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A space shuttle 
is carried out into space by 
powerful rockets. They are 
accelerating, increasing in 
speed rapidly. To do so,
a force must be exerted on 
them according to Newton’s 
second law,
What exerts this force? The 
rocket engines exert a force 
on the gases they push out 
(expel) from the rear of the 
rockets (labeled ).
According to Newton’s third 
law, these ejected gases 
exert an equal and opposite 
force on the rockets in the 
forward direction. It is this 
“reaction” force exerted on
the rockets by the gases,
labeled that 
accelerates the rockets 
forward.
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CHAPTER-OPENING QUESTIONS—Guess now!
1. A 150-kg football player collides head-on with a 75-kg running back. During
the collision, the heavier player exerts a force of magnitude on the smaller
player. If the smaller player exerts a force back on the heavier player, which
response is most accurate?

(a)
(b)
(c)
(d)
(e) We need more information.

2. A line by the poet T. S. Eliot (from Murder in the Cathedral) has the women of
Canterbury say “the earth presses up against our feet.” What force is this?

(a) Gravity.
(b) The normal force.
(c) A friction force.
(d) Centrifugal force.
(e) No force—they are being poetic.

FB = 0.
FB 7 FA.
FB 6 FA.
FB = FA.
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W e have discussed how motion is described in terms of velocity and
acceleration. Now we deal with the question of why objects move as
they do: What makes an object at rest begin to move? What causes 

an object to accelerate or decelerate? What is involved when an object moves 
in a curved path? We can answer in each case that a force is required. In this
Chapter†, we will investigate the connection between force and motion, which is
the subject called dynamics.

4–1 Force
Intuitively, we experience force as any kind of a push or a pull on an object. When
you push a stalled car or a grocery cart (Fig. 4–1), you are exerting a force on it.
When a motor lifts an elevator, or a hammer hits a nail, or the wind blows the
leaves of a tree, a force is being exerted. We often call these contact forces because
the force is exerted when one object comes in contact with another object. On
the other hand, we say that an object falls because of the force of gravity (which is
not a contact force).

If an object is at rest, to start it moving requires force—that is, a force is
needed to accelerate an object from zero velocity to a nonzero velocity. For an
object already moving, if you want to change its velocity—either in direction or in
magnitude—a force is required. In other words, to accelerate an object, a force 
is always required. In Section 4–4 we discuss the precise relation between accel-
eration and net force, which is Newton’s second law.

One way to measure the magnitude (or strength) of a force is to use a spring
scale (Fig. 4–2). Normally, such a spring scale is used to find the weight of an
object; by weight we mean the force of gravity acting on the object (Section 4–6).
The spring scale, once calibrated, can be used to measure other kinds of forces 
as well, such as the pulling force shown in Fig. 4–2.

A force exerted in a different direction has a different effect. Force has direc-
tion as well as magnitude, and is indeed a vector that follows the rules of vector
addition discussed in Chapter 3. We can represent any force on a diagram by an
arrow, just as we did with velocity. The direction of the arrow is the direction of the
push or pull, and its length is drawn proportional to the magnitude of the force.
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†We treat everyday objects in motion here. When velocities are extremely high, close to the speed of
light we use the theory of relativity (Chapter 26), and in the submicroscopic world
of atoms and molecules we use quantum theory (Chapter 27 ff).
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FIGURE 4;2 A spring scale
used to measure a force.

FIGURE 4;1 A force exerted on a
grocery cart—in this case exerted by
a person.

4–2 Newton’s First Law of Motion
What is the relationship between force and motion? Aristotle (384–322 B.C.)
believed that a force was required to keep an object moving along a horizontal
plane. To Aristotle, the natural state of an object was at rest, and a force was
believed necessary to keep an object in motion. Furthermore, Aristotle argued,
the greater the force on the object, the greater its speed.

Some 2000 years later, Galileo disagreed: he maintained that it is just as natural
for an object to be in motion with a constant velocity as it is for it to be at rest.



To understand Galileo’s idea, consider the following observations involving
motion along a horizontal plane. To push an object with a rough surface along a
tabletop at constant speed requires a certain amount of force. To push an equally
heavy object with a very smooth surface across the table at the same speed will
require less force. If a layer of oil or other lubricant is placed between the surface
of the object and the table, then almost no force is required to keep the object
moving. Notice that in each successive step, less force is required. As the next 
step, we imagine there is no friction at all, that the object does not rub against the
table—or there is a perfect lubricant between the object and the table—and
theorize that once started, the object would move across the table at constant
speed with no force applied. A steel ball bearing rolling on a hard horizontal
surface approaches this situation. So does a puck on an air table, in which a thin
layer of air reduces friction almost to zero.

It was Galileo’s genius to imagine such an idealized world—in this case, one
where there is no friction—and to see that it could lead to a more accurate and
richer understanding of the real world. This idealization led him to his remark-
able conclusion that if no force is applied to a moving object, it will continue to
move with constant speed in a straight line. An object slows down only if a force
is exerted on it. Galileo thus interpreted friction as a force akin to ordinary pushes
and pulls.

To push an object across a table at constant speed requires a force from your
hand that can balance the force of friction (Fig. 4–3). When the object moves at
constant speed, your pushing force is equal in magnitude to the friction force; but
these two forces are in opposite directions, so the net force on the object (the vector
sum of the two forces) is zero. This is consistent with Galileo’s viewpoint, for the
object moves with constant velocity when no net force is exerted on it.

Upon this foundation laid by Galileo, Isaac Newton (Fig. 4–4) built his great
theory of motion. Newton’s analysis of motion is summarized in his famous
“three laws of motion.” In his great work, the Principia (published in 1687),
Newton readily acknowledged his debt to Galileo. In fact, Newton’s first law 
of motion is close to Galileo’s conclusions. It states that

Every object continues in its state of rest, or of uniform velocity in a straight
line, as long as no net force acts on it.

The tendency of an object to maintain its state of rest or of uniform velocity in a
straight line is called inertia. As a result, Newton’s first law is often called the 
law of inertia.
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FIGURE 4;4

Isaac Newton (1642–1727). Besides
developing mechanics, including his
three great laws of motion and the law
of universal gravitation, he also tried
to understand the nature of light.
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FIGURE 4;3 represents the force
applied by the person and 
represents the force of friction.
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Newton’s first law. A school bus comes 
to a sudden stop, and all of the backpacks on the floor start to slide forward.
What force causes them to do that?

RESPONSE It isn’t “force” that does it. By Newton’s first law, the backpacks
continue their state of motion, maintaining their velocity. The backpacks slow
down if a force is applied, such as friction with the floor.

CONCEPTUAL EXAMPLE 4;1

Inertial Reference Frames
Newton’s first law does not hold in every reference frame. For example, if your
reference frame is an accelerating car, an object such as a cup resting on the 
dashboard may begin to move toward you (it stayed at rest as long as the car’s
velocity remained constant). The cup accelerated toward you, but neither you nor
anything else exerted a force on it in that direction. Similarly, in the reference frame
of the decelerating bus in Example 4–1, there was no force pushing the backpacks
forward. In accelerating reference frames, Newton’s first law does not hold. Physics
is easier in reference frames in which Newton’s first law does hold, and they 
are called inertial reference frames (the law of inertia is valid in them). For most
purposes, we usually make the approximation that a reference frame fixed on the
Earth is an inertial frame. This is not precisely true, due to the Earth’s rotation,
but usually it is close enough.



