are
shown: two rays are shown leaving from a point on the top of the bottle, and two
more from a point on the bottom. Rays leave each point on the object going in many
directions (as in Fig. 23–1), but only those that enclose the bundle of rays that
enter the eye from each of the two points are shown. Each set of diverging rays
that reflect from the mirror and enter the eye appear to come from a single point
behind the mirror, called the image point, as shown by the dashed lines. That is,
our eyes and brain interpret any rays that enter an eye as having traveled straight-
line paths. The point from which each bundle of rays seems to come is one point
on the image. For each point on the object, there is a corresponding image point.
(This analysis of how a plane mirror forms an image was published by Kepler in
1604.)

FIGURE 23–6 When you look in a
mirror, you see an image of yourself
and objects around you. You don’t
see yourself as others see you,
because left and right appear
reversed in the image.



How tall must a full-length mirror be? A woman 1.60 m
tall stands in front of a vertical plane mirror. What is the minimum height of the
mirror, and how high must its lower edge be above the floor, if she is to be able
to see her whole body? Assume that her eyes are 10 cm below the top of her
head.

APPROACH For her to see her whole body, light rays from the top of her head
(point G) and from the bottom of her foot (A) must reflect from the mirror and
enter her eye, Fig. 23–8. We don’t show two rays diverging from each point as we
did in Fig. 23–7, where we wanted to find where the image is. Now that we know
the image is the same distance behind a plane mirror as the object is in front, we
only need to show one ray leaving point G (top of head) and one ray leaving
point A (her toe), and then use geometry.

SOLUTION First consider the ray that leaves her foot at A, reflects at B, and
enters the eye at E. The mirror needs to extend no lower than B. The angle of
reflection equals the angle of incidence, so the height BD is half of the height AE.
Because then Similarly, if the
woman is to see the top of her head, the top edge of the mirror only needs to
reach point F, which is 5 cm below the top of her head (half of ).
Thus, and the mirror needs to have a vertical height of only

And the mirror’s bottom edge must be 0.75 m
above the floor.

NOTE We see that a mirror, if positioned at the correct height (as in Fig. 23–8),
need be only half as tall as a person for that person to be able to see all of himself
or herself.

(1.55 m - 0.75 m) = 0.80 m.
DF = 1.55 m,

GE = 10 cm

BD = 0.75 m.AE = 1.60 m - 0.10 m = 1.50 m,

EXAMPLE 23;2
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How tall a mirror do you need to
see a reflection of your entire self?
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1.50 m
FIGURE 23–8 Seeing oneself in a 
mirror. Example 23–2.

EXERCISE A Does the result of Example 23–2 depend on your distance from the mir-
ror? (Try it and see, it’s fun.)

EXERCISE B Return to Chapter-Opening Question 1, page 644, and answer it again now.
Try to explain why you may have answered differently the first time.

Is the photo upside down? Close exami-
nation of the photograph on the first page of this Chapter reveals that in the top
portion, the image of the Sun is seen clearly, whereas in the lower portion, the
image of the Sun is partially blocked by the tree branches. Show why the reflec-
tion is not the same as the real scene by drawing a sketch of this situation, showing
the Sun, the camera, the branch, and two rays going from the Sun to the camera
(one direct and one reflected). Is the photograph right side up?

CONCEPTUAL EXAMPLE 23;3



23–3 Formation of Images by
Spherical Mirrors

Reflecting surfaces can also be curved, usually spherical, which means they form a
section of a sphere. A spherical mirror is called convex if the reflection takes place
on the outer surface of the spherical shape so that the center of the mirror surface
bulges out toward the viewer, Fig. 23–10a. A mirror is called concave if the reflecting
surface is on the inner surface of the sphere so that the mirror surface curves away
from the viewer (like a “cave”), Fig. 23–10b. Concave mirrors are used as shaving
or cosmetic mirrors (magnifying mirrors), Fig. 23–11a, because they magnify.
Convex mirrors are sometimes used on cars and trucks (rearview mirrors) and in
shops (to watch for theft), because they take in a wide field of view, Fig. 23–11b.
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FIGURE 23–9 Example 23–3.
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FIGURE 23–10 Mirrors with convex
and concave spherical surfaces. Note
that for each ray. (The dashed
lines are perpendicular to the mirror
surface at each point shown.)

ur = ui

(b)(a)

FIGURE 23–11 (a) A concave
cosmetic mirror gives a magnified
image. (b) A convex mirror in
a store reduces image size and so
includes a wide field of view.

RESPONSE We need to draw two diagrams, one assuming the photo on p. 644
is right side up, and another assuming it is upside down. Figure 23–9 is drawn
assuming the photo is upside down. In this case, the Sun blocked by the tree
would be the direct view, and the full view of the Sun the reflection: the ray which
reflects off the water and into the camera travels at an angle below the branch,
whereas the ray that travels directly to the camera passes through the branches.
This works. Try to draw a diagram assuming the photo is right side up (thus assum-
ing that the image of the Sun in the reflection is higher above the horizon than 
it is as viewed directly). It won’t work. The photo on p. 644 is upside down.

Also, what about the people in the photo? Try to draw a diagram showing why
they don’t appear in the reflection. [Hint: Assume they are not sitting at the edge of
the pool, but back from the edge.] Then try to draw a diagram of the reverse (i.e.,
assume the photo is right side up so the people are visible only in the reflection).
Reflected images are not perfect replicas when different planes (distances) are involved.

Mirror

These rays strike the
mirror, and they are
essentially parallel.FIGURE 23–12 If the object’s distance is large compared to the size of the mirror 

(or lens), the rays arrive nearly parallel. They are parallel for an object at infinity (q).

Focal Point and Focal Length
To see how spherical mirrors form images, we first consider an object that is very
far from a concave mirror. For a distant object, as shown in Fig. 23–12, the rays
from each point on the object that strike the mirror will be nearly parallel. For an object
infinitely far away (the Sun and stars approach this), the rays would be precisely parallel.



Now consider such parallel rays falling on a concave mirror as in Fig. 23–13.
The law of reflection holds for each of these rays at the point each strikes the
mirror. As can be seen, they are not all brought to a single point. In order to form
a sharp image, the rays must come to a point. Thus a spherical mirror will not
make as sharp an image as a plane mirror will. However, as we show below,
if the mirror is small compared to its radius of curvature, so that a reflected ray
makes only a small angle with the incident ray ( in Fig. 23–14), then the rays
will cross each other at very nearly a single point, or focus. In the case shown in
Fig. 23–14, the incoming rays are parallel to the principal axis, which is defined 
as the straight line perpendicular to the curved surface at its center (line CA in
Fig. 23–14). The point F, where incident parallel rays come to a focus after reflec-
tion, is called the focal point of the mirror. The distance between F and the center
of the mirror, length FA, is called the focal length, f, of the mirror. The focal
point is also the image point for an object infinitely far away along the principal
axis. The image of the Sun, for example, would be at F.

2u
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FIGURE 23–13 Parallel rays 
striking a concave spherical mirror do
not intersect (or focus) at precisely a
single point. (This “defect” is referred
to as “spherical aberration.”)
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θ
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FIGURE 23–14 Rays parallel to the principal 
axis of a concave spherical mirror come to a 
focus at F, the focal point, as long as the mirror 
is small in width as compared to its radius of 
curvature, r, so that the rays are “paraxial”—
that is, make only small angles with the 
horizontal axis.

Now we will show, for a mirror whose reflecting surface is small compared to
its radius of curvature, that the rays very nearly meet at a common point, F, and
we will also determine the focal length f. In this approximation, we consider only
rays that make a small angle with the principal axis; such rays are called paraxial
rays, and their angles are exaggerated in Fig. 23–14 to make the labels clear. First
we consider a ray that strikes the mirror at B in Fig. 23–14. The point C is the
center of curvature of the mirror (the center of the sphere of which the mirror is
a part). So the dashed line CB is equal to r, the radius of curvature, and CB is
normal to the mirror’s surface at B. The incoming ray that hits the mirror at B
makes an angle with this normal, and hence the reflected ray, BF, also makes an
angle with the normal (law of reflection). The angle BCF is also , as shown.
The triangle CBF is isosceles because two of its angles are equal. Thus length

We assume the mirror surface is small compared to the mirror’s radius
of curvature, so the angles are small, and the length FB is nearly equal to 
length FA. In this approximation, But the focal length,
and Thus the focal length is half the radius of curvature:

[spherical mirror] (23;1)

We assumed only that the angle was small, so this result applies for all other
incident paraxial rays. Thus all paraxial rays pass through the same point F, the
focal point.

Since it is only approximately true that the rays come to a perfect focus at F,
the more curved the mirror, the worse the approximation (Fig. 23–13) and the more
blurred the image. This “defect” of spherical mirrors is called spherical aberration;
we will discuss it more with regard to lenses in Chapter 25. A parabolic reflector,
on the other hand, will reflect the rays to a perfect focus. However, because para-
bolic shapes are much harder to make and thus much more expensive, spherical
mirrors are used for most purposes. (Many astronomical telescopes use parabolic
reflectors, as do TV satellite dish antennas which concentrate radio waves to
nearly a point, Fig. 22–19.) We consider here only spherical mirrors and we will
assume that they are small compared to their radius of curvature so that the
image is sharp and Eq. 23–1 holds.

u

f =
r

2
.

CA = 2 * FA = r.
FA = f,FA = FC.

CF = FB.

uu

u
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Diverging rays
heading toward eye

Ray 3 is perpendicular 
to mirror, and so must
reflect  back on itself
and go through C
(center of
curvature).

Ray 2 goes through F
and then reflects back 
parallel to the axis.
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FIGURE 23–15 Rays leave point 
on the object (an arrow). Shown 
are the three most useful rays for 
determining where the image is 
formed. [Note that our mirror is not 
small compared to f, so our diagram 
will not give the precise position of 
the image.]

I¿

O¿

P R O B L E M  S O L V I N G

Image point is where
reflected rays intersect

Image Formation—Ray Diagrams
We saw that for an object at infinity, the image is located at the focal point of a
concave spherical mirror, where But where does the image lie for an
object not at infinity? First consider the object shown as an arrow in Fig. 23–15a,
which is placed between F and C at point O (O for object). Let us determine where
the image will be for a given point at the top of the object, by finding the point
where rays drawn from the tip of the arrow converge after reflecting from 
the mirror. To do this we can draw several rays and make sure these reflect 
from the mirror such that the angle of reflection equals the angle of incidence.

O¿

f = r�2.

R A Y  D I A G R A M

Finding the image position
for a curved mirror

Many rays could be drawn leaving any point on an object, but determining the image
position is faster if we deal with three particular rays. These are the rays labeled 
1, 2, and 3 in Fig. 23–15 and we draw them leaving object point as follows:

Ray 1 leaving is drawn parallel to the axis; therefore after reflection it must
pass along a line through F, Fig. 23–15a (just as parallel rays did in Fig. 23–14).
Ray 2 leaves and is made to pass through F (Fig. 23–15b); therefore it must
reflect so it is parallel to the axis. (In reverse, a parallel ray passes through F.)
Ray 3 is drawn along a radius of the spherical surface (Fig. 23–15c) and is
perpendicular to the mirror, so it is reflected back on itself and passes
through C, the center of curvature.

All three rays leave a single point on the object. After reflection from a (small)
mirror, the point at which these rays cross is the image point All other rays
from the same object point will also pass through this image point. To find the
image point for any object point, only these three types of rays need to be drawn.
Only two of these rays are needed, but the third serves as a check.

We have shown the image point in Fig. 23–15 only for a single point on the
object. Other points on the object are imaged nearby. For instance, the bottom of
the arrow, on the principal axis at point O, is imaged on the axis at point I. So a
complete image of the object is formed (dashed arrow in Fig. 23–15c). Because the
light actually passes through the image, this is a real image that will appear on a
white surface or film placed there. This can be compared to the virtual image
formed by a plane mirror (the light does not pass through that image, Fig. 23–7).

The image in Fig. 23–15 can be seen by the eye only when the eye is placed to
the left of the image, so that some of the rays diverging from each point on the image
(as point ) can enter the eye as shown in Fig. 23–15c (just as in Figs. 23–1 and 23–7).I¿

I¿.
O¿

O¿

O¿
O¿



Mirror equation

I

O
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F
AC
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di

do

f
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ho θ
θ

FIGURE 23–16 Diagram for 
deriving the mirror equation. For the 
derivation, we assume the mirror 
size is small compared to its radius 
of curvature.