Any reference frame that moves with constant velocity (say, a car or an air-
plane) relative to an inertial frame is also an inertial reference frame. Reference
frames where the law of inertia does not hold, such as the accelerating reference
frames discussed above, are called noninertial reference frames. How can we be
sure a reference frame is inertial or not? By checking to see if Newton’s first law
holds. Thus Newton’s first law serves as the definition of inertial reference frames.

4–3 Mass
Newton’s second law, which we come to in the next Section, makes use of the
concept of mass. Newton used the term mass as a synonym for “quantity of matter.”
This intuitive notion of the mass of an object is not very precise because the
concept “quantity of matter” is not very well defined. More precisely, we can say
that mass is a measure of the inertia of an object. The more mass an object has,
the greater the force needed to give it a particular acceleration. It is harder to start
it moving from rest, or to stop it when it is moving, or to change its velocity sideways
out of a straight-line path. A truck has much more inertia than a baseball moving
at the same speed, and a much greater force is needed to change the truck’s
velocity at the same rate as the ball’s. The truck therefore has much more mass.

To quantify the concept of mass, we must define a standard. In SI units, the
unit of mass is the kilogram (kg) as we discussed in Chapter 1, Section 1–5.

The terms mass and weight are often confused with one another, but it is
important to distinguish between them. Mass is a property of an object itself
(a measure of an object’s inertia, or its “quantity of matter”). Weight, on the other
hand, is a force, the pull of gravity acting on an object. To see the difference,
suppose we take an object to the Moon. The object will weigh only about one-sixth
as much as it did on Earth, since the force of gravity is weaker. But its mass will
be the same. It will have the same amount of matter as on Earth, and will have
just as much inertia—in the absence of friction, it will be just as hard to start it
moving on the Moon as on Earth, or to stop it once it is moving. (More on weight
in Section 4–6.)

4–4 Newton’s Second Law of Motion
Newton’s first law states that if no net force is acting on an object at rest, the
object remains at rest; or if the object is moving, it continues moving with constant
speed in a straight line. But what happens if a net force is exerted on an object?
Newton perceived that the object’s velocity will change (Fig. 4–5). A net force
exerted on an object may make its velocity increase. Or, if the net force is in a
direction opposite to the motion, that force will reduce the object’s velocity. If the
net force acts sideways on a moving object, the direction of the object’s velocity
changes. That change in the direction of the velocity is also an acceleration. So a
sideways net force on an object also causes acceleration. In general, we can say
that a net force causes acceleration.

What precisely is the relationship between acceleration and force? Everyday
experience can suggest an answer. Consider the force required to push a cart
when friction is small enough to ignore. (If there is friction, consider the net
force, which is the force you exert minus the force of friction.) If you push the 
cart horizontally with a gentle but constant force for a certain period of time,
you will make the cart accelerate from rest up to some speed, say If you
push with twice the force, the cart will reach in half the time. The accel-
eration will be twice as great. If you triple the force, the acceleration is tripled,
and so on. Thus, the acceleration of an object is directly proportional† to the net
applied force. But the acceleration depends on the mass of the object as well.
If you push an empty grocery cart with the same force as you push one that 
is filled with groceries, you will find that the full cart accelerates more slowly.

3 km�h
3 km�h.
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Distinguish mass from weight

†A review of proportionality is given in Appendix A.

FIGURE 4;5 The bobsled 
accelerates because the team exerts 
a force.



The greater the mass, the less the acceleration for the same net force. The mathe-
matical relation, as Newton argued, is that the acceleration of an object is inversely
proportional to its mass. These relationships are found to hold in general and can
be summarized as follows:

The acceleration of an object is directly proportional to the net force acting
on it, and is inversely proportional to the object’s mass. The direction of the
acceleration is in the direction of the net force acting on the object.

This is Newton’s second law of motion.
Newton’s second law can be written as an equation:

where stands for acceleration, m for the mass, and for the net force on the
object. The symbol (Greek “sigma”) stands for “sum of”; stands for force,
so means the vector sum of all forces acting on the object, which we define as
the net force.

We rearrange this equation to obtain the familiar statement of Newton’s
second law:

(4;1)

Newton’s second law relates the description of motion to the cause of motion,
force. It is one of the most fundamental relationships in physics. From Newton’s
second law we can make a more precise definition of force as an action capable 
of accelerating an object.

Every force is a vector, with magnitude and direction. Equation 4–1 is 
a vector equation valid in any inertial reference frame. It can be written in 
component form in rectangular coordinates as

If the motion is all along a line (one-dimensional), we can leave out the sub-
scripts and simply write Again, a is the acceleration of an object of
mass m, and includes all the forces acting on that object, and only forces
acting on that object. (Sometimes the net force is written as so  .)

In SI units, with the mass in kilograms, the unit of force is called the newton (N).
One newton is the force required to impart an acceleration of to a 
mass of 1 kg. Thus  

In cgs units, the unit of mass is the gram† (g). The unit of force is the dyne, which
is defined as the net force needed to impart an acceleration of to a mass
of 1 g. Thus  Because  and  then  

In the British system, which we rarely use, the unit of force is the pound
(abbreviated lb), where  The unit of mass is the slug,
which is defined as that mass which will undergo an acceleration of when 
a force of 1 lb is applied to it. Thus  Table 4–1 summarizes the
units in the different systems.

It is very important that only one set of units be used in a given calculation 
or Problem, with the SI being what we almost always use. If the force is given in,
say, newtons, and the mass in grams, then before attempting to solve for the
acceleration in SI units, we must change the mass to kilograms. For example, if the
force is given as 2.0 N along the x axis and the mass is 500 g, we change the latter
to 0.50 kg, and the acceleration will then automatically come out in when
Newton’s second law is used:

where we set  .1 N = 1 kg �m�s2

ax =
©Fx
m

=
2.0 N

0.50 kg
=

2.0 kg �m�s2

0.50 kg
= 4.0 m�s2,

m�s2

1 lb = 1 slug �ft�s2.
1 ft�s2

1 lb = 4.44822 N L 4.45 N.

1 dyne = 10–5 N.
1 cm = 10–2 m,1 g = 10–3 kg1 dyne = 1 g �cm�s2.

1 cm�s2

1 N = 1 kg �m�s2.
1 m�s2
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P R O B L E M  S O L V I N G

Use a consistent set of units

TABLE 4;1

Units for Mass and Force

System Mass Force

SI kilogram newton (N) 
(kg)

cgs gram (g) dyne 

British slug pound (lb)

Conversion factors:

 1 slug L 14.6 kg.
 1 lb L 4.45 N;

 1 dyne = 10–5 N;

A= g �cm�s2B
A= kg �m�s2B

†Be careful not to confuse g for gram with g for the acceleration due to gravity. The latter is always
italicized (or boldface when shown as a vector).



Force to accelerate a fast car. Estimate the
net force needed to accelerate (a) a 1000-kg car at (b) a 200-gram apple at
the same rate.

APPROACH We use Newton’s second law to find the net force needed for each
object; we are given the mass and the acceleration. This is an estimate (the is
not said to be precise) so we round off to one significant figure.

SOLUTION (a) The car’s acceleration is We
use Newton’s second law to get the net force needed to achieve this acceleration:

(If you are used to British units, to get an idea of what a 5000-N force is, you can
divide by and get a force of about 1000 lb.)
(b) For the apple, so

Force to stop a car. What average net force is required to
bring a 1500-kg car to rest from a speed of within a distance of 55 m?

APPROACH We use Newton’s second law, to determine the force,
but first we need to calculate the acceleration a. We assume the acceleration is
constant so that we can use the kinematic equations, Eqs. 2–11, to calculate it.

©F = ma,

100 km�h
EXAMPLE 4;3

©F = ma L (0.2 kg)A5 m�s2B = 1 N.

m = 200 g = 0.2 kg,
4.45 N�lb

©F = ma L (1000 kg)A5 m�s2B = 5000 N.

a = 1
2 g = 1

2 A9.8 m�s2B L 5 m�s2.

1
2

1
2 g;

EXAMPLE 4;2 ESTIMATE
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v = 0v0 = 100 km/h

x = 0 x = 55m
x (m)

FIGURE 4;6

Example 4–3.

SOLUTION We assume the motion is along the axis (Fig. 4–6). We are
given the initial velocity (Section 1–6), the final
velocity  and the distance traveled  From Eq. 2–11c, we
have

so

The net force required is then

or The force must be exerted in the direction opposite to the initial
velocity, which is what the negative sign means.

NOTE If the acceleration is not precisely constant, then we are determining an
“average” acceleration and we obtain an “average” net force.

Newton’s second law, like the first law, is valid only in inertial reference frames
(Section 4–2). In the noninertial reference frame of a car that begins accelerating,
a cup on the dashboard starts sliding—it accelerates—even though the net force on
it is zero. Thus does not work in such an accelerating reference frame
( but in this noninertial frame).

EXERCISE A Suppose you watch a cup slide on the (smooth) dashboard of an acceler-
ating car as we just discussed, but this time from an inertial reference frame outside the
car, on the street. From your inertial frame, Newton’s laws are valid. What force pushes
the cup off the dashboard?

aB Z 0©F
B

= 0,
©F

B

= maB

11,000 N.

©F = ma = (1500 kg)A–7.0 m�s2B = –1.1 * 104 N,

a =
v2 - v0

2

2(x - x0)
=

0 - (27.8 m�s)2

2(55 m)
= –7.0 m�s2.

v2 = v0
2 + 2aAx - x0B,

x - x0 = 55 m.v = 0,
v0 = 100 km�h = 27.8 m�s

±x



4–5 Newton’s Third Law of Motion
Newton’s second law of motion describes quantitatively how forces affect motion.
But where, we may ask, do forces come from? Observations suggest that a force
exerted on any object is always exerted by another object. A horse pulls a wagon,
a person pushes a grocery cart, a hammer pushes on a nail, a magnet attracts a
paper clip. In each of these examples, a force is exerted on one object, and that
force is exerted by another object. For example, the force exerted on the nail is
exerted by the hammer.

But Newton realized that things are not so one-sided. True, the hammer exerts
a force on the nail (Fig. 4–7). But the nail evidently exerts a force back on the
hammer as well, for the hammer’s speed is rapidly reduced to zero upon contact.
Only a strong force could cause such a rapid deceleration of the hammer. Thus,
said Newton, the two objects must be treated on an equal basis. The hammer
exerts a force on the nail, and the nail exerts a force back on the hammer. This 
is the essence of Newton’s third law of motion:

Whenever one object exerts a force on a second object, the second object
exerts an equal force in the opposite direction on the first.

This law is sometimes paraphrased as “to every action there is an equal and oppo-
site reaction.” This is perfectly valid. But to avoid confusion, it is very important
to remember that the “action” force and the “reaction” force are acting on different
objects.

As evidence for the validity of Newton’s third law, look at your hand when
you push against the edge of a desk, Fig. 4–8. Your hand’s shape is distorted, clear
evidence that a force is being exerted on it. You can see the edge of the desk press-
ing into your hand. You can even feel the desk exerting a force on your hand;
it hurts! The harder you push against the desk, the harder the desk pushes back 
on your hand. (You only feel forces exerted on you; when you exert a force on
another object, what you feel is that object pushing back on you.)
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Action and reaction forces act 
on different objects

FIGURE 4;7 A hammer striking a
nail. The hammer exerts a force on the
nail and the nail exerts a force back on
the hammer. The latter force decelerates
the hammer and brings it to rest.

Force exerted
on hand
by desk

Force exerted
on desk by hand

FIGURE 4;8 If your hand pushes
against the edge of a desk (the force
vector is shown in red), the desk
pushes back against your hand (this
force vector is shown in a different
color, violet, to remind us that this
force acts on a different object).

Force
on

skater

Force
on

wall

FIGURE 4;9 An example of
Newton’s third law: when an ice
skater pushes against the wall, the
wall pushes back and this force
causes her to accelerate away.

The force the desk exerts on your hand has the same magnitude as the force
your hand exerts on the desk. This is true not only if the desk is at rest but is true
even if the desk is accelerating due to the force your hand exerts.

As another demonstration of Newton’s third law, consider the ice skater in
Fig. 4–9. There is very little friction between her skates and the ice, so she will
move freely if a force is exerted on her. She pushes against the wall; and then she
starts moving backward. The force she exerts on the wall cannot make her start
moving, because that force acts on the wall. Something had to exert a force on her
to start her moving, and that force could only have been exerted by the wall.
The force with which the wall pushes on her is, by Newton’s third law, equal and
opposite to the force she exerts on the wall.

When a person throws a package out of a small boat (initially at rest), the
boat starts moving in the opposite direction. The person exerts a force on the
package. The package exerts an equal and opposite force back on the person,
and this force propels the person (and the boat) backward slightly.



Rocket propulsion also is explained using Newton’s third law (Fig. 4–10).
A common misconception is that rockets accelerate because the gases rushing
out the back of the engine push against the ground or the atmosphere. Not true.
What happens, instead, is that a rocket exerts a strong force on the gases, expel-
ling them; and the gases exert an equal and opposite force on the rocket. It is this
latter force that propels the rocket forward—the force exerted on the rocket by the
gases (see Chapter-Opening Photo, page 75). Thus, a space vehicle is maneuvered
in empty space by firing its rockets in the direction opposite to that in which it
needs to accelerate. When the rocket pushes on the gases in one direction, the
gases push back on the rocket in the opposite direction. Jet aircraft too accelerate
because the gases they thrust out backwards exert a forward force on the engines
(Newton’s third law).

Consider how we walk. A person begins walking by pushing with the foot
backward against the ground. The ground then exerts an equal and opposite
force forward on the person (Fig. 4–11), and it is this force, on the person, that
moves the person forward. (If you doubt this, try walking normally where there
is no friction, such as on very smooth slippery ice.) In a similar way, a bird flies
forward by exerting a backward force on the air, but it is the air pushing 
forward (Newton’s third law) on the bird’s wings that propels the bird forward.

What exerts the force to move a car?

What makes a car go forward?

RESPONSE A common answer is that the engine makes the car move for-
ward. But it is not so simple. The engine makes the wheels go around. But if the
tires are on slick ice or wet mud, they just spin. Friction is needed. On firm
ground, the tires push backward against the ground because of friction. By
Newton’s third law, the ground pushes on the tires in the opposite direction,
accelerating the car forward.

We tend to associate forces with active objects such as humans, animals,
engines, or a moving object like a hammer. It is often difficult to see how an 
inanimate object at rest, such as a wall or a desk, or the wall of an ice rink
(Fig. 4–9), can exert a force. The explanation is that every material, no matter
how hard, is elastic (springy) at least to some degree. A stretched rubber band
can exert a force on a wad of paper and accelerate it to fly across the room.
Other materials may not stretch as readily as rubber, but they do stretch or
compress when a force is applied to them. And just as a stretched rubber band
exerts a force, so does a stretched (or compressed) wall, desk, or car fender.

From the examples discussed above, we can see how important it is to
remember on what object a given force is exerted and by what object that force 
is exerted. A force influences the motion of an object only when it is applied on
that object. A force exerted by an object does not influence that same object; it
only influences the other object on which it is exerted. Thus, to avoid confusion,
the two prepositions on and by must always be used—and used with care.