Mirror Equation and Magnification
Image points can be determined, roughly, by drawing the three rays as just described,
Fig. 23–15. But it is difficult to draw small angles for the “paraxial” rays as we
assumed. For more accurate results, we now derive an equation that gives the image
distance if the object distance and radius of curvature of the mirror are known.
To do this, we refer to Fig. 23–16. The object distance, is the distance of the object
(point O) from the center of the mirror. The image distance, is the distance of
the image (point I) from the center of the mirror. The height of the object is
called and the height of the image, is Two rays leaving are shown:

(same as ray 2 in Fig. 23–15) and which is a fourth type of ray that
reflects at the center of the mirror and can also be used to find an image point.

O¿AI¿,O¿FBI¿
O¿hi .I¿I,ho

OO¿
di ,

do ,
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The ray obeys the law of reflection, so the two right triangles and
are similar. Therefore, we have

For the other ray shown, the triangles and AFB are also similar
because the angles at F are equal and we use the approximation (mirror
small compared to its radius). Furthermore the focal length of the
mirror, so

The left sides of the two preceding expressions are the same, so we can equate
the right sides:

We now divide both sides by and rearrange to obtain

(23;2)

This is the equation we were seeking. It is called the mirror equation and relates
the object and image distances to the focal length f (where ).

The mirror equation also holds for a plane mirror: the focal length is
(Eq. 23–1), and Eq. 23–2 gives di = –do .f = r�2 = q

f = r�2

1
do
+

1
di

=
1
f

.

do

do

di
=

do - f

f
.

ho

hi
=

OF
FA

=
do - f

f
.

FA = f,
AB = hi

O¿FOO¿FBI¿,

ho

hi
=

do

di

.

I¿AI
O¿AOO¿AI¿



The magnification, m, of a mirror is defined as the height of the image
divided by the height of the object. From our first set of similar triangles in
Fig. 23–16, or the first equation just below Fig. 23–16, we can write:

(23;3)

The minus sign in Eq.23–3 is inserted as a convention. Indeed, we must be careful about
the signs of all quantities in Eqs. 23–2 and 23–3. Sign conventions are chosen so as
to give the correct locations and orientations of images, as predicted by ray diagrams.
The sign conventions we use are:

1. the image height is positive if the image is upright, and negative if inverted,
relative to the object (assuming is taken as positive);

2. or is positive if image or object is in front of the mirror (as in Fig. 23–16);
if either image or object is behind the mirror, the corresponding distance is
negative. [An example of can be seen in Fig. 23–17, Example 23–6.]†

Thus the magnification (Eq. 23–3) is positive for an upright image and negative
for an inverted image (upside down). We summarize sign conventions more fully
in the Problem Solving Strategy following our discussion of convex mirrors later
in this Section.

Concave Mirror Examples

Image in a concave mirror. A 1.50-cm-high object is 
placed 20.0 cm from a concave mirror with radius of curvature 30.0 cm. Deter-
mine (a) the position of the image, and (b) its size.

APPROACH We determine the focal length from the radius of curvature
(Eq. 23–1), The ray diagram is basically the same as
Fig. 23–16, since the object is between F and C. The position and size of the
image are found from Eqs. 23–2 and 23–3.

SOLUTION Referring to Fig. 23–16, we have
and

(a) We start with the mirror equation, Eq. 23–2, rearranging it (subtracting 
from both sides):

So Because is positive, the image is 60.0 cm
in front of the mirror, on the same side as the object.
(b) From Eq. 23–3, the magnification is

The image is 3.0 times larger than the object, and its height is

The minus sign reminds us that the image is inverted, as shown in Fig. 23–16.

NOTE When an object is further from a concave mirror than the focal point, we
can see from Fig. 23–15 or 23–16 that the image is always inverted and real.

Reversible rays. If the object in Example 23–4
is placed instead where the image is (see Fig. 23–16), where will the new image be?

RESPONSE The mirror equation is symmetric in and Thus the new image
will be where the old object was. Indeed, in Fig. 23–16 we need only reverse the
direction of the rays to get our new situation.

di .do

CONCEPTUAL EXAMPLE 23;5

hi = mho = (–3.00)(1.5 cm) = –4.5 cm.

m = –
di

do
= –

60.0 cm
20.0 cm

= –3.00.

didi = 1�A0.0167 cm–1B = 60.0 cm.

1
di

=
1
f
-

1
do

=
1

15.0 cm
-

1
20.0 cm

= 0.0167 cm–1.

A1�doB
OA = do = 20.0 cm.15.0 cm,

FA = f =CA = r = 30.0 cm,

f = r�2 = 15.0 cm.

EXAMPLE 23;4

di 6 0

dodi

ho

hi

m =
hi

ho
= –

di

do

.
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Sign conventions for mirrors

C A U T I O N

Remember to take the reciprocal

† is always positive for a real object; can happen only if the object is an image formed by
another mirror or lens—see Example 23–16.

do 6 0do



O

2

AC F I

3

13

2

1

FIGURE 23–17 Object placed within the focal
point F. The image is behind the mirror and is
virtual, Example 23–6. [Note that the vertical scale
(height of ) is different from the
horizontal for ease of drawing,
and reduces the precision of the drawing.]

(OA = 10.0 cm)
object = 1.0 cm
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Magnifying mirror:
Seeing yourself upright and

magnified in a concave mirror

Object closer to concave mirror than focal point.

A 1.00-cm-high object is placed 10.0 cm from a concave mirror whose radius of cur-
vature is 30.0 cm. (a) Draw a ray diagram to locate (approximately) the position of
the image. (b) Determine the position of the image and the magnification analytically.

APPROACH We draw the ray diagram using the rays as in Fig. 23–15, page 651.
An analytic solution uses Eqs. 23–1, 23–2, and 23–3.

SOLUTION (a) Since the object is between the mirror and
the focal point. We draw the three rays as described earlier (Fig. 23–15); they are
shown leaving the tip of the object in Fig. 23–17. Ray 1 leaves the tip of our object
heading toward the mirror parallel to the axis, and reflects through F. Ray 2
cannot head toward F because it would not strike the mirror; so ray 2 must
point as if it started at F (dashed line in Fig. 23–17) and heads to the mirror, and
then is reflected parallel to the principal axis. Ray 3 is perpendicular to the
mirror and reflects back on itself. The rays reflected from the mirror diverge and
so never meet at a point. They appear to be coming from a point behind the
mirror (dashed lines). This point locates the image of the tip of the arrow. The
image is thus behind the mirror and is virtual.
(b) We use Eq. 23–2 to find when

Therefore, The minus sign means the image is behind 
the mirror, which our diagram also showed us. The magnification is

So the image is 3.00 times
larger than the object. The plus sign indicates that the image is upright (same as
object), which is consistent with the ray diagram, Fig. 23–17.

NOTE The image distance cannot be obtained accurately by measuring on
Fig. 23–17, because our diagram violates the paraxial ray assumption (we draw
rays at steeper angles to make them clearly visible).

NOTE When the object is located inside the focal point of a concave mirror
the image is always upright and virtual. If the object O in Fig. 23–17 is

you, you see yourself clearly, because the reflected rays at point O (you) are
diverging. Your image is upright and enlarged. This is how a shaving or cosmetic
mirror is used—you must place your head closer to the mirror than the focal
point if you are to see yourself right-side up (see the photograph, Fig. 23–11a).
[If the object is beyond the focal point, as in Fig. 23–15, the image is real and
inverted: upside down—and hard to use!]

Seeing the Image; Seeing Yourself
For a person’s eye to see a sharp image, the eye must be at a place where it inter-
cepts diverging rays from points on the image, as is the case for the eye’s position
in Figs. 23–15, 23–16, and 23–17. When we look at normal objects, we always
detect rays diverging toward the eye as shown in Fig. 23–1. (Or, for very distant 
objects like stars, the rays become essentially parallel, as in Fig. 23–12.)

Ado 6 fB,

m = –di�do = –(–30.0 cm)�(10.0 cm) = ±3.00.

di = –30.0 cm.

1
di

=
1
f
-

1
do

=
1

15.0 cm
-

1
10.0 cm

=
2 - 3

30.0 cm
= –

1
30.0 cm

.

do = 10.0 cm:di

f = r�2 = 15.0 cm,

EXAMPLE 23;6



If you placed your eye between points O and I in Fig. 23–16, for example, converging
rays from the object would enter your eye and the lens of your eye could not
bring them to a focus; you would see a blurry image or no perceptible image at
all. [We will discuss the eye more in Chapter 25.]

If you are the object in Fig. 23–16, situated between F and C, and are
trying to see yourself in the mirror, you would see a blur; but the person whose
eye is shown in Fig. 23–16 could see you clearly. If you are to the left of C in
Fig. 23–16, where , you can see yourself clearly, but upside down. Why?
Because then the rays arriving from the image will be diverging at your position
(Fig. 23–18), and your eye can then focus them. You can also see yourself clearly,
and right side up, if you are closer to the mirror than its focal point as
we saw in Example 23–6, Fig. 23–17.

Ado 6 fB,

do 7 2f

OO¿

OO¿
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I

O

C F

Ray 2

Ray 2

Ray 2

Ray 3

Ray 3
Image
of your

nose
FIGURE 23–18 You can see a clear inverted image 
of your face in a concave mirror when you are beyond C 

because the rays that arrive at your eye are 
diverging. Standard rays 2 and 3 are shown leaving point O 
on your nose. Ray 2 (and other nearby rays) enters your eye.
Notice that rays are diverging as they move to the left of 
image point I.

Ado 7 2fB,

(a) f

F CA

O A I F C

1

3

(b) do di

FIGURE 23–19 Convex mirror: (a) the
focal point is at F, behind the mirror;
(b) the image I of the object at O is
virtual, upright, and smaller than the
object. [Not to scale for Example 23–7.]

3. Sign Conventions
(a) When the object, image, or focal point is on the

reflecting side of the mirror (on the left in our
drawings), the corresponding distance is positive.
If any of these points is behind the mirror (on the
right) the corresponding distance is negative.†

(b) The image height is positive if the image is
upright, and negative if inverted, relative to the
object ( is always taken as positive).

4. Check that the analytic solution is consistent with
the ray diagram.

ho

hi

P
R

O
B

L
E

M

S O LV I N G

Spherical Mirrors
1. Always draw a ray diagram even though you are

going to make an analytic calculation—the diagram
serves as a check, even if not precise. From one point
on the object, draw at least two, preferably three, of
the easy-to-draw rays using the rules described in
Fig. 23–15. The image point is where the reflected rays
intersect (real image) or appear to intersect (virtual).

2. Apply the mirror equation, Eq. 23–2, and the magni-
fication equation, Eq. 23–3. It is crucially important
to follow the sign conventions—see the next point.

†Object distances are positive for material objects, but can be negative in systems with more than one mirror or lens—see Section 23–9.

Convex Mirrors
The analysis used for concave mirrors can be applied to convex mirrors. Even the
mirror equation (Eq. 23–2) holds for a convex mirror, although the quantities
involved must be carefully defined. Figure 23–19a shows parallel rays falling on
a convex mirror. Again spherical aberration is significant (Fig. 23–13), unless we
assume the mirror is small compared to its radius of curvature. The reflected rays
diverge, but seem to come from point F behind the mirror, Fig. 23–19a. This is
the focal point, and its distance from the center of the mirror (point A) is the
focal length, f. The equation is valid also for a convex mirror. We see
that an object at infinity produces a virtual image in a convex mirror. Indeed, no
matter where the object is placed on the reflecting side of a convex mirror, the
image will be virtual and upright, as indicated in Fig. 23–19b. To find the image
we draw rays 1 and 3 according to the rules used before on the concave mirror, as
shown in Fig. 23–19b. Note that although rays 1 and 3 don’t actually pass through
points F and C, the line along which each is drawn does (shown dashed).

The mirror equation, Eq. 23–2, holds for convex mirrors but the focal length f
and radius of curvature must be considered negative. The proof is left as a Problem.
It is also left as a Problem to show that Eq. 23–3 for the magnification is also valid.

f = r�2
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Convex rearview mirror. An external rearview car mirror
is convex with a radius of curvature of 16.0 m (Fig. 23–20). Determine the loca-
tion of the image and its magnification for an object 10.0 m from the mirror.

APPROACH We follow the steps of the Problem Solving Strategy explicitly.

SOLUTION

1. Draw a ray diagram. The ray diagram will be like Fig. 23–19b, but the large
object distance makes a precise drawing difficult. We have a
convex mirror, so r is negative by convention.

2. Mirror and magnification equations. The center of curvature of a convex mir-
ror is behind the mirror, as is its focal point, so we set so that
the focal length is The object is in front of the mirror,

Solving the mirror equation, Eq. 23–2, for gives

Thus Equation 23–3 gives the magnification

3. Sign conventions. The image distance is negative, so the image is
behind the mirror. The magnification is so the image is upright
(same orientation as object, which is useful) and about half what it would be
in a plane mirror.