One way to keep clear which force acts on which object is to use double sub-
scripts. For example, the force exerted on the Person by the Ground as the person
walks in Fig. 4–11 can be labeled And the force exerted on the ground by
the person is By Newton’s third law

(4;2)

and have the same magnitude (Newton’s third law), and the minus sign
reminds us that these two forces are in opposite directions.

Note carefully that the two forces shown in Fig. 4–11 act on different
objects—to emphasize this we used slightly different colors for the vector arrows
representing these forces. These two forces would never appear together in a 
sum of forces in Newton’s second law, Why not? Because they act on
different objects: is the acceleration of one particular object, and must
include only the forces on that one object.
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Horizontal
force exerted
on the ground
by person’s
foot

Horizontal
force exerted
on the
person’s foot
by the ground

GP PGF
B

F
B

FIGURE 4;11 We can walk forward
because, when one foot pushes
backward against the ground, the
ground pushes forward on that foot
(Newton’s third law). The two forces
shown act on different objects.

FIGURE 4;10 Another example of
Newton’s third law: the launch of a
rocket. The rocket engine pushes the
gases downward, and the gases exert
an equal and opposite force upward
on the rocket, accelerating it upward.
(A rocket does not accelerate as a
result of its expelled gases pushing
against the ground.)
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Third law clarification. Michelangelo’s
assistant has been assigned the task of moving a block of marble using a sled
(Fig. 4–12). He says to his boss, “When I exert a forward force on the sled, the 
sled exerts an equal and opposite force backward. So how can I ever start it
moving? No matter how hard I pull, the backward reaction force always equals
my forward force, so the net force must be zero. I’ll never be able to move this
load.” Is he correct?

RESPONSE No. Although it is true that the action and reaction forces are equal
in magnitude, the assistant has forgotten that they are exerted on different
objects. The forward (“action”) force is exerted by the assistant on the sled 
(Fig. 4–12), whereas the backward “reaction” force is exerted by the sled on the
assistant. To determine if the assistant moves or not, we must consider only 
the forces on the assistant and then apply  where is the net force
on the assistant, is the acceleration of the assistant, and m is the assistant’s mass.
There are two forces on the assistant that affect his forward motion; they are
shown as bright red (magenta) arrows in Figs. 4–12 and 4–13: they are (1) the hori-
zontal force exerted on the assistant by the ground (the harder he pushes
backward against the ground, the harder the ground pushes forward on him—
Newton’s third law), and (2) the force exerted on the assistant by the sled,
pulling backward on him; see Fig. 4–13. If he pushes hard enough on the ground,
the force on him exerted by the ground, will be larger than the sled pulling
back, and the assistant accelerates forward (Newton’s second law). The sled,
on the other hand, accelerates forward when the force on it exerted by the assis-
tant is greater than the frictional force exerted backward on it by the ground (that
is, when has greater magnitude than in Fig. 4–12).

Using double subscripts to clarify Newton’s third law can become cumbersome,
and we won’t usually use them in this way. We will usually use a single subscript
referring to what exerts the force on the object being discussed. Nevertheless,
if there is any confusion in your mind about a given force, go ahead and use two
subscripts to identify on what object and by what object the force is exerted.

EXERCISE B Return to the first Chapter-Opening Question, page 75, and answer it
again now. Try to explain why you may have answered differently the first time.

EXERCISE C A tennis ball collides head-on with a more massive baseball. (i) Which ball
experiences the greater force of impact? (ii) Which experiences the greater acceleration
during the impact? (iii) Which of Newton’s laws are useful to obtain the correct answers?

EXERCISE D If you push on a heavy desk, does it always push back on you? (a) No.
(b) Yes. (c) Not unless someone else also pushes on it. (d) Yes, if it is out in space.
(e) A desk never pushes to start with.
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A study of Newton’s second and
third laws

FIGURE 4;12 Example 4–5,
showing only horizontal forces.
Michelangelo has selected a fine
block of marble for his next 
sculpture. Shown here is his assistant
pulling it on a sled away from the
quarry. Forces on the assistant are
shown as red (magenta) arrows.
Forces on the sled are purple arrows.
Forces acting on the ground are
orange arrows. Action–reaction
forces that are equal and opposite
are labeled by the same subscripts
but reversed (such as and )
and are of different colors because
they act on different objects.
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FIGURE 4;13 Example 4–5. The
horizontal forces on the assistant.



4–6 Weight—the Force of Gravity;
and the Normal Force

As we saw in Chapter 2, Galileo claimed that all objects dropped near the surface
of the Earth would fall with the same acceleration, if air resistance was negligible.
The force that causes this acceleration is called the force of gravity or gravitational
force. What exerts the gravitational force on an object? It is the Earth, as we will
discuss in Chapter 5, and the force acts vertically† downward, toward the center of
the Earth. Let us apply Newton’s second law to an object of mass m falling freely
due to gravity. For the acceleration, we use the downward acceleration due to
gravity, Thus, the gravitational force on an object, can be written as

(4;3)

The direction of this force is down toward the center of the Earth. The magnitude
of the force of gravity on an object, mg, is commonly called the object’s weight.

In SI units, ‡ so the weight of a 1.00-kg mass on
Earth is  We will mainly be concerned with the
weight of objects on Earth, but we note that on the Moon, on other planets, or in
space, the weight of a given mass will be different than it is on Earth. For exam-
ple, on the Moon the acceleration due to gravity is about one-sixth what it is on
Earth, and a 1.0-kg mass weighs only 1.6 N. Although we will not use British
units, we note that for practical purposes on the Earth, a mass of 1.0 kg weighs
about 2.2 lb. (On the Moon, 1 kg weighs only about 0.4 lb.)

The force of gravity acts on an object when it is falling. When an object is at
rest on the Earth, the gravitational force on it does not disappear, as we know if
we weigh it on a spring scale. The same force, given by Eq. 4–3, continues to act.
Why, then, doesn’t the object move? From Newton’s second law, the net force 
on an object that remains at rest is zero. There must be another force on the
object to balance the gravitational force. For an object resting on a table, the table
exerts this upward force; see Fig. 4–14a. The table is compressed slightly beneath
the object, and due to its elasticity, it pushes up on the object as shown. The force
exerted by the table is often called a contact force, since it occurs when two objects
are in contact. (The force of your hand pushing on a cart is also a contact force.)
When a contact force acts perpendicular to the common surface of contact, it 
is referred to as the normal force (“normal” means perpendicular); hence it is
labeled in Fig. 4–14a.

The two forces shown in Fig. 4–14a are both acting on the statue, which
remains at rest, so the vector sum of these two forces must be zero (Newton’s second
law). Hence and must be of equal magnitude and in opposite directions.
But they are not the equal and opposite forces spoken of in Newton’s third law. The
action and reaction forces of Newton’s third law act on different objects, whereas the
two forces shown in Fig. 4–14a act on the same object. For each of the forces shown
in Fig. 4–14a, we can ask, “What is the reaction force?” The upward force 
on the statue is exerted by the table. The reaction to this force is a force exerted by
the statue downward on the table. It is shown in Fig. 4–14b, where it is labeled 
This force, exerted on the table by the statue, is the reaction force to in
accord with Newton’s third law. What about the other force on the statue, the force
of gravity exerted by the Earth? Can you guess what the reaction is to this
force? We will see in Chapter 5 that the reaction force is also a gravitational force,
exerted on the Earth by the statue.