4. Check. Our results are consistent with Fig. 23–19b.

m = ±0.44,
–4.4 m,

m = –
di

do
= –

(–4.4 m)

(10.0 m)
= ±0.44.

di = –80.0 m�18 = –4.4 m.

1
di

=
1
f
-

1
do

=
1

–8.0 m
-

1
10.0 m

=
–10.0 - 8.0

80.0 m
= –

18
80.0 m

.

1�dido = 10.0 m.
f = r�2 = –8.0 m.

r = –16.0 m

Ado = 10.0 mB

EXAMPLE 23;7P H Y S I C S  A P P L I E D

Convex rearviewmirror

TABLE 23–1 Indices of
Refraction†

Material

Vacuum 1.0000
Air (at STP) 1.0003
Water 1.33
Ethyl alcohol 1.36
Glass

Fused quartz 1.46
Crown glass 1.52
Light flint 1.58

Plastic
Acrylic, Lucite, CR-39 1.50
Polycarbonate 1.59
“High-index” 1.6–1.7

Sodium chloride 1.53
Diamond 2.42

†l = 589 nm.

n �
c
£

FIGURE 23–20 Example 23–7.

Convex rearview mirrors on vehicles sometimes come with a warning that
objects are closer than they appear in the mirror. The fact that may be smaller
than (as in Example 23–7) seems to contradict this observation. The real reason
the object seems farther away is that its image in the convex mirror is smaller
than it would be in a plane mirror, and we judge distance of ordinary objects 
such as other cars mostly by their size.

23–4 Index of Refraction
We saw in Chapter 22 that the speed of light in vacuum (like other EM waves) is

which is usually rounded off to

when extremely precise results are not required.
In air, the speed is only slightly less. In other transparent materials, such as

glass and water, the speed is always less than that in vacuum. For example, in water
light travels at about The ratio of the speed of light in vacuum to the speed 
in a given material is called the index of refraction, n, of that material:

(23;4)

The index of refraction is never less than 1, and values for various materials are
given in Table 23–1. For example, since for water, the speed of light 
in water is

As we shall see later, n varies somewhat with the wavelength of the light—except
in vacuum—so a particular wavelength is specified in Table 23–1, that of yellow
light with wavelength

That light travels more slowly in matter than in vacuum can be explained at
the atomic level as being due to the absorption and reemission of light by atoms
and molecules of the material.

l = 589 nm.

v =
c
n

=
A3.00 * 108 m�sB

1.33
= 2.26 * 108 m�s.

n = 1.33

n =
c
v

.

v3
4 c.

3.00 * 108 m�s

c = 2.99792458 * 108 m�s,

do

di



23–5 Refraction: Snell’s Law
When light passes from one transparent medium into another with a different
index of refraction, some or all of the incident light is reflected at the boundary.
The rest passes into the new medium. If a ray of light is incident at an angle to the
surface (other than perpendicular), the ray changes direction as it enters the new
medium. This change in direction, or bending, of the light ray is called refraction.

Figure 23–21a shows a ray passing from air into water. Angle is the angle
the incident ray makes with the normal (perpendicular) to the surface and is called
the angle of incidence. Angle is the angle of refraction, the angle the refracted ray
makes with the normal to the surface. Notice that the ray bends toward the normal
when entering the water. This is always the case when the ray enters a medium where
the speed of light is less (and the index of refraction is greater, Eq. 23–4). If light
travels from one medium into a second where its speed is greater, the ray bends away
from the normal; this is shown in Fig. 23–21b for a ray traveling from water to air.

u2

u1
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Normal

Source

Source

Air (n1)

Water (n2)

Incident
ray

Refracted
ray

Normal

Air (n2)

Water (n1)

Refracted
rayReflected

ray

Reflected
ray Incident

ray

θ2

θ2 θ1

θ1

(a) n2 > n1: Ray bends toward) (b) n1 > n2 : Ray bends away from)

FIGURE 23–21 Refraction.
(a) Light refracted when passing from
air into water 
(b) Light refracted when passing from
water into air An2B: n1 7 n2 .An1B

An2B: n2 7 n1 .An1B

C A U T I O N

Angles of incidence and refraction
are measured from the perpendicular,
not from the surface

. ... . .. ... .. . .
. . .

..

...... ... ..... ...
..

.

.

..

.

... .....

..
.

.

...... ... ..... ...
. ... . .
. .

.

..
Foot appears to be here

(b)(a)

FIGURE 23–22 (a) Photograph, and (b) ray diagram
showing why a person’s legs look shorter standing in
water: a ray from the bather’s foot to the observer’s 
eye bends at the water’s surface, and our brain
interprets the light as traveling in a straight line,
from higher up (dashed line).

Refraction is responsible for a number of common optical illusions. For example,
a person standing in waist-deep water appears to have shortened legs (Fig. 23–22).
The rays leaving the person’s foot are bent at the surface. The observer’s brain
assumes the rays to have traveled a straight-line path (dashed red line), and so the feet
appear to be higher than they really are. Similarly, when you put a straw in water, it
appears to be bent (Fig. 23–23). This also means that water is deeper than it appears.

Snell’s Law
The angle of refraction depends on the speed of light in the two media and on the
incident angle. An analytic relation between and in Fig. 23–21 was arrived 
at experimentally about 1621 by Willebrord Snell (1591–1626). Known as Snell’s law,
it is written:

(23;5)

is the angle of incidence and is the angle of refraction; and are the respec-
tive indices of refraction in the materials. See Fig. 23–21. The incident and refracted
rays lie in the same plane, which also includes the perpendicular to the surface.
Snell’s law is the law of refraction. (Snell’s law was derived in Section 11–13
for water waves where Eq. 11–20 is just a combination of Eqs. 23–5 and 23–4,
and we derive it again in Chapter 24 using the wave theory of light.)

Snell’s law shows that if then Thus, if light enters a medium
where n is greater (and its speed is less), the ray is bent toward the normal. And if

then so the ray bends away from the normal. See Fig. 23–21.u2 7 u1 ,n2 6 n1 ,

u2 6 u1 .n2 7 n1 ,

n2n1u2u1

n1 sin u1 = n2 sin u2 .

u2u1

FIGURE 23–23 A straw in water
looks bent even when it isn’t.

SNELL’S LAW 
(LAW OF REFRACTION)



Apparent depth of a pool. A swimmer has dropped her
goggles to the bottom of a pool at the shallow end, marked as 1.0 m deep. But
the goggles don’t look that deep. Why? How deep do the goggles appear to be
when you look straight down into the water?

APPROACH We draw a ray diagram showing two rays going upward from a point
on the goggles at a small angle, and being refracted at the water’s (flat) surface,
Fig. 23–25. The two rays traveling upward from the goggles are refracted away
from the normal as they exit the water, and so appear to be diverging from a
point above the goggles (dashed lines), which is why the water seems less deep
than it actually is. We are looking straight down, so all angles are small (but exag-
gerated in Fig. 23–25 for clarity).

SOLUTION To calculate the apparent depth (Fig. 23–25), given a real depth
we use Snell’s law with for water and for air:

We are considering only small angles, so with in radians. So
Snell’s law becomes

From Fig. 23–25, we see that  and  Put-
ting these into Snell’s law, we get

or

The pool seems only three-fourths as deep as it actually is.

NOTE Water in general is deeper than it looks—a useful safety guideline.

d¿  L
d
n1

=
1.0 m
1.33

= 0.75 m.

x

d¿
L   n1

x

d

u2 L n1 u1 ,
u1 L tan u1 = x�d.u2 L tan u2 = x�d¿

u2  L  n1 u1 .

usin u L tan u L u,
sin u2 = n1 sin u1 .

n2 = 1.0n1 = 1.33d = 1.0 m,
d¿

EXAMPLE 23;9
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C A U T I O N  (real life)

Water is deeper than it looks

EXERCISE C Light passes from a medium with (water) into a medium with
(glass). Is the light bent toward or away from the perpendicular to the interface?n = 1.5

n = 1.3

Refraction through flat glass. Light traveling in air strikes
a flat piece of uniformly thick glass at an incident angle of 60.0°, as shown in
Fig. 23–24. If the index of refraction of the glass is 1.50, (a) what is the angle of
refraction in the glass; (b) what is the angle at which the ray emerges from
the glass?

APPROACH We apply Snell’s law twice: at the first surface, where the light enters
the glass, and again at the second surface where it leaves the glass and enters the air.

SOLUTION (a) The incident ray is in air, so and Applying
Snell’s law where the light enters the glass gives

or

and
(b) Since the faces of the glass are parallel, the incident angle at the second surface
is also (geometry), so At this second interface,
and Thus the ray re-enters the air at an angle given by

and The direction of a light ray is thus unchanged by passing
through a flat piece of glass of uniform thickness.

NOTE This result is valid for any angle of incidence. The ray is displaced slightly
to one side, however. You can observe this by looking through a piece of glass
(near its edge) at some object and then moving your head to the side slightly so
that you see the object directly. It “jumps.”

uB = 60.0°.

sin uB =
1.50
1.00

 sin uA = 0.866,

uBn2 = 1.00.
n1 = 1.50sin uA = 0.5774.uA

uA = 35.3°.

sin uA =
1.00
1.50

 sin 60.0° = 0.5774,

(1.00) sin 60.0° = (1.50) sin uA

Au1 = 60.0°,  u2 = uAB
n2 = 1.50.n1 = 1.00

uBuA

EXAMPLE 23;8

θA

60.0°

Ray
from
object

“Image” (where object
appears to be) when
viewed from above
through the glass

θB

θA

GlassAir Air

FIGURE 23–24 Light passing
through a piece of glass
(Example 23–8).

d ′

x x

d = 1.0 m θ2

θ2

θ1

Goggles

FIGURE 23–25 Example 23–9.
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n2 (< n1) I

Source

KJ L

θCθ1θ1

n1

FIGURE 23–26 Since light rays are totally 
internally reflected if the incident angle
as for ray L. If as for rays I and J, only a 
part of the light is reflected, and the rest is refracted.

u1 6 uC ,
u1 7 uC ,

n2 6 n1 ,

23–6 Total Internal Reflection;
Fiber Optics

When light passes from one material into a second material where the index of
refraction is less (say, from water into air), the refracted light ray bends away from
the normal, as for rays I and J in Fig. 23–26. At a particular incident angle, the
angle of refraction will be 90°, and the refracted ray would skim the surface (ray K).

C A U T I O N

Total internal reflection 
(occurs only if refractive
index is smaller beyond boundary)

(b)(a)

49° 49°

FIGURE 23–27 (a) Light rays entering
submerged person’s eye, and (b) view
looking upward from beneath the 
water (the surface of the water must 
be very smooth). Example 23–10.

The incident angle at which this occurs is called the critical angle, From
Snell’s law, is given by

(23;6)

For any incident angle less than there will be a refracted ray, although part of
the light will also be reflected at the boundary. However, for incident angles 
greater than Snell’s law would tell us that ( ) would be
greater than 1.00 when Yet the sine of an angle can never be greater
than 1.00. In this case there is no refracted ray at all, and all of the light is
reflected, as for ray L in Fig. 23–26. This effect is called total internal reflection.
Total internal reflection occurs only when light strikes a boundary where the
medium beyond has a lower index of refraction.

View up from under water. Describe
what a person would see who looked up at the world from beneath the perfectly
smooth surface of a lake or swimming pool.

RESPONSE For an air–water interface, the critical angle is given by

Therefore, Thus the person would see the outside world compressed
into a circle whose edge makes a 49° angle with the vertical. Beyond this angle,
the person would see reflections from the sides and bottom of the lake or pool
(Fig. 23–27).

uC = 49°.

sin uC =
1.00
1.33

= 0.750.

CONCEPTUAL EXAMPLE 23;10

n2 6 n1 .
= n1 sin u1�n2sin u2uC ,

u1

uC ,

sin uC =
n2

n1
 sin 90° =

n2

n1

.

uC

uC .

EXERCISE D Light traveling in air strikes a glass surface with For what range
of angles will total internal reflection occur?

n = 1.48.
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Fiber optics in communications
and medicine—bronchoscopes,

colonoscopes, endoscopes

FIGURE 23–29 Light reflected
totally at the interior surface of a
glass or transparent plastic fiber.

(a) (b)
A

FIGURE 23–30 (a) How a fiber-
optic image is made. (b) Example of
a fiber-optic device inserted through
the mouth to view the vocal cords,
with the image on screen.

FIGURE 23–28 Total internal
reflection of light by prisms in
binoculars.