EXERCISE E Return to the second Chapter-Opening Question, page 75, and answer it
again now. Try to explain why you may have answered differently the first time.
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†The concept of “vertical” is tied to gravity. The best definition of vertical is that it is the direction in
which objects fall. A surface that is “horizontal,” on the other hand, is a surface on which a round
object won’t start rolling: gravity has no effect. Horizontal is perpendicular to vertical.
‡Since (Section 4–4), then 1 m�s2 = 1 N�kg.1 N = 1 kg �m�s2
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Weight and normal force are not
action–reaction pairs
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FIGURE 4;14 (a) The net force on
an object at rest is zero according to
Newton’s second law. Therefore the
downward force of gravity on
an object at rest must be balanced
by an upward force (the normal
force ) exerted by the table in this
case. (b) is the force exerted on
the table by the statue and is the
reaction force to by Newton’s
third law. ( is shown in a different
color to remind us it acts on a
different object.) The reaction force
to is not shown.F
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Weight, normal force, and a box. A friend has given you 
a special gift, a box of mass 10.0 kg with a mystery surprise inside. The box is
resting on the smooth (frictionless) horizontal surface of a table (Fig. 4–15a).
(a) Determine the weight of the box and the normal force exerted on it by 
the table. (b) Now your friend pushes down on the box with a force of 40.0 N,
as in Fig. 4–15b. Again determine the normal force exerted on the box by 
the table. (c) If your friend pulls upward on the box with a force of 40.0 N 
(Fig. 4–15c), what now is the normal force exerted on the box by the table?

APPROACH The box is at rest on the table, so the net force on the box in each
case is zero (Newton’s first or second law). The weight of the box has magni-
tude mg in all three cases.

SOLUTION (a) The weight of the box is  
and this force acts downward. The only other force on the box is the normal
force exerted upward on it by the table, as shown in Fig. 4–15a. We chose the
upward direction as the positive y direction; then the net force on the box
is  the minus sign means mg acts in the negative y direction
(m and g are magnitudes). The box is at rest, so the net force on it must be 
zero (Newton’s second law, and  ). Thus

so we have

The normal force on the box, exerted by the table, is 98.0 N upward, and has
magnitude equal to the box’s weight.
(b) Your friend is pushing down on the box with a force of 40.0 N. So instead 
of only two forces acting on the box, now there are three forces acting on the
box, as shown in Fig. 4–15b. The weight of the box is still  The net
force is  and is equal to zero because the box remains
at rest  Newton’s second law gives

We solve this equation for the normal force:

which is greater than in (a). The table pushes back with more force when a person
pushes down on the box. The normal force is not always equal to the weight!
(c) The box’s weight is still 98.0 N and acts downward. The force exerted by
your friend and the normal force both act upward (positive direction), as shown
in Fig. 4–15c. The box doesn’t move since your friend’s upward force is less 
than the weight. The net force, again set to zero in Newton’s second law because

is

so

The table does not push against the full weight of the box because of the upward
force exerted by your friend.

NOTE The weight of the box does not change as a result of your friend’s
push or pull. Only the normal force is affected.

Recall that the normal force is elastic in origin (the table in Fig. 4–15 sags
slightly under the weight of the box). The normal force in Example 4–6 is verti-
cal, perpendicular to the horizontal table. The normal force is not always vertical,
however. When you push against a wall, for example, the normal force with
which the wall pushes back on you is horizontal (Fig. 4–9). For an object on a
plane inclined at an angle to the horizontal, such as a skier or car on a hill, the
normal force acts perpendicular to the plane and so is not vertical.

(= mg)

FN = mg - 40.0 N = 98.0 N - 40.0 N = 58.0 N.

©Fy = FN - mg + 40.0 N = 0,

a = 0,

FN = mg + 40.0 N = 98.0 N + 40.0 N = 138.0 N,

©Fy = FN - mg - 40.0 N = 0.

(a = 0).
©Fy = FN - mg - 40.0 N,

mg = 98.0 N.

FN = mg.

FN - mg = 0,

©Fy = may

ay = 0©Fy = may ,

©Fy = FN - mg;
©Fy

mg = (10.0 kg)A9.80 m�s2B = 98.0 N,
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The normal force is not 
always equal to the weight
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�Fy � FN � mg � 40.0 N � 0
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�Fy � FN � mg � 0

FIGURE 4;15 Example 4–6.
(a) A 10-kg gift box is at rest on a 
table. (b) A person pushes down on 
the box with a force of 40.0 N.
(c) A person pulls upward on the 
box with a force of 40.0 N. The forces
are all assumed to act along a line;
they are shown slightly displaced in 
order to be distinguishable. Only 
forces acting on the box are shown.
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The normal force, is 
not necessarily vertical
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Accelerating the box. What happens when a person pulls
upward on the box in Example 4–6c with a force equal to, or greater than,
the box’s weight? For example, let (Fig. 4–16) rather than the
40.0 N shown in Fig. 4–15c.

APPROACH We can start just as in Example 4–6, but be ready for a surprise.

SOLUTION The net force on the box is

and if we set this equal to zero (thinking the acceleration might be zero), we
would get  This is nonsense, since the negative sign implies 
points downward, and the table surely cannot pull down on the box (unless
there’s glue on the table). The least can be is zero, which it will be in this case.
What really happens here is that the box accelerates upward ( ) because
the net force is not zero. The net force (setting the normal force  ) is

upward. See Fig. 4–16. We apply Newton’s second law and see that the box
moves upward with an acceleration

= 0.20 m�s2 .

ay =
©Fy

m
=

2.0 N
10.0 kg

= 2.0 N

©Fy = FP - mg = 100.0 N - 98.0 N

FN = 0
a Z 0

FN

FNFN = –2.0 N.

= FN - 98.0 N + 100.0 N,

©Fy = FN - mg + FP

FP = 100.0 N
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FIGURE 4;16 Example 4–7. The
box accelerates upward because
FP 7 mg.
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B
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FIGURE 4;17 Example 4–8. The
acceleration vector is shown in gold
to distinguish it from the red force
vectors.

Apparent weight loss. A 65-kg woman descends in an
elevator that briefly accelerates at 0.20g downward. She stands on a scale that
reads in kg. (a) During this acceleration, what is her weight and what does 
the scale read? (b) What does the scale read when the elevator descends at a
constant speed of 

APPROACH Figure 4–17 shows all the forces that act on the woman (and only
those that act on her). The direction of the acceleration is downward, so 
we choose the positive direction as down (this is the opposite choice from
Examples 4–6 and 4–7).

SOLUTION (a) From Newton’s second law,

We solve for 

and it acts upward. The normal force is the force the scale exerts on the
person, and is equal and opposite to the force she exerts on the scale:

downward. Her weight (force of gravity on her) is still
But the scale, needing to exert a force of 

only 0.80mg, will give a reading of
(b) Now there is no acceleration, so by Newton’s second law,

and  The scale reads her true mass of 65 kg.

NOTE The scale in (a) gives a reading of 52 kg (as an “apparent mass”), but 
her mass doesn’t change as a result of the acceleration: it stays at 65 kg.

FN = mg.mg - FN = 0
a = 0,

0.80m = 52 kg.
mg = (65 kg)A9.8 m�s2B = 640 N.
FN
œ = 0.80mg

F
B

N

= 0.80mg,

FN = mg - 0.20mg

FN :

mg - FN = m(0.20g).

©F = ma

2.0 m�s?