Many optical instruments, such as binoculars, use total internal reflection
within a prism to reflect light. The advantage is that very nearly 100% of the light
is reflected, whereas even the best mirrors reflect somewhat less than 100%. Thus
the image is brighter, especially after several reflections. For glass with

Therefore, 45° prisms will reflect all the light internally, if oriented as
shown in the binoculars of Fig. 23–28.
uC = 41.8°.

n = 1.50,

EXERCISE E What would happen if we immersed the 45° glass prisms in Fig.23–28 in water?

Fiber Optics; Medical Instruments
Total internal reflection is the principle behind fiber optics. Glass and plastic
fibers as thin as a few micrometers in diameter are commonly used. A bundle 
of such slender transparent fibers is called a light pipe or fiber-optic cable.
Light† can be transmitted along the fiber with almost no loss because of total internal
reflection. Figure 23–29 shows how light traveling down a thin fiber makes only
glancing collisions with the walls so that total internal reflection occurs. Even if
the light pipe is bent gently into a complicated shape, the critical angle still won’t be
exceeded, so light is transmitted practically undiminished to the other end. Very
small losses do occur, mainly by reflection at the ends and absorption within the fiber.

Important applications of fiber-optic cables are in communications and med-
icine. They are used in place of wire to carry telephone calls, video signals, and
computer data. The signal is a modulated light beam (a light beam whose intensity
can be varied) and data is transmitted at a much higher rate and with less loss and 
less interference than an electrical signal in a copper wire. Fibers have been devel-
oped that can support over one hundred separate wavelengths, each modulated to
carry more than 10 gigabits of information per second. That amounts to a
terabit per second for one hundred wavelengths.

The use of fiber optics to transmit a clear picture is particularly useful in medicine,
Fig. 23–30. For example, a patient’s lungs can be examined by inserting a fiber-optic
cable known as a bronchoscope through the mouth and down the bronchial tube.
Light is sent down an outer set of fibers to illuminate the lungs. The reflected light
returns up a central core set of fibers. Light directly in front of each fiber travels up
that fiber. At the opposite end, a viewer sees a series of bright and dark spots, much
like a TV screen—that is, a picture of what lies at the opposite end. Lenses are used
at each end of the cable. The image may be viewed directly or on a monitor screen
or film. The fibers must be optically insulated from one another, usually by a thin
coating of material with index of refraction less than that of the fiber. The more fibers
there are, and the smaller they are, the more detailed the picture. Such instruments,
including bronchoscopes, colonoscopes (for viewing the colon), and endoscopes
(stomach or other organs), are extremely useful for examining hard-to-reach 
places.

A1012 bitsB A1010 bitsB

†Fiber-optic devices use not only visible light but also infrared light, ultraviolet light, and microwaves.



Lens

FIGURE 23–32 Converging lens 
(in holder) forms an image (large “F”
on screen at right) of a bright 
object (illuminated “F” at the left).
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Double
convex

Planoconvex Convex
meniscus

(a) Converging lenses

(c) (d)
Double
concave

Planoconcave Concave
meniscus

(b) Diverging lenses

FIGURE 23–31 (a) Converging lenses and (b) diverging lenses, shown in cross section.
Converging lenses are thicker at the center whereas diverging lenses are thicker at the edges.
(c) Photo of a converging lens (on the left) and a diverging lens (right). (d) Converging lenses
(above), and diverging lenses (below), lying flat, and raised off the paper to form images.

FIGURE 23–33 Parallel rays are
brought to a focus by a converging
thin lens.

Consider parallel rays striking the double convex lens shown in cross section in
Fig. 23–33. We assume the lens is made of transparent material such as glass or
transparent plastic with index of refraction greater than that of the air outside. The
axis of a lens is a straight line passing through the center of the lens and perpen-
dicular to its two surfaces (Fig. 23–33). From Snell’s law, we can see that each ray in
Fig. 23–33 is bent toward the axis when the ray enters the lens and again when it
leaves the lens at the back surface. (Note the dashed lines indicating the normals to
each surface for the top ray.) If rays parallel to the axis fall on a thin lens, they will be
focused to a point called the focal point, F. This will not be precisely true for a lens
with spherical surfaces. But it will be very nearly true—that is, parallel rays will be
focused to a tiny region that is nearly a point—if the diameter of the lens is small
compared to the radii of curvature of the two lens surfaces. This criterion is satis-
fied by a thin lens, one that is very thin compared to its diameter, and we consider
only thin lenses here.

23–7 Thin Lenses; Ray Tracing
The most important simple optical device is the thin lens. The development of
optical devices using lenses dates to the sixteenth and seventeenth centuries,
although the earliest record of eyeglasses dates from the late thirteenth century.
Today we find lenses in eyeglasses, cameras, magnifying glasses, telescopes,
binoculars, microscopes, and medical instruments. A thin lens is usually circ-
ular, and its two faces are portions of a sphere. (Cylindrical faces are also
possible, but we will concentrate on spherical.) The two faces can be concave,
convex, or plane. Several types are shown in Figs. 23–31a and b in cross section.
The importance of lenses is that they form images of objects—see Fig. 23–32.

F

f

Axis



The rays from a point on a distant object are essentially parallel—see Fig. 23–12.
Therefore we can say that the focal point is the image point for an object at infinity
on the lens axis, Fig. 23–33. Thus, the focal point of a lens can be found by
locating the point where the Sun’s rays (or those from some other distant object) are
brought to a sharp image, Fig. 23–34. The distance of the focal point from the
center of the lens is called the focal length, f, Fig. 23–33. A lens can be turned
around so that light can pass through it from the opposite side. The focal length is
the same on both sides, as we shall see later, even if the curvatures of the two lens
surfaces are different. If parallel rays fall on a lens at an angle, as in Fig. 23–35, they
focus at a point The plane containing all focus points, such as F and in
Fig. 23–35, is called the focal plane of the lens.

Any lens (in air) that is thicker in the center than at the edges will make par-
allel rays converge to a point, and is called a converging lens (see Fig. 23–31a).
Lenses that are thinner in the center than at the edges (Fig. 23–31b) are called
diverging lenses because they make parallel light diverge, as shown in Fig. 23–36.
The focal point, F, of a diverging lens is defined as that point from which refracted
rays, originating from parallel incident rays, seem to emerge as shown in Fig. 23–36.
And the distance from F to the center of the lens is called the focal length, f, just
as for a converging lens.

EXERCISE F Return to Chapter-Opening Question 2, page 644, and answer it again
now. Try to explain why you may have answered differently the first time.

Optometrists and ophthalmologists, instead of using the focal length, use the
reciprocal of the focal length to specify the strength of eyeglass (or contact) lenses.
This is called the power, P, of a lens:

(23;7)

The unit for lens power is the diopter (D), which is an inverse meter:
For example, a 20-cm-focal-length lens has a power 
We will mainly use the focal length, but we will refer again to the power of a lens
when we discuss eyeglass lenses in Chapter 25.

The most important parameter of a lens is its focal length f, which is the same
on both sides of the lens. For a converging lens, f can be measured by finding 
the image point for the Sun or other distant objects. Once f is known, the image
position can be determined for any object. To find the image point by drawing rays
would be difficult if we had to determine the refractive angles at the front surface
of the lens and again at the back surface where the ray exits. We can save ourselves
a lot of effort by making use of certain facts we already know, such as that a ray
parallel to the axis of the lens passes (after refraction) through the focal point.
To determine an image point, we can consider only the three rays indicated in
Fig. 23–37, which uses an arrow (on the left) as the object, and a converging lens
forming an image (dashed arrow) to the right. These rays, emanating from a single
point on the object, are drawn as if the lens were infinitely thin, and we show only
a single sharp bend at the center line of the lens instead of the refractions at each
surface. These three rays are drawn as follows:

Ray 1 is drawn parallel to the axis, Fig. 23–37a; therefore it is refracted by the
lens so that it passes along a line through the focal point F behind the lens.

Ray 2 is drawn to pass through the other focal point (front side of lens 
in Fig. 23–37) and emerge from the lens parallel to the axis, Fig. 23–37b.
(In reverse it would be a parallel ray going left and passing through .)

Ray 3 is directed toward the very center of the lens, where the two surfaces are
essentially parallel to each other, Fig. 23–37c. This ray therefore emerges from
the lens at the same angle as it entered. The ray would be displaced slightly 
to one side, as we saw in Example 23–8; but since we assume the lens is thin,
we draw ray 3 straight through as shown.

The point where these three rays cross is the image point for that object point.
Actually, any two of these rays will suffice to locate the image point, but drawing
the third ray can serve as a check.

F¿

F¿

P = 1�(0.20 m) = 5.0 D.
1 D = 1 m–1.

P =
1
f

.
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Finding the image position 
formed by a thin lens

FIGURE 23–34 Image of the Sun
burning wood.
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FIGURE 23–36 Diverging lens.

FIGURE 23–35 Parallel rays at an
angle are focused on the focal plane.
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O
F

1

3

F′
2

Object

Image

Ray 3 passes straight through the
center of the lens (assumed very thin).

(c)

IF

1

F′
2

Ray 2 passes through F′ in front of the
lens; therefore it is parallel to the axis
behind the lens.

(b)
1

2

O
F

1

F′

Object

Ray 1 leaves one point on object
going parallel to the axis, then
refracts through focal point behind
the lens.

Center line

(a)

I

FIGURE 23–37 Finding the 
image by ray tracing for a 
converging lens. Rays are 
shown leaving one point on 
the object (an arrow). Shown 
are the three most useful 
rays, leaving the tip of the 
object, for determining 
where the image of that 
point is formed. (Note that 
the focal points F and on 
either side of the lens are 
the same distance f from
the center of the lens.)

F¿

Using these three rays for one object point, we can find the image point for
that point of the object (the top of the arrow in Fig. 23–37). The image points for
all other points on the object can be found similarly to determine the complete
image of the object. Because the rays actually pass through the image for the case
shown in Fig. 23–37, it is a real image (see pages 647 and or 651). The image
could be detected by film or electronic sensor, and actually be seen on a white
surface or screen placed at the position of the image (Fig. 23–38).

�

Half-blocked lens. What happens to the
image of an object if the top half of a lens is covered by a piece of cardboard?

RESPONSE Let us look at the rays in Fig. 23–37. If the top half (or any half of the
lens) is blocked, you might think that half the image is blocked. But in Fig. 23–37c,
we see how the rays used to create the “top” of the image pass through both 
the top and the bottom of the lens. Only three of many rays are shown—many
more rays pass through the lens, and they can form the image. You don’t lose
the image. But covering part of the lens cuts down on the total light received and
reduces the brightness of the image.

NOTE If the lens is partially blocked by your thumb, you may notice an out of
focus image of part of that thumb.

CONCEPTUAL EXAMPLE 23;11

Seeing the Image
The image can also be seen directly by the eye when the eye is placed behind the
image, as shown in Fig. 23–37c, so that some of the rays diverging from each point
on the image can enter the eye. We can see a sharp image only for rays diverging
from each point on the image, because we see normal objects when diverging rays
from each point enter the eye as shown in Fig. 23–1. A normal eye cannot focus
converging rays; if your eye was positioned between points F and I in Fig. 23–37c,
it would not see a clear image. (More about our eyes in Section 25–2.) Figure 23–38
shows an image seen (a) on a white surface and (b) directly by the eye (and a camera)
placed behind the image. The eye can see both real and virtual images (see next
page) as long as the eye is positioned so rays diverging from the image enter it.

(a)

(b)

FIGURE 23–38 (a) A converging
lens can form a real image (here of a
distant building, upside down) on a
white wall. (b) That same real image
is also directly visible to the eye.
[Figure 23–31d shows images (graph
paper) seen by the eye made by both
diverging and converging lenses.]



Diverging Lens
By drawing the same three rays emerging from a single object point, we can deter-
mine the image position formed by a diverging lens, as shown in Fig. 23–39. Note
that ray 1 is drawn parallel to the axis, but does not pass through the focal point 
behind the lens. Instead it seems to come (dashed line) from the focal point F in front
of the lens. Ray 2 is directed toward and is refracted parallel to the lens axis 
by the lens. Ray 3 passes directly through the center of the lens. The three refracted
rays seem to emerge from a point on the left of the lens. This is the image point, I.
Because the rays do not pass through the image, it is a virtual image. Note that the
eye does not distinguish between real and virtual images—both are visible.

F¿

F¿
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FIGURE 23–39 Finding 
the image by ray tracing 
for a diverging lens.

23–8 The Thin Lens Equation
We now derive an equation that relates the image distance to the object distance
and the focal length of a thin lens. This equation will make the determination of
image position quicker and more accurate than doing ray tracing. Let be the
object distance, the distance of the object from the center of the lens, and be the
image distance, the distance of the image from the center of the lens, Fig. 23–40.

di
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O
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ho
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A hi

I′

f
dido

FIGURE 23–40 Deriving the lens equation 
for a converging lens.

THIN LENS EQUATION

Let and refer to the heights of the object and image. Consider the two rays shown
in Fig. 23–40 for a converging lens, assumed to be very thin. The right triangles 
and FBA (highlighted in yellow) are similar because angle AFB equals angle 
so

since length Triangles and are similar as well. Therefore,

We equate the right sides of these two equations (the left sides are the same), and
divide by to obtain

or

(23;8)

This is called the thin lens equation. It relates the image distance to the object
distance and the focal length f. It is the most useful equation in geometric optics.
(Interestingly, it is exactly the same as the mirror equation, Eq. 23–2.)

If the object is at infinity, then so Thus the focal length is
the image distance for an object at infinity, as mentioned earlier.
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We can derive the lens equation for a diverging lens using Fig. 23–41. Trian-
gles and are similar; and triangles and AFB are similar. Thus
(noting that length )

and

When we equate the right sides of these two equations and simplify, we obtain

This equation becomes the same as Eq. 23–8 if we make f and negative. That is,
we take f to be negative for a diverging lens, and negative when the image is on
the same side of the lens as the light comes from. Thus Eq. 23–8 will be valid for
both converging and diverging lenses, and for all situations, if we use the follow-
ing sign conventions:

1. The focal length is positive for converging lenses and negative for diverging lenses.
2. The object distance is positive if the object is on the side of the lens from which

the light is coming (this is always the case for real objects; but when lenses
are used in combination, it might not be so: see Example 23–16); otherwise,
it is negative.

3. The image distance is positive if the image is on the opposite side of the lens from
where the light is coming; if it is on the same side, is negative. Equivalently,
the image distance is positive for a real image (Fig. 23–40) and negative for
a virtual image (Fig. 23–41).

4. The height of the image, is positive if the image is upright, and negative if the
image is inverted relative to the object. ( is always taken as upright and positive.)

The magnification, m, of a lens is defined as the ratio of the image height to
object height, From Figs. 23–40 and 23–41 and the conventions just
stated (for which we will need a minus sign), we have

(23;9)

For an upright image the magnification is positive, and for an inverted image the
magnification is negative.

From sign convention 1, it follows that the power (Eq. 23–7) of a converging
lens, in diopters, is positive, whereas the power of a diverging lens is negative.
A converging lens is sometimes referred to as a positive lens, and a diverging lens
as a negative lens.

Diverging lenses (see Fig. 23–41) always produce an upright virtual image for
any real object, no matter where that object is. Converging lenses can produce
real (inverted) images as in Fig. 23–40, or virtual (upright) images, depending on
object position, as we shall see.
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diverging lens
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FIGURE 23–41 Deriving the lens
equation for a diverging lens.



Image formed by converging lens. What is (a) the posi-
tion, and (b) the size, of the image of a 7.6-cm-high leaf placed 1.00 m from a

-mm-focal-length camera lens?

APPROACH We follow the steps of the Problem Solving Strategy explicitly.

SOLUTION

1. Ray diagram. Figure 23–42 is an approximate ray diagram, showing only rays 1
and 3 for a single point on the leaf. We see that the image ought to be a little
behind the focal point F, to the right of the lens.

2. Thin lens and magnification equations. (a) We find the image position analyt-
ically using the thin lens equation, Eq. 23–8. The camera lens is converging,
with and and so the thin lens equation gives

Then, taking the reciprocal,

or 52.6 mm behind the lens.
(b) The magnification is

so

The image is 4.0 mm high.
3. Sign conventions. The image distance came out positive, so the image is

behind the lens. The image height is the minus sign means
the image is inverted.

4. Consistency. The analytic results of steps 2 and 3 are consistent with the 
ray diagram, Fig. 23–42: the image is behind the lens and inverted.

NOTE Part (a) tells us that the image is 2.6 mm farther from the lens than the
image for an object at infinity, which would equal the focal length, 50.0 mm.
Indeed, when focusing a camera lens, the closer the object is to the camera, the
farther the lens must be from the sensor or film.

hi = –0.40 cm;
di

hi = mho = (–0.0526)(7.6 cm) = –0.40 cm.

m = –
di

do
= –

5.26 cm
100 cm

= –0.0526,

di =
100 cm

19.0
= 5.26 cm,

=
20.0 - 1.0

100 cm
=

19.0
100 cm

.1
di

=
1
f
-

1
do

=
1

5.00 cm
-

1
100 cm

do = 100 cm,f = ±5.00 cm,

±50.0

EXAMPLE 23;12

666 CHAPTER 23 Light: Geometric Optics

Image
Leaf

100 cm

Axis

1

3 F

F'

O'

FIGURE 23–42 Example 23–12.
(Not to scale.)

EXERCISE G If the leaf (object) of Example 23–12 is moved farther from the lens, does
the image move closer to or farther from the lens? (Don’t calculate!)

2. For analytic solutions, solve for unknowns in the
thin lens equation (Eq. 23–8) and the magnification
equation (Eq. 23–9). The thin lens equation involves
reciprocals—don’t forget to take the reciprocal.

3. Follow the sign conventions listed just above.
4. Check that your analytic answers are consistent with

your ray diagram.
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M
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Thin Lenses
1. Draw a ray diagram, as precise as possible, but even

a rough one can serve as confirmation of analytic
results. Choose one point on the object and draw at
least two, or preferably three, of the easy-to-draw
rays described in Figs. 23–37 and 23–39. The image
point is where the rays intersect.
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Object close to converging lens. An object is placed
10 cm from a 15-cm-focal-length converging lens. Determine the image position
and size (a) analytically, and (b) using a ray diagram.

APPROACH The object is within the focal point—closer to the lens than the
focal point F as We first use Eqs. 23–8 and 23–9 to obtain an analytic
solution, and then confirm with a ray diagram using the special rays 1, 2, and 3
for a single object point.

SOLUTION (a) Given and then

and (Remember to take the reciprocal!) Because is negative,
the image must be virtual and on the same side of the lens as the object (sign
convention 3, page 665). The magnification

The image is three times as large as the object and is upright. This lens is being
used as a magnifying glass, which we discuss in more detail in Section 25–3.
(b) The ray diagram is shown in Fig. 23–43 and confirms the result in part (a). We
choose point on the top of the object and draw ray 1. Ray 2, however, may
take some thought: if we draw it heading toward it is going the wrong way—so
we have to draw it as if coming from (and so dashed), striking the lens, and
then going out parallel to the lens axis. We project it backward, with a dashed
line, as we must do also for ray 1, in order to find where they cross. Ray 3 is drawn
through the lens center, and it crosses the other two rays at the image point,

NOTE From Fig. 23–43 we can see that, when an object is placed between a
converging lens and its focal point, the image is virtual.
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= –

–30 cm
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= 3.0.

didi = –30 cm.
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1
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,
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do 6 f.

EXAMPLE 23;13

C A U T I O N

Don’t forget to take the reciprocal

I FF′ O

2

3

2I′

1
O′

1
FIGURE 23–43 An object placed
within the focal point of a
converging lens produces a virtual
image. Example 23–13.

Diverging lens. Where must a small insect be placed if a
25-cm-focal-length diverging lens is to form a virtual image 20 cm from the lens,
on the same side as the object?

APPROACH The ray diagram is basically that of Fig. 23–41 because our lens here
is diverging and our image is given as in front of the lens within the focal distance.
(It would be a valuable exercise to draw the ray diagram to scale, precisely, now.)
The insect’s distance, can be calculated using the thin lens equation.

SOLUTION The lens is diverging, so f is negative: The image
distance must be negative too because the image is in front of the lens (sign 
conventions), so The lens equation, Eq. 23–8, gives

So the object must be 100 cm in front of the lens.

1
do

=
1
f
-

1
di

= –
1

25 cm
+

1
20 cm

=
–4 + 5
100 cm

=
1

100 cm
.

di = –20 cm.

f = –25 cm.

do ,

EXAMPLE 23;14
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Object distance 
for second lens is not

equal to the image 
distance for first lens
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FIGURE 23–44 Two lenses,
A and B, used in combination,
Example 23–15. The small numbers
refer to the easily drawn rays.

A two-lens system. Two converging lenses, A and B, with
focal lengths and are placed 80.0 cm apart, as shown
in Fig. 23–44a. An object is placed 60.0 cm in front of the first lens as shown in
Fig. 23–44b. Determine (a) the position, and (b) the magnification, of the final
image formed by the combination of the two lenses.

APPROACH Starting at the tip of our object O, we draw rays 1, 2, and 3 for the
first lens, A, and also a ray 4 which, after passing through lens A, acts for the
second lens, B, as ray (through the center). We use primes now for the standard
rays relative to lens B. Ray 2 for lens A exits parallel, and so is ray for lens B.
To determine the position of the image formed by lens A, we use Eq. 23–8
with and The distance of (lens A’s image)
from lens B is the object distance for lens B. The final image is found using
the thin lens equation, this time with all distances relative to lens B. For (b) the
magnifications are found from Eq. 23–9 for each lens in turn.

SOLUTION (a) The object is a distance from the first lens, A,
and this lens forms an image whose position can be calculated using the thin lens
equation:

So the first image is at behind the first lens. This image
becomes the object for the second lens, B. It is a distance 

in front of lens B (Fig. 23–44b). The image formed
by lens B, again using the thin lens equation, is at a distance from the lens B:

Hence behind lens B. This is the final image—see Fig. 23–44b.diB = 50.0 cm

1
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-
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fB = 25.0 cm,fA = 20.0 cm
EXAMPLE 23;15

23–9 Combinations of Lenses
Many optical instruments use lenses in combination. When light passes through
more than one lens, we find the image formed by the first lens as if it were alone.
Then this image becomes the object for the second lens. Next we find the image 
formed by this second lens using the first image as object. This second image is
the final image if there are only two lenses. The total magnification will be the
product of the separate magnifications of each lens. Even if the second lens inter-
cepts the light from the first lens before it forms an image, this technique still
works.

*



Measuring f for a diverging lens. To measure the focal
length of a diverging lens, a converging lens is placed in contact with it, as shown
in Fig. 23–45. The Sun’s rays are focused by this combination at a point 28.5 cm
behind the lenses as shown. If the converging lens has a focal length of 16.0 cm,
what is the focal length of the diverging lens? Assume both lenses are thin
and the space between them is negligible.

APPROACH The image distance for the first lens equals its focal length (16.0 cm)
since the object distance is infinity The position of this image, even though
it is never actually formed, acts as the object for the second (diverging) lens. We
apply the thin lens equation to the diverging lens to find its focal length, given
that the final image is at

SOLUTION Rays from the Sun are focused 28.5 cm behind the combination,
so the focal length of the total combination is If the diverging lens
was absent, the converging lens would form the image at its focal point—that is,
at a distance behind it (dashed lines in Fig. 23–45). When the
diverging lens is placed next to the converging lens, we treat the image formed
by the first lens as the object for the second lens. Since this object lies to the
right of the diverging lens, this is a situation where is negative (see the sign
conventions, page 665). Thus, for the diverging lens, the object is virtual and

The diverging lens forms the image of this virtual object at a
distance away (given). Thus,

We take the reciprocal to find

NOTE If this technique is to work, the converging lens must be “stronger” than
the diverging lens—that is, it must have a focal length whose magnitude is less
than that of the diverging lens.

fD = –1�A0.0274 cm–1B = –36.5 cm.

1
fD

=
1
do
+

1
di

=
1

–16.0 cm
+

1
28.5 cm

= –0.0274 cm–1.

di = 28.5 cm
do = –16.0 cm.

do

fC = 16.0 cm

fT = 28.5 cm.

di = 28.5 cm.

(q).

fD

fC

EXAMPLE 23;16
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Total magnification is
mtotal = mA mB

(b) Lens A has a magnification (Eq. 23–9)

Thus, the first image is inverted and is half as high as the object (again Eq. 23–9):

Lens B takes this first image as object and changes its height by a factor

The second lens reinverts the image (the minus sign) but doesn’t change its size.
The final image height is (remember is the same as )

The total magnification is the product of and which here equals
or half the original height, and the final

image is upright.
mA mB = (–1.000)(–0.500) = ±0.500,

mtotal =mB ,mA

hiB = mB hoB = mB hiA = mB mA hoA = AmtotalBhoA .
hiAhoB

mB = –
diB

doB
= –

50.0 cm
50.0 cm

= –1.000.

hiA = mAhoA = –0.500hoA .

mA = –
diA

doA
= –

30.0 cm
60.0 cm

= –0.500.

fT  = 28.5 cm
fC

Image point
made by first lens
(object point
for second lens)

Image made by
second lens
(final image)

FIGURE 23–45 Determining the 
focal length of a diverging lens.
Example 23–16.