EXAMPLE 4;8



4–7 Solving Problems with Newton’s Laws:
Free-Body Diagrams

Newton’s second law tells us that the acceleration of an object is proportional to
the net force acting on the object. The net force, as mentioned earlier, is the
vector sum of all forces acting on the object. Indeed, extensive experiments have
shown that forces do add together as vectors precisely according to the rules 
we developed in Chapter 3. For example, in Fig. 4–18, two forces of equal magni-
tude (100 N each) are shown acting on an object at right angles to each other.
Intuitively, we can see that the object will start moving at a 45° angle and thus 
the net force acts at a 45° angle. This is just what the rules of vector addition 
give. From the theorem of Pythagoras, the magnitude of the resultant force is

Adding force vectors. Calculate the sum of the two forces
exerted on the boat by workers A and B in Fig. 4–19a.

APPROACH We add force vectors like any other vectors as described in
Chapter 3. The first step is to choose an xy coordinate system (see Fig. 4–19a),
and then resolve vectors into their components.

SOLUTION The two force vectors are shown resolved into components in 
Fig. 4–19b. We add the forces using the method of components. The compo-
nents of are

The components of are

is negative because it points along the negative y axis. The components of
the resultant force are (see Fig. 4–19c)

To find the magnitude of the resultant force, we use the Pythagorean theorem,

The only remaining question is the angle that the net force makes with the
x axis. We use:

and  The net force on the boat has magnitude 53.3 N and
acts at an 11.0° angle to the x axis.

When solving problems involving Newton’s laws and force, it is very important
to draw a diagram showing all the forces acting on each object involved. Such a dia-
gram is called a free-body diagram, or force diagram: choose one object, and draw
an arrow to represent each force acting on it. Include every force acting on that
object. Do not show forces that the chosen object exerts on other objects. To help
you identify each and every force that is exerted on your chosen object, ask yourself
what other objects could exert a force on it. If your problem involves more than one
object, a separate free-body diagram is needed for each object. For now, the likely
forces that could be acting are gravity and contact forces (one object pushing or
pulling another, normal force, friction). Later we will consider other types of force
such as buoyancy, fluid pressure, and electric and magnetic forces.

tan–1(0.195) = 11.0°.

tan u =
FRy

FRx
=

10.2 N
52.3 N

= 0.195,
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FR = 3FRx
2 + FRy

2 = 3(52.3)2 + (10.2)2 N = 53.3 N.

FRy = FAy + FBy = 28.3 N - 18.1 N = 10.2 N.

FRx = FAx + FBx = 28.3 N + 24.0 N = 52.3 N,

FBy

FBy = –FB sin 37.0° = –(30.0 N)(0.602) = –18.1 N.

FBx = ±FB cos 37.0° = ±(30.0 N)(0.799) = ±24.0 N,
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FAy = FA sin 45.0° = (40.0 N)(0.707) = 28.3 N.

FAx = FA cos 45.0° = (40.0 N)(0.707) = 28.3 N,
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FR = 3(100 N)2 + (100 N)2 = 141 N.
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FIGURE 4;18 (a) Two horizontal
forces, and exerted by 
workers A and B, act on a crate 
(we are looking down from above).
(b) The sum, or resultant, of 
and is F
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FIGURE 4;19 Example 4–9: Two
force vectors act on a boat.

P R O B L E M  S O L V I N G

Free-body diagram



88 CHAPTER 4 Dynamics: Newton’s Laws of Motion

C A U T I O N

Treating an object as a particle

The hockey puck. A hockey puck is 
sliding at constant velocity across a flat horizontal ice surface that is assumed 
to be frictionless. Which of the sketches in Fig. 4–20 is the correct free-body 
diagram for this puck? What would your answer be if the puck slowed down?

RESPONSE Did you choose (a)? If so, can you answer the question: what
exerts the horizontal force labeled on the puck? If you say that it is the force
needed to maintain the motion, ask yourself: what exerts this force? Remember
that another object must exert any force—and there simply isn’t any possibility
here. Therefore, (a) is wrong. Besides, the force in Fig. 4–20a would give rise to
an acceleration by Newton’s second law. It is (b) that is correct. No net force
acts on the puck, and the puck slides at constant velocity across the ice.

In the real world, where even smooth ice exerts at least a tiny friction force,
then (c) is the correct answer. The tiny friction force is in the direction opposite
to the motion, and the puck’s velocity decreases, even if very slowly.
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FIGURE 4;20 Example 4–10.
Which is the correct free-body
diagram for a hockey puck sliding
across frictionless ice?

force acts, and by what object that force is exerted.
Only forces acting on a given object can be included
in  for that object.

3. Newton’s second law involves vectors, and it is usu-
ally important to resolve vectors into components.
Choose x and y axes in a way that simplifies the
calculation. For example, it often saves work if you
choose one coordinate axis to be in the direction of
the acceleration (if known).

4. For each object, apply Newton’s second law to the 
x and y components separately. That is, the x compo-
nent of the net force on that object is related to 
the x component of that object’s acceleration:

and similarly for the y direction.

5. Solve the equation or equations for the unknown(s).
Put in numerical values only at the end, and keep
track of units.

©Fx = max ,

©F
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= maB
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Newton’s Laws; Free-Body Diagrams
1. Draw a sketch of the situation, after carefully reading

the Problem at least twice.
2. Consider only one object (at a time), and draw a 

free-body diagram for that object, showing all the
forces acting on that object. Include any unknown
forces that you have to solve for. Do not show any
forces that the chosen object exerts on other objects.

Draw the arrow for each force vector reasonably
accurately for direction and magnitude. Label each
force acting on the object, including forces you must
solve for, according to its source (gravity, person,
friction, and so on).

If several objects are involved, draw a free-body
diagram for each object separately. For each object,
show all the forces acting on that object (and only
forces acting on that object). For each (and every)
force, you must be clear about: on what object that

This Problem Solving Strategy should not be considered a prescription. Rather
it is a summary of things to do that will start you thinking and getting involved 
in the problem at hand.

When we are concerned only about translational motion, all the forces on a
given object can be drawn as acting at the center of the object, thus treating the
object as a point particle. However, for problems involving rotation or statics, the
place where each force acts is also important, as we shall see in Chapters 8 and 9.

In the Examples in this Section, we assume that all surfaces are very smooth so
that friction can be ignored. (Friction, and Examples using it, are discussed in
Section 4–8.)



Pulling the mystery box. Suppose a friend asks to examine
the 10.0-kg box you were given (Example 4–6, Fig. 4–15), hoping to guess what
is inside; and you respond, “Sure, pull the box over to you.” She then pulls 
the box by the attached cord, as shown in Fig. 4–21a, along the smooth surface 
of the table. The magnitude of the force exerted by the person is  
and it is exerted at a 30.0° angle as shown. Calculate (a) the acceleration of the
box, and (b) the magnitude of the upward force exerted by the table on the 
box. Assume that friction can be neglected.

APPROACH We follow the Problem Solving Strategy on the previous page.

SOLUTION

1. Draw a sketch: The situation is shown in Fig. 4–21a; it shows the box and the
force applied by the person,

2. Free-body diagram: Figure 4–21b shows the free-body diagram of the box. To
draw it correctly, we show all the forces acting on the box and only the forces
acting on the box. They are: the force of gravity the normal force exerted by
the table and the force exerted by the person We are interested only in
translational motion, so we can show the three forces acting at a point, Fig.4–21c.

3. Choose axes and resolve vectors: We expect the motion to be horizontal, so
we choose the x axis horizontal and the y axis vertical. The pull of 40.0 N has
components

In the horizontal (x) direction, and have zero components. Thus the
horizontal component of the net force is 

4. (a) Apply Newton’s second law to get the x component of the acceleration:

5. (a) Solve:

The acceleration of the box is to the right.
(b) Next we want to find 

4�. (b) Apply Newton’s second law to the vertical (y) direction, with upward as
positive:

5�. (b) Solve: We have and, from point 3
above, Furthermore, since the box does not move
vertically, so Thus

so

NOTE is less than mg: the table does not push against the full weight of the
box because part of the pull exerted by the person is in the upward direction.

EXERCISE F A 10.0-kg box is dragged on a horizontal frictionless surface by a hori-
zontal force of 10.0 N. If the applied force is doubled, the normal force on the box will
(a) increase; (b) remain the same; (c) decrease.

Tension in a Flexible Cord
When a flexible cord pulls on an object, the cord is said to be under tension, and the
force it exerts on the object is the tension If the cord has negligible mass, the
force exerted at one end is transmitted undiminished to each adjacent piece of cord
along the entire length to the other end. Why? Because for the
cord if the cord’s mass m is zero (or negligible) no matter what is. Hence the forces
pulling on the cord at its two ends must add up to zero ( and ). Note that
flexible cords and strings can only pull. They can’t push because they bend.

–FTFT

aB
©F

B

= maB = 0

FT .

FN

FN = 78.0 N.

FN - 98.0 N + 20.0 N = 0,

ay = 0.
FPy 6 mg,FPy = 20.0 N.

mg = (10.0 kg)A9.80 m�s2B = 98.0 N

FN - mg + FPy = may .
©Fy = may

FN .
3.46 m�s2

ax =
FPx

m
=

(34.6 N)
(10.0 kg)

= 3.46 m�s2 .

FPx = max .

FPx .
mgBF

B

N

FPy = (40.0 N)(sin 30.0°) = (40.0 N)(0.500) = 20.0 N.
FPx = (40.0 N)(cos 30.0°) = (40.0 N)(0.866) = 34.6 N,
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FIGURE 4;21 (a) Pulling the box,
Example 4–11; (b) is the free-body
diagram for the box, and (c) is the
free-body diagram considering all
the forces to act at a point 
(translational motion only, which 
is what we have here).
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Cords can pull but can’t push;
tension exists throughout a taut cord
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Our next Example involves two boxes connected by a cord. We can refer to
this group of objects as a system. A system is any group of one or more objects we
choose to consider and study.

Two boxes connected by a cord. Two boxes, A and B, are
connected by a lightweight cord and are resting on a smooth (frictionless) table.
The boxes have masses of 12.0 kg and 10.0 kg. A horizontal force of 40.0 N is
applied to the 10.0-kg box, as shown in Fig. 4–22a. Find (a) the acceleration of
each box, and (b) the tension in the cord connecting the boxes.

APPROACH We streamline our approach by not listing each step. We have two
boxes so we draw a free-body diagram for each. To draw them correctly, we
must consider the forces on each box by itself, so that Newton’s second law 
can be applied to each. The person exerts a force on box A. Box A exerts a
force on the connecting cord, and the cord exerts an opposite but equal 
magnitude force back on box A (Newton’s third law). The two horizontal
forces on box A are shown in Fig. 4–22b, along with the force of gravity 
downward and the normal force exerted upward by the table. The cord is
light, so we neglect its mass. The tension at each end of the cord is thus the same.
Hence the cord exerts a force on the second box. Figure 4–22c shows the
forces on box B, which are and the normal force There will be
only horizontal motion. We take the positive x axis to the right.

SOLUTION (a) We apply  to box A:

[box A]

For box B, the only horizontal force is so

[box B]

The boxes are connected, and if the cord remains taut and doesn’t stretch, then
the two boxes will have the same acceleration a. Thus We are
given and We can add the two equations above 
to eliminate an unknown and obtain

or

This is what we sought.

(b) From the equation for box B above  the tension in the cord is

Thus, as we expect, since acts to accelerate only 

Alternate Solution to (a) We would have obtained the same result had we consid-
ered a single system, of mass acted on by a net horizontal force equal
to (The tension forces would then be considered internal to the system as
a whole, and summed together would make zero contribution to the net force
on the whole system.)

NOTE It might be tempting to say that the force the person exerts, acts not
only on box A but also on box B. It doesn’t. acts only on box A. It affects 
box B via the tension in the cord, which acts on box B and accelerates it.
(You could look at it this way: because accelerates both boxes
whereas only accelerates box B.)FT

FP6 FPFT

FT ,
FP

FP ,

FTFP .
mA + mB ,

mB .FT6 FP  (= 40.0 N),FT

FT = mB a = (12.0 kg)A1.82 m�s2B = 21.8 N.

AFT = mB aBB,

a =
FP

mA + mB
=

40.0 N
22.0 kg

= 1.82 m�s2.

AmA + mBBa = FP - FT + FT = FP

AFTB
mB = 12.0 kg.mA = 10.0 kg

aA = aB = a.

©Fx = FT = mB aB .

FT ,

©Fx = FP - FT = mA aA .

©Fx = max

F
B

BN .F
B

T , mB gB,
FT

F
B

AN

mA gB
FT

FT

FP

FP

EXAMPLE 4;12

90 CHAPTER 4 Dynamics: Newton’s Laws of Motion

C A U T I O N

For any object, use only 
the forces on that object in

calculating ©F = ma

FIGURE 4;22 Example 4–12. (a) Two boxes,
A and B, are connected by a cord. A person pulls 
horizontally on box A with force
(b) Free-body diagram for box A. (c) Free-body 
diagram for box B.

FP = 40.0 N.



Elevator and counterweight (Atwood machine). A system
of two objects suspended over a pulley by a flexible cable, as shown in Fig. 4–23a,
is sometimes referred to as an Atwood machine. Consider the real-life appli-
cation of an elevator and its counterweight To minimize the work
done by the motor to raise and lower the elevator safely, and are made
similar in mass. We leave the motor out of the system for this calculation, and
assume that the cable’s mass is negligible and that the mass of the pulley, as well
as any friction, is small and ignorable. These assumptions ensure that the 
tension in the cable has the same magnitude on both sides of the pulley. Let the
mass of the counterweight be  Assume the mass of the empty
elevator is 850 kg, and its mass when carrying four passengers is
For the latter case calculate (a) the acceleration of the 
elevator and (b) the tension in the cable.

APPROACH Again we have two objects, and we will need to apply Newton’s
second law to each of them separately. Each mass has two forces acting on it:
gravity downward and the cable tension pulling upward, Figures 4–23b
and c show the free-body diagrams for the elevator and for the counter-
weight The elevator, being the heavier, will accelerate downward,
whereas the counterweight will accelerate upward. The magnitudes of their
accelerations will be equal (we assume the cable is massless and doesn’t stretch).
For the counterweight, so must be
greater than 9800 N (in order that will accelerate upward). For the elevator,

which must have greater magnitude
than so that accelerates downward. Thus our calculation must give 
between 9800 N and 11,300 N.

SOLUTION (a) To find as well as the acceleration a, we apply Newton’s
second law, to each object. We take upward as the positive y direc-
tion for both objects. With this choice of axes, because accelerates
upward, and because accelerates downward. Thus

We can subtract the first equation from the second to get

where a is now the only unknown. We solve this for a:

The elevator accelerates downward (and the counterweight upward) at

(b) The tension in the cable can be obtained from either of the two
equations at the start of our solution, setting :

or

which are consistent. As predicted, our result lies between 9800 N and 11,300 N.