Calculating f for a converging lens. A convex meniscus
lens (Figs. 23–31a and 23–46) is made from glass with The radius of
curvature of the convex surface (left in Fig. 23–46) is 22 cm. The surface on the
right is concave with radius of curvature 46 cm. What is the focal length?

APPROACH We use the lensmaker’s equation, Eq. 23–10, to find f.

SOLUTION and (concave surface). Then

So

and the lens is converging since

NOTE If we turn the lens around so that and we
get the same result.

NOTE Because Eq. 23–10 gives 1/f, it gives directly the power of a lens in diopters,
Eq. 23–7. The power of this lens is about 1.2 D.

R2 = ±22 cm,R1 = –46 cm

f 7 0.

f =
1

1.19 m–1
= 0.84 m,

1
f

= (1.50 - 1.00) a 1
0.22 m

-
1

0.46 m
b = 1.19 m–1.

R2 = –0.46 mR1 = 0.22 m

n = 1.50.
EXAMPLE 23;17
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Light appears to travel along straight-line paths, called rays,
through uniform transparent materials including air and glass.
When light reflects from a flat surface, the angle of reflection
equals the angle of incidence. This law of reflection explains why
mirrors can form images.

In a plane mirror, the image is virtual, upright, the same size
as the object, and as far behind the mirror as the object is in front.

A spherical mirror can be concave or convex. A concave
spherical mirror focuses parallel rays of light (light from a very
distant object) to a point called the focal point. The distance of
this point from the mirror is the focal length f of the mirror and

(23;1)

where r is the radius of curvature of the mirror.
Parallel rays falling on a convex mirror reflect from the

mirror as if they diverged from a common point behind the
mirror. The distance of this point from the mirror is the focal
length and is considered negative for a convex mirror.

For a given object, the approximate position and size of the
image formed by a mirror can be found by ray tracing. Algebrai-
cally, the relation between image and object distances, and 
and the focal length f, is given by the mirror equation:

(23;2)
1

do
+

1
di

=
1
f

.

do ,di

f =
r

2

The ratio of image height to object height which
equals the magnification m of a mirror, is

(23;3)

If the rays that converge to form an image actually pass
through the image, so the image would appear on a screen or
film placed there, the image is said to be a real image. If the
light rays do not actually pass through the image, the image is a
virtual image.

The speed of light v depends on the index of refraction, n, of
the material:

(23;4)

where c is the speed of light in vacuum.
When light passes from one transparent medium into

another, the rays bend or refract. The law of refraction
(Snell’s law) states that

(23;5)

where and are the index of refraction and angle with the
normal (perpendicular) to the surface for the incident ray, and

and are for the refracted ray.
When light rays reach the boundary of a material where the

index of refraction decreases, the rays will be totally internally
reflected if the incident angle, is such that Snell’s law wouldu1 ,

u2n2

u1n1

n1 sin u1 = n2 sin u2 ,

n =
c
v

,

m =
hi

ho
= –

di

do

.

ho ,hi

Summary

R2 = −46 cm

R
1 =22 cm

C1 C2

FIGURE 23–46 Example 23–17.
The left surface is convex (center
bulges outward); the right surface is
concave.

23–10 Lensmaker’s Equation
A useful equation, called the lensmaker’s equation, relates the focal length of a lens 
to the radii of curvature and of its two surfaces and its index of refraction n:

(23;10)

If both surfaces are convex, and are considered positive.† For a concave
surface, the radius must be considered negative.

Notice that Eq. 23–10 is symmetrical in and Thus, if a lens is turned
around so that light impinges on the other surface, the focal length is the same
even if the two lens surfaces are different. This confirms what we said earlier:
a lens’ focal length is the same on both sides of the lens.

R2 .R1

R2R1

1
f

= (n - 1) ¢ 1
R1
+

1
R2
≤ .

R2R1

*

Lensmaker’s equation

†Some books use a different convention: and may be considered positive if their centers of cur-
vature are to the right of the lens; then a minus sign replaces the sign in their version of Eq. 23–10.+

R2R1
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Questions 671

1. Archimedes is said to have burned the whole Roman fleet
in the harbor of Syracuse, Italy, by focusing the rays of the
Sun with a huge spherical mirror. Is this† reasonable?

2. What is the focal length of a plane mirror? What is the mag-
nification of a plane mirror?

3. Although a plane mirror appears to reverse left and right,
it doesn’t reverse up and down. Discuss why this happens,
noting that front to back is also reversed. Also discuss what
happens if, while standing, you look up vertically at a
horizontal mirror on the ceiling.

4. An object is placed along the principal axis of a spherical
mirror. The magnification of the object is Is the image
real or virtual, inverted or upright? Is the mirror concave or
convex? On which side of the mirror is the image located?

5. If a concave mirror produces a real image, is the image
necessarily inverted? Explain.

6. How might you determine the speed of light in a solid, rec-
tangular, transparent object?

7. When you look at 
the Moon’s reflection
from a ripply sea, it
appears elongated
(Fig. 23–47). Explain.

–2.0.

Questions

FIGURE 23–47

Question 7.

9. When you look down into a swimming pool or a lake, are you
likely to overestimate or underestimate its depth? Explain.
How does the apparent depth vary with the viewing angle?
(Use ray diagrams.)

10. Draw a ray diagram to show why a stick or straw looks bent
when part of it is under water (Fig. 23–23).

11. When a wide beam of parallel light enters water at an angle,
the beam broadens. Explain.

12. You look into an aquarium and view a fish inside. One ray
of light from the fish is shown emerging from the tank 
in Fig. 23–48. The apparent position of the fish is also
shown (dashed ray). In the drawing,
indicate the approximate position
of the actual fish. Briefly justify
your answer.

FIGURE 23–48

Question 12.

†Students at MIT did a feasibility study. See 
www.mit.edu/2.009/www/experiments/deathray/10_ArchimedesResult.html.

predict This occurs if exceeds the critical angle 
given by

(23;6)

A lens uses refraction to produce a real or virtual image.
Parallel rays of light are focused to a point, the focal point, by a
converging lens. The distance of the focal point from the lens is
the focal length f of the lens. It is the same on both sides of the lens.

After parallel rays pass through a diverging lens, they
appear to diverge from a point in front of the lens, which is its
focal point; and the corresponding focal length is considered
negative.

The power P of a lens, which is (Eq. 23–7), is
given in diopters, which are units of inverse meters 

For a given object, the position and size of the image formed
by a lens can be found approximately by ray tracing. Algebrai-
cally, the relation between image and object distances, and do ,di

Am–1B.
P = 1�f

sin uC =
n2

n1
.

uCu1sin u2 7 1. and the focal length f, is given by the thin lens equation:

(23;8)

The ratio of image height to object height, which equals
the magnification m for a lens, is

(23;9)

When using the various equations of geometric optics, you
must remember the sign conventions for all quantities involved:
carefully review them (pages 655 and 665) when doing Problems.

[*When two (or more) thin lenses are used in combination
to produce an image, the thin lens equation can be used for each
lens in sequence. The image produced by the first lens acts as
the object for the second lens.]

[*The lensmaker’s equation relates the radii of curvature
of the lens surfaces and the lens’ index of refraction to the focal
length of the lens.]

m =
hi

ho
= –

di

do

.

1
do
+

1
di

=
1
f

.

8. What is the angle of refraction when a light ray is incident
perpendicular to the boundary between two transparent
materials?

13. How can you “see” a round drop of water on a table even
though the water is transparent and colorless?

14. A ray of light is refracted through three different materials
(Fig. 23–49). Which material
has (a) the largest index of
refraction, (b) the smallest?

FIGURE 23–49

Question 14.

15. A child looks into a pool to see how deep it is. She then
drops a small toy into the pool to help decide how deep the
pool is. After this careful investigation, she decides it is safe
to jump in—only to discover the water is over her head.
What went wrong with her interpretation of her experiment?

16. Can a light ray traveling in air be totally reflected when it
strikes a smooth water surface if the incident angle is chosen
correctly? Explain.

www.mit.edu/2.009/www/experiments/deathray/10_ArchimedesResult.html
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1. Suppose you are standing about 3 m in front of a mirror.
You can see yourself just from the top of your head to your
waist, where the bottom of the mirror cuts off the rest of
your image. If you walk one step closer to the mirror
(a) you will not be able to see any more of your image.
(b) you will be able to see more of your image, below

your waist.
(c) you will see less of your image, with the cutoff rising

to be above your waist.

2. When the reflection of an object is seen in a flat mirror, the
image is
(a) real and upright.
(b) real and inverted.
(c) virtual and upright.
(d) virtual and inverted.

3. You want to create a spotlight that will shine a bright beam
of light with all of the light rays parallel to each other. You
have a large concave spherical mirror and a small light-
bulb. Where should you place the lightbulb?
(a) At the focal point of the mirror.
(b) At the radius of curvature of the mirror.
(c) At any point, because all rays bouncing off the mirror

will be parallel.
(d) None of the above; you can’t make parallel rays with a

concave mirror.

4. When you look at a fish in a still stream from the bank, the
fish appears shallower than it really is due to refraction.
From directly above, it appears
(a) deeper than it really is.
(b) at its actual depth.
(c) shallower than its real depth.
(d) It depends on your height above the water.

5. Parallel light rays cross interfaces from medium 1 into
medium 2 and then into medium 3 as shown in Fig. 23–51.
What can we say about the relative sizes of the indices of
refraction of these media?
(a)
(b)
(c)
(d)
(e)
(f) None of the above.

n2 7 n1 7 n3 .
n1 7 n3 7 n2 .
n2 7 n3 7 n1 .
n3 7 n2 7 n1 .
n1 7 n2 7 n3 .

MisConceptual Questions

17. What type of mirror is shown in Fig. 23–50? Explain. 24. A thin converging lens is moved closer to a nearby object.
Does the real image formed change (a) in position, (b) in
size? If yes, describe how.

25. If a glass converging lens is placed in water, its focal length
in water will be (a) longer, (b) shorter, or (c) the same as in
air. Explain.

26. Compare the mirror equation with the thin lens equation.
Discuss similarities and differences, especially the sign
conventions for the quantities involved.

27. A lens is made of a material with an index of refraction
In air, it is a converging lens. Will it still be a con-

verging lens if placed in water? Explain, using a ray diagram.
28. (a) Does the focal length of a lens depend on the fluid in

which it is immersed? (b) What about the focal length of
a spherical mirror? Explain.

29. An underwater lens consists of a carefully shaped thin-
walled plastic container filled with air. What shape should
it have in order to be (a) converging, (b) diverging? Use ray
diagrams to support your answer.

30. The thicker a double convex lens is in the center as com-
pared to its edges, the shorter its focal length for a given
lens diameter. Explain.

*31. A non-symmetrical lens (say, planoconvex) forms an image
of a nearby object. Use the lensmaker’s equation to explain
if the image point changes when the lens is turned around.

*32. Example 23–16 shows how to use a converging lens to
measure the focal length of a diverging lens. (a) Why can’t
you measure the focal length of a diverging lens directly?
(b) It is said that for this to work, the converging lens must
be stronger than the diverging lens. What is meant by
“stronger,” and why is this statement true?

n = 1.25.

1

2

3
FIGURE 23–51

MisConceptual
Question 5.

FIGURE 23–50

Question 17 and
Problem 15.

18. Light rays from stars (including our Sun) always bend toward
the vertical direction as they pass through the Earth’s
atmosphere. (a) Why does this make sense? (b) What can
you conclude about the apparent positions of stars as viewed
from Earth? Draw a circle for Earth, a dot for you, and 
3 or 4 stars at different angles.

19. Where must the film be placed if a camera lens is to make a
sharp image of an object far away? Explain.

20. A photographer moves closer to his subject and then refocuses.
Does the camera lens move farther away from or closer to
the camera film or sensor? Explain.

21. Can a diverging lens form a real image under any circum-
stances? Explain.

22. Light rays are said to be “reversible.” Is this consistent with
the thin lens equation? Explain.

23. Can real images be projected on a screen? Can virtual images?
Can either be photographed? Discuss carefully.

6. To shoot a swimming fish with an intense light beam from
a laser gun, you should aim
(a) directly at the image.
(b) slightly above the image.
(c) slightly below the image.



23–2 Reflection; Plane Mirrors

1. (I) When you look at yourself in a 60-cm-tall plane mirror,
you see the same amount of your body whether you are
close to the mirror or far away. (Try it and see.) Use ray
diagrams to show why this should be true.

2. (I) Suppose that you want to take a photograph of yourself
as you look at your image in a mirror 3.1 m away. For what
distance should the camera lens be focused?

3. (II) Two plane mirrors meet at a 135° angle,
Fig. 23–52. If light rays strike one mirror
at 34° as shown, at what angle do
they leave the second mirror?

f

Problems

34°

φ

FIGURE 23–52

Problem 3. 6. (II) Two plane mirrors, nearly parallel, are facing each other
2.3 m apart as in Fig. 23–55. You stand 1.6 m away from one of
these mirrors and look into it. You will see multiple images of
yourself. (a) How far away from you are the first three images
of yourself in the mirror in
front of you? (b) Are these
first three images facing
toward you or away from
you?

7. When moonlight strikes the surface of a calm lake, what
happens to this light?
(a) All of it reflects from the water surface back to the air.
(b) Some of it reflects back to the air; some enters the water.
(c) All of it enters the water.
(d) All of it disappears via absorption by water molecules.

8. If you shine a light through an optical fiber, why does it come
out the end but not out the sides?
(a) It does come out the sides, but this effect is not obvious

because the sides are so much longer than the ends.
(b) The sides are mirrored, so the light reflects.
(c) Total internal reflection makes the light reflect from the

sides.
(d) The light flows along the length of the fiber, never

touching the sides.

9. A converging lens, such as a typical magnifying glass,
(a) always produces a magnified image (taller than object).
(b) always produces an image smaller than the object.
(c) always produces an upright image.
(d) always produces an inverted image (upside down).
(e) None of these statements are true.

10. Virtual images can be formed by
(a) only mirrors.
(b) only lenses.
(c) only plane mirrors.
(d) only curved mirrors or lenses.
(e) plane and curved mirrors, and lenses.

4. (II) A person whose eyes are 1.72 m above the floor stands
2.20 m in front of a vertical plane mirror whose bottom edge
is 38 cm above the floor, Fig. 23–53. What is the horizontal
distance x to the base of the wall supporting the mirror of
the nearest point on the floor
that can be seen reflected in
the mirror?

2.20 m

x
38 cm

1.72 m
FIGURE 23–53

Problem 4.

5. (II) Stand up two plane mirrors so they form a 90.0° angle
as in Fig. 23–54. When you
look into this double mirror,
you see yourself as others
see you, instead of reversed
as in a single mirror. Make a
ray diagram to show how
this occurs.

FIGURE 23–54

Problem 5.

2.3 m

1.6 m

FIGURE 23–55

Problem 6.

11. A lens can be characterized by its power, which
(a) is the same as the magnification.
(b) tells how much light the lens can focus.
(c) depends on where the object is located.
(d) is the reciprocal of the focal length.

12. You cover half of a lens that is forming an image on a screen.
Compare what happens when you cover the top half of the
lens versus the bottom half.
(a) When you cover the top half of the lens, the top half of

the image disappears; when you cover the bottom half
of the lens, the bottom half of the image disappears.

(b) When you cover the top half of the lens, the bottom half
of the image disappears; when you cover the bottom half
of the lens, the top half of the image disappears.

(c) The image becomes half as bright in both cases.
(d) Nothing happens in either case.
(e) The image disappears in both cases.

13. Which of the following can form an image?
(a) A plane mirror.
(b) A curved mirror.
(c) A lens curved on both sides.
(d) A lens curved on only one side.
(e) All of the above.

14. As an object moves from just outside the focal point of a con-
verging lens to just inside it, the image goes from _____ and
_____ to _____ and _____.
(a) large; inverted; large; upright.
(b) large; upright; large; inverted.
(c) small; inverted; small; upright.
(d) small; upright; small; inverted.

Problems 673

For assigned homework and other learning materials, go to the MasteringPhysics website.
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7. (III) Suppose you are 94 cm from a plane mirror. What area
of the mirror is used to reflect the rays entering one eye
from a point on the tip of your nose if your pupil diameter
is 4.5 mm?

23–3 Spherical Mirrors

8. (I) A solar cooker, really a concave mirror pointed at the
Sun, focuses the Sun’s rays 18.8 cm in front of the mirror.
What is the radius of the spherical surface from which the
mirror was made?

9. (I) How far from a concave mirror (radius 21.0 cm) must an
object be placed if its image is to be at infinity?

10. (II) A small candle is 38 cm from a concave mirror having
a radius of curvature of 24 cm. (a) What is the focal length
of the mirror? (b) Where will the image of the candle be
located? (c) Will the image be upright or inverted?

11. (II) An object 3.0 mm high is placed 16 cm from a convex
mirror of radius of curvature 16 cm. (a) Show by ray tracing
that the image is virtual, and estimate the image distance.
(b) Show that the (negative) image distance can be computed
from Eq. 23–2 using a focal length of (c) Compute
the image size, using Eq. 23–3.

12. (II) A dentist wants a small mirror that, when 2.00 cm from
a tooth, will produce a upright image. What kind of
mirror must be used and what must its radius of curvature be?

13. (II) You are standing 3.4 m from a convex security mirror
in a store. You estimate the height of your image to be half
of your actual height. Estimate the radius of curvature of
the mirror.

14. (II) The image of a distant tree is virtual and very small
when viewed in a curved mirror. The image appears to be
19.0 cm behind the mirror. What kind of mirror is it, and
what is its radius of curvature?

15. (II) A mirror at an amusement park shows an upright
image of any person who stands 1.9 m in front of it. If the
image is three times the person’s height, what is the radius
of curvature of the mirror? (See Fig. 23–50.)

16. (II) In Example 23–4, show that if the object is moved 10.0 cm
farther from the concave mirror, the object’s image size
will equal the object’s actual size. Stated as a multiple of the
focal length, what is the object distance for this “actual-sized
image” situation?

17. (II) You look at yourself in a shiny 8.8-cm-diameter Christ-
mas tree ball. If your face is 25.0 cm away from the ball’s
front surface, where is your image? Is it real or virtual? Is
it upright or inverted?

18. (II) Some rearview mirrors produce images of cars to your
rear that are smaller than they would be if the mirror were
flat. Are the mirrors concave or convex? What is a mirror’s
radius of curvature if cars 16.0 m away appear 0.33 their
normal size?

19. (II) When walking toward a concave mirror you notice that
the image flips at a distance of 0.50 m. What is the radius 
of curvature of the mirror?

20. (II) (a) Where should an object be placed in front of a
concave mirror so that it produces an image at the same
location as the object? (b) Is the image real or virtual?
(c) Is the image inverted or upright? (d) What is the mag-
nification of the image?

4.0*

–8.0 cm.

21. (II) A shaving or makeup mirror is designed to magnify your
face by a factor of 1.40 when your face is placed 20.0 cm in
front of it. (a) What type of mirror is it? (b) Describe the
type of image that it makes of your face. (c) Calculate the
required radius of curvature for the mirror.

22. (II) Use two techniques, (a) a ray diagram, and (b) the mirror
equation, to show that the magnitude of the magnification
of a concave mirror is less than 1 if the object is beyond 
the center of curvature and is greater than 1 
if the object is within 

23. (III) Show, using a ray diagram, that the magnification m of
a convex mirror is just as for a concave mirror.
[Hint: Consider a ray from the top of the object that reflects
at the center of the mirror.]

24. (III) An object is placed a distance r in front of a wall,
where r exactly equals the radius of curvature of a certain
concave mirror. At what distance from the wall should this
mirror be placed so that a real image of the object is
formed on the wall? What is the magnification of the image?

23–4 Index of Refraction

25. (I) The speed of light in ice is What is the
index of refraction of ice?

26. (I) What is the speed of light in (a) ethyl alcohol, (b) lucite,
(c) crown glass?

27. (II) The speed of light in a certain substance is 82% of its
value in water. What is the index of refraction of that 
substance?

23–5 Refraction; Snell’s Law

28. (I) A flashlight beam strikes the surface of a pane of glass
at a 67° angle to the normal. What is the angle

of refraction?

29. (I) A diver shines a flashlight upward from beneath the
water at a 35.2° angle to the vertical. At what angle does
the light leave the water?

30. (I) A light beam coming from an underwater spotlight
exits the water at an angle of 56.0°. At what angle of
incidence did it hit the air–water interface from below the
surface?

31. (I) Rays of the Sun are seen to make a 36.0° angle to the
vertical beneath the water. At what angle above the horizon
is the Sun?

32. (II) An aquarium filled with water has flat glass sides whose
index of refraction is 1.54. A beam of light from outside
the aquarium strikes the glass at a 43.5° angle to the
perpendicular (Fig. 23–56). What is the angle of this light
ray when it enters (a) the glass, and
then (b) the water? (c) What would be
the refracted angle if the ray entered
the water directly?

(n = 1.56)

2.29 * 108 m�s.

m = –di�do ,

C Ado 6 rB.
C Ado 7 rB,

43.5°

Water

Glass
Air

FIGURE 23–56

Problem 32.

33. (II) A beam of light in air strikes a slab of glass 
and is partially reflected and partially refracted. Determine
the angle of incidence if the angle of reflection is twice the
angle of refraction.

(n = 1.51)
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34. (II) In searching the bottom of a pool at night, a watchman
shines a narrow beam of light from his flashlight, 1.3 m
above the water level, onto the surface of the water at a
point 2.5 m from his foot
at the edge of the pool
(Fig. 23–57). Where does
the spot of light hit the bot-
tom of the 2.1-m-deep
pool? Measure from the
bottom of the wall beneath
his foot.

44. (II) A certain lens focuses light from an object 1.55 m away
as an image 48.3 cm on the other side of the lens. What
type of lens is it and what is its focal length? Is the image
real or virtual?

45. (II) A 105-mm-focal-length lens is used to focus an image
on the sensor of a camera. The maximum distance allowed
between the lens and the sensor plane is 132 mm. (a) How
far in front of the sensor should the lens (assumed thin) be
positioned if the object to be photographed is 10.0 m away?
(b) 3.0 m away? (c) 1.0 m away? (d) What is the closest
object this lens could photograph sharply?

46. (II) Use ray diagrams to show that a real image formed by
a thin lens is always inverted, whereas a virtual image is
always upright if the object is real.

47. (II) A stamp collector uses a converging lens with focal
length 28 cm to view a stamp 16 cm in front of the lens.
(a)Where is the image located? (b) What is the magnification?

48. (II) It is desired to magnify reading material by a factor of
when a book is placed 9.0 cm behind a lens. (a) Draw

a ray diagram and describe the type of image this would
be. (b) What type of lens is needed? (c) What is the power
of the lens in diopters?

49. (II) A lens is held 12.5 cm from an ant 1.00 mm
high. Describe the position, type, and height of the image.

50. (II) An object is located 1.50 m from a 6.5-D lens. By how
much does the image move if the object is moved (a) 0.90 m
closer to the lens, and (b) 0.90 m farther from the lens?

51. (II) (a) How far from a 50.0-mm-focal-length lens must an
object be placed if its image is to be magnified and
be real? (b) What if the image is to be virtual and magni-
fied

52. (II) Repeat Problem 51 for a lens.
[Hint: Consider objects real or virtual (formed by some
other piece of optics).]

53. (II) How far from a converging lens with a focal length of
32 cm should an object be placed to produce a real image
which is the same size as the object?

54. (II) (a) A 2.40-cm-high insect is 1.30 m from a 135-mm-
focal-length lens. Where is the image, how high is it, and
what type is it? (b) What if

55. (III) A bright object and a viewing screen are separated by
a distance of 86.0 cm. At what location(s) between the
object and the screen should a lens of focal length 16.0 cm
be placed in order to produce a sharp image on the screen?
[Hint: First draw a diagram.]

56. (III) How far apart are an object and an image formed by
an 85-cm-focal-length converging lens if the image is 
larger than the object and is real?

57. (III) In a film projector, the film acts as the object whose
image is projected on a screen (Fig. 23–59). If a 105-mm-
focal-length lens is to project an image on a screen 25.5 m
away, how far from the lens should the film be? If the film
is 24 mm wide, how wide will the picture be on the screen?

3.25*

f = –135 mm?

–50.0-mm-focal-length

2.50*?

2.50*

–7.00-D

3.0*

23–6 Total Internal Reflection

35. (I) What is the critical angle for the interface between
water and crown glass? To be internally reflected, the light
must start in which material?

36. (I) The critical angle for a certain liquid–air surface is
47.2°. What is the index of refraction of the liquid?

37. (II) A beam of light is emitted in a pool of water from a
depth of 82.0 cm. Where must it strike the air–water inter-
face, relative to the spot directly above it, in order that the
light does not exit the water?

38. (II) A beam of light is emitted 8.0 cm beneath the surface of
a liquid and strikes the air surface 7.6 cm from the point
directly above the source. If total internal reflection occurs,
what can you say about the index of refraction of the liquid?

39. (III) (a) What is the minimum index of refraction for a glass
or plastic prism to be used in binoculars (Fig. 23–28) so that 
total internal reflection occurs at 45°? (b) Will binoculars 
work if their prisms (assume ) are immersed in
water? (c) What minimum n is needed if the prisms are
immersed in water?

40. (III) A beam of light enters the end of an optic fiber as
shown in Fig. 23–58. (a) Show that we can guarantee total
internal reflection at the side surface of the material (at
point A), if the index of refraction is greater than about
1.42. In other words, regardless of the angle the light
beam reflects back into the material at point A, assuming
air outside. (b) What if the fiber were immersed in water?

a,

n = 1.58

2.1 m

1.3 m

2.5 m

FIGURE 23–57

Problem 34.

Transparent
material

β γ
α

Air

A

FIGURE 23–58 Problem 40.

23–7 and 23–8 Thin Lenses

41. (I) A sharp image is located 391 mm behind a 215-mm-
focal-length converging lens. Find the object distance
(a) using a ray diagram, (b) by calculation.

42. (I) Sunlight is observed to focus at a point 16.5 cm behind
a lens. (a) What kind of lens is it? (b) What is its power in
diopters?

43. (I) (a) What is the power of a 32.5-cm-focal-length lens?
(b) What is the focal length of a lens? Are these
lenses converging or diverging?

–6.75-D
Film

Lens Screen

FIGURE 23–59 Film projector, Problem 57.



6.50 m

Depth ?
Water

13.0°

FIGURE 23–62

Problem 71.

72. The critical angle of a certain piece of plastic in air is
What is the critical angle of the same plastic if

it is immersed in water?
uC = 37.8°.

φ

FIGURE 23–63

Problem 77.

1.0 m 0.50 m

FIGURE 23–61

Problem 70.
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*23–9 Lens Combinations

*58. (II) A diverging lens with is placed 14.0 cm
behind a converging lens with Where will an
object at infinity be focused?

*59. (II) Two 25.0-cm-focal-length converging lenses are placed
16.5 cm apart. An object is placed 35.0 cm in front of one
lens. Where will the final image formed by the second lens
be located? What is the total magnification?

*60. (II) A 38.0-cm-focal-length converging lens is 28.0 cm
behind a diverging lens. Parallel light strikes the diverging
lens. After passing through the converging lens, the light is
again parallel. What is the focal length of the diverging
lens? [Hint: First draw a ray diagram.]

*61. (II) Two lenses, one converging with focal length 20.0 cm
and one diverging with focal length are placed
25.0 cm apart. An object is placed 60.0 cm in front of the
converging lens. Determine (a) the position and (b) the
magnification of the final image formed. (c) Sketch a ray
diagram for this system.

*62. (II) A lighted candle is placed 36 cm in front of a converging
lens of focal length which in turn is 56 cm in
front of another converging lens of focal length 
(see Fig. 23–60). (a) Draw a ray diagram and estimate the
location and the relative size of the final image. (b) Calcu-
late the position and relative size of the final image.

f2 = 16 cm
f1 = 13 cm,

–10.0 cm,

f = 20.0 cm.
f = –36.5 cm

69. Sunlight is reflected off the Moon. How long does it take
that light to reach us from the Moon?

70. You hold a small flat mirror 0.50 m in front of you 
and can see your reflection
twice in that mirror because
there is a full-length mirror
1.0 m behind you (Fig. 23–61).
Determine the distance of
each image from you.

General Problems
73. A pulse of light takes 2.63 ns (see Table 1–4) to travel

0.500 m in a certain material. Determine the material’s
index of refraction, and identify this material.

74. When an object is placed 60.0 cm from a certain converging
lens, it forms a real image. When the object is moved to
40.0 cm from the lens, the image moves 10.0 cm farther
from the lens. Find the focal length of this lens.

75. A 4.5-cm-tall object is placed 32 cm in front of a spherical
mirror. It is desired to produce a virtual image that is
upright and 3.5 cm tall. (a) What type of mirror should be
used? (b) Where is the image located? (c) What is the focal
length of the mirror? (d) What is the radius of curvature of
the mirror?

76. Light is emitted from an ordinary lightbulb filament in
wave-train bursts of about in duration. What is the
length in space of such wave trains?

77. If the apex angle of a prism is (see Fig. 23–63),
what is the minimum incident angle for a ray if it is to emerge
from the opposite side (i.e., not be totally internally
reflected), given n = 1.58?

f = 75°

10–8 s

*23–10 Lensmaker’s Equation

*63. (I) A double concave lens has surface radii of 33.4 cm and
28.8 cm. What is the focal length if 

*64. (I) Both surfaces of a double convex lens have radii of
34.1 cm. If the focal length is 28.9 cm, what is the index of
refraction of the lens material?

*65. (I) A planoconvex lens (Fig. 23–31a) with is to
have a focal length of 16.3 cm. What is the radius of curva-
ture of the convex surface?

*66. (II) A symmetric double convex lens with a focal length of
22.0 cm is to be made from glass with an index of refraction
of 1.52. What should be the radius of curvature for each
surface?

*67. (II) A prescription for an eyeglass lens calls for diop-
ters. The lensmaker grinds the lens from a “blank” with

and convex front surface of radius of curvature
of 30.0 cm. What should be the radius of curvature of the
other surface?

*68. (III) An object is placed 96.5 cm from a glass lens 
with one concave surface of radius 22.0 cm and one convex
surface of radius 18.5 cm. Where is the final image? What
is the magnification?

(n = 1.52)

n = 1.56

±3.50

n = 1.55

n = 1.52?

36 cm 56 cm

f1 � 13 cm f2 � 16 cm

FIGURE 23–60

Problem 62.

71. We wish to determine the depth of a swimming pool filled
with water by measuring the width and then
noting that the far bottom edge of the pool is just visible 
at an angle of 13.0° above the horizontal as shown in
Fig. 23–62. Calculate the depth of the pool.

(x = 6.50 m)

78. (a) A plane mirror can be considered a limiting case of a
spherical mirror. Specify what this limit is. (b) Determine
an equation that relates the image and object distances in
this limit of a plane mirror. (c) Determine the magnification
of a plane mirror in this same limit. (d) Are your results in
parts (b) and (c) consistent with the discussion of Section 23–2
on plane mirrors?



FIGURE 23–65

Problem 84.

81. Suppose a ray strikes the left face of the prism in Fig. 23–64
at 45.0° as shown, but is totally internally reflected at the
opposite side. If the apex angle (at the top) is
what can you say about the index of refraction of the prism?

82. (a) An object 37.5 cm in front of a certain lens is imaged
8.20 cm in front of that lens (on the same side as the object).
What type of lens is this, and what is its focal length?
Is the image real or virtual? (b) If the image were located,
instead, 44.5 cm in front of the lens, what type of lens would
it be and what focal length would it have?

83. How large is the image of the Sun on a camera sensor 
with (a) a 35-mm-focal-length lens, (b) a 50-mm-focal-length
lens, and (c) a 105-mm-focal-length lens? The Sun has 
diameter and it is away.

84. Figure 23–65 is a photograph of an eyeball with the image
of a boy in a doorway. (a) Is the eye here acting as a lens or
as a mirror? (b) Is the eye being viewed right side up or is
the camera taking this photo upside down? (c) Explain, based
on all possible images made by a convex mirror or lens.

1.5 * 108 km1.4 * 106 km,

u = 65.0°,

45.0° ?

FIGURE 23–64

Problems 80 and 81.

FIGURE 23–66 Problem 85.

79. An object is placed 18 cm from a certain mirror. The image
is half the height of the object, inverted, and real. How far
is the image from the mirror, and what is the radius of cur-
vature of the mirror?

80. Light is incident on an equilateral glass prism at a 45.0°
angle to one face, Fig. 23–64. Calculate the angle at which
light emerges from the opposite face. Assume that
n = 1.54.

85. Which of the two lenses shown in Fig. 23–66 is converging,
and which is diverging? Explain using ray diagrams and
show how each image is formed.

86. Figure 23–67 shows a liquid-detecting prism device that
might be used inside a washing machine. If no liquid
covers the prism’s hypotenuse, total internal reflection of
the beam from the light source produces a large signal in
the light sensor. If liquid covers the hypotenuse, some 
light escapes from the prism into the liquid and the light
sensor’s signal decreases. Thus a large signal from the 
light sensor indicates the absence of liquid in the reservoir.
Determine the allowable range for the prism’s index of
refraction n.

*87. (a) Show that if two thin lenses of focal lengths and 
are placed in contact with each other, the focal length of
the combination is given by (b) Show
that the power P of the combination of two lenses is the
sum of their separate powers,

*88. Two converging lenses are placed 30.0 cm apart. The focal
length of the lens on the right is 20.0 cm, and the focal length
of the lens on the left is 15.0 cm. An object is placed to the
left of the 15.0-cm-focal-length lens. A final image from
both lenses is inverted and located halfway between the
two lenses. How far to the left of the 15.0-cm-focal-length
lens is the original object?

*89. An object is placed 30.0 cm from a lens. A spher-
ical mirror with focal length 25 cm is placed 75 cm 
behind the lens. Where is the final image? (Note that the
mirror reflects light back through the lens.) Be sure to
draw a diagram.

*90. A small object is 25.0 cm from a diverging lens as shown 
in Fig. 23–68. A converging lens with a focal length of
12.0 cm is 30.0 cm to the right of the diverging lens. The
two-lens system forms a real inverted image 17.0 cm to 
the right of the converging lens. What is the focal length 
of the diverging lens?

±5.0-D

P = P1 + P2 .

fT = f1 f2�Af1 + f2B.
f2f1

Liquid
reservoir

Light
sensor

Light
source

Enclosure

45°45°
n

FIGURE 23–67 Problem 86.
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25.0 cm

30.0 cm 17.0 cm

FIGURE 23–68

Problem 90.



(a)

(b)
FIGURE 23–70

Search and Learn 8.

1. (a) Describe the difference between a real image and a
virtual image? (b) Can your eyes tell the difference? (c) How
can you tell the difference on a ray diagram? (d) How
could you tell the difference between a virtual image and a
real image experimentally? (e) If you were to take a photo-
graph of a virtual image, would you see the image in the
photograph? (f) If you were to put a piece of photographic
film at the location of a virtual image, would the image be
captured on the film? (g) Explain any differences in your
answers to parts (e) and (f).

2. Students in a physics lab are assigned to find the location
where a bright object may be placed in order that a 
converging lens with will produce an image
three times the size of the object. Two students complete the
assignment at different times using identical equipment,
but when they compare notes later, they discover that
their answers for the object distance are not the same.
Explain why they do not necessarily need to repeat the lab,
and justify your response with a calculation.

3. Both a converging lens and a concave mirror can produce
virtual images that are larger than the object. Concave mir-
rors can be used as makeup mirrors, but converging lenses
cannot be. (a) Draw ray diagrams to explain why not.
(b) If a concave mirror has the same focal length as a
converging lens, and an object is placed first at a distance of

from the lens and then at a distance of from the
mirror, how will the magnification of the object compare
in the two cases?

4. (a) Did the person we see in Fig. 23–69 shoot the picture
we are looking at? We see her in three different mirrors.
Describe (b) what type of mirror each is, and (c) her
position relative to the focal point and center of curvature.

1
2 f1

2 f

f = 12 cm
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A: No.
B: (b).
C: Toward.
D: None.

E: No total internal reflection,
F: (c).
G: Closer to it.

uC 7 45°.

A N S W E R S  TO  E X E R C I S E S

FIGURE 23–69 Search and Learn 4.

5. Justify the second part of sign convention 3, page 665,
starting “Equivalently.” Use ray diagrams for all possible
situations. Cite Figures already in the text and draw any
others needed.

6. The only means to create a real image with a single lens
would be to place 
(a) the object inside the focal length of a converging lens;
(b) the object inside the focal length of a diverging lens;
(c) the object outside the focal length of a converging lens;
(d) the object outside the focal length of a diverging lens;
(e) any of the above, given the correct distance from the

focal point.

7. Make a table showing the sign conventions for mirrors and
lenses. Include the sign convention for the mirrors and
lenses themselves and for the image and object heights 
and distances for each.

8. Figure 23–70 shows a converging lens held above three
equal-sized letters A. In (a) the lens is 5 cm from the paper,
and in (b) the lens is 15 cm from the paper. Estimate the
focal length of the lens. What is the image position for 
each case?

Search and Learn