NOTE We can check our equation for the acceleration a in this Example by
noting that if the masses were equal  then our equation above for a
would give  as we should expect. Also, if one of the masses is zero (say,

), then the other mass  would be predicted by our equation to
accelerate at again as expected.a = g,

AmE Z 0BmC = 0
a = 0,

AmE = mCB,

= 1000 kg A9.80 m�s2 + 0.68 m�s2B = 10,500 N,

FT = mC g + mC a = mC(g + a)

= 1150 kg A9.80 m�s2 - 0.68 m�s2B = 10,500 N,

FT = mE g - mE a = mE(g - a)

a = 0.070g = 0.68 m�s2©F = ma
FT

a = 0.070g = 0.68 m�s2.
mCAmEB

a =
mE - mC

mE + mC
g =

1150 kg - 1000 kg
1150 kg + 1000 kg

g = 0.070g = 0.68 m�s2.

AmE - mCBg = AmE + mCBa,

FT - mC g = mC aC = ±mC a.

FT - mE g = mE aE = –mE a

mEaE = –a
mCaC = a

©F = ma,
FT

FTmEFT

m E g = (1150 kg)A9.80 m�s2B = 11,300 N,
mC

FTmC g = (1000 kg)A9.80 m�s2B = 9800 N,

AmCB.
AmEB

F
B

T .

AmE = 1150 kgB, mE = 1150 kg.
mC = 1000 kg.

FT

mCmE

AmCB.AmEB
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Elevator (as Atwood machine)
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FIGURE 4;23 Example 4–13.
(a) Atwood machine in the form of
an elevator–counterweight system.
(b) and (c) Free-body diagrams for
the two objects.

P R O B L E M  S O L V I N G

Check your result by seeing if it 
works in situations where the 
answer is easily guessed



The advantage of a pulley. A mover is
trying to lift a piano (slowly) up to a second-story apartment (Fig. 4–24). He is
using a rope looped over two pulleys as shown. What force must he exert on the
rope to slowly lift the piano’s 1600-N weight?

RESPONSE The magnitude of the tension force within the rope is the same
at any point along the rope if we assume we can ignore its mass. First notice the
forces acting on the lower pulley at the piano. The weight of the piano
pulls down on the pulley. The tension in the rope, looped through this 
pulley, pulls up twice, once on each side of the pulley. Let us apply Newton’s
second law to the pulley–piano combination (of mass m), choosing the upward
direction as positive:

To move the piano with constant speed (set in this equation) thus requires
a tension in the rope, and hence a pull on the rope, of The piano
mover can exert a force equal to half the piano’s weight.

NOTE We say the pulley has given a mechanical advantage of 2, since without
the pulley the mover would have to exert twice the force.

FT = mg�2.
a = 0

2FT - mg = ma.

(= mg)

FT

CONCEPTUAL EXAMPLE 4;14

92 CHAPTER 4 Dynamics: Newton’s Laws of Motion

P H Y S I C S  A P P L I E D

Accelerometer

(b)

(a)

u

TF
B

mgB
aB

y
xu

T sin uF

T cosuF

FIGURE 4;25 Example 4–15.

T

TT

m

F
B

F
B

F
B

gB

FIGURE 4;24 Example 4–14.

Accelerometer. A small mass m hangs from a thin string
and can swing like a pendulum. You attach it above the window of your car 
as shown in Fig. 4–25a. When the car is at rest, the string hangs vertically.
What angle does the string make (a) when the car accelerates at a constant

and (b) when the car moves at constant velocity,

APPROACH The free-body diagram of Fig. 4–25b shows the pendulum at some
angle relative to the vertical, and the forces on it: downward, and the
tension in the cord (including its components). These forces do not add up
to zero if and since we have an acceleration a, we expect

SOLUTION (a) The acceleration  is horizontal  , and the only
horizontal force is the x component of (Fig.4–25b). Then from Newton’s
second law,

The vertical component of Newton’s second law gives, since ,

So

Dividing these two equations, we obtain

or

so

(b) The velocity is constant, so  and  Hence the pendulum hangs
vertically

NOTE This simple device is an accelerometer—it can be used to determine
acceleration, by mesuring the angle .u

Au = 0°B. tan u = 0.a = 0

u = 7.0°.

= 0.122,

 tan u =
1.20 m�s2

9.80 m�s2

tan u =
FT sin u
FT cos u

=
ma
mg

=
a
g

mg = FT cos u.

 0 = FT cos u - mg.

ay = 0

ma = FT sin u.

FT sin uF
B

T,
(= ax)a = 1.20 m�s2

u Z 0.u Z 0;
F
B

T

mgBu

v = 90 km�h?a = 1.20 m�s2,
u
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4–8 Problems Involving Friction, Inclines
Friction
Until now we have ignored friction, but it must be taken into account in most
practical situations. Friction exists between two solid surfaces because even the
smoothest looking surface is quite rough on a microscopic scale, Fig. 4–26. When
we try to slide an object across a surface, these microscopic bumps impede the
motion. Exactly what is happening at the microscopic level is not yet fully under-
stood. It is thought that the atoms on a bump of one surface may come so close to
the atoms of the other surface that attractive electric forces between the atoms
could “bond” as a tiny weld between the two surfaces. Sliding an object across a
surface is often jerky, perhaps due to the making and breaking of these bonds.
Even when a round object rolls across a surface, there is still some friction, called
rolling friction, although it is generally much less than when an object slides across
a surface. We focus now on sliding friction, which is usually called kinetic friction
(kinetic is from the Greek for “moving”).

When an object slides along a rough surface, the force of kinetic friction acts
opposite to the direction of the object’s velocity. The magnitude of the force of
kinetic friction depends on the nature of the two sliding surfaces. For given 
surfaces, experiment shows that the friction force is approximately proportional
to the normal force between the two surfaces, which is the force that either 
object exerts on the other and is perpendicular to their common surface of contact
(see Fig. 4–27). The force of friction between hard surfaces in many cases depends
very little on the total surface area of contact; that is, the friction force on this book
is roughly the same whether it is being slid across a table on its wide face or on its
spine, assuming the surfaces have the same smoothness. We consider a simple model
of friction in which we make this assumption that the friction force is indepen-
dent of area. Then we write the proportionality between the magnitudes of the
friction force and the normal force as an equation by inserting a constant of
proportionality,

[kinetic friction]

This relation is not a fundamental law; it is an experimental relation between
the magnitude of the friction force which acts parallel to the two surfaces, and
the magnitude of the normal force which acts perpendicular to the surfaces.
It is not a vector equation since the two forces have different directions, perpendicular
to one another. The term is called the coefficient of kinetic friction, and its value
depends on the nature of the two surfaces. Measured values for a variety of sur-
faces are given in Table 4–2. These are only approximate, however, since depends
on whether the surfaces are wet or dry, on how much they have been sanded or
rubbed, if any burrs remain, and other such factors. But (which has no units) is
roughly independent of the sliding speed, as well as the area in contact.

mk

m

mk

FN ,
Ffr ,

Ffr = mk FN .

mk :
FNFfr
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FIGURE 4;26 An object moving to
the right on a table. The two surfaces
in contact are assumed smooth, but
are rough on a microscopic scale.
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FIGURE 4;27 When an object is
pulled along a surface by an applied
force the force of friction 
opposes the motion. The magnitude
of is proportional to the 
magnitude of the normal force AFNB.
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TABLE 4;2 Coefficients of Friction†

Coefficient of Coefficient of 
Surfaces Static Friction, Kinetic Friction,

Wood on wood 0.4 0.2
Ice on ice 0.1 0.03
Metal on metal (lubricated) 0.15 0.07
Steel on steel (unlubricated) 0.7 0.6
Rubber on dry concrete 1.0 0.8
Rubber on wet concrete 0.7 0.5
Rubber on other solid surfaces 1–4 1
Teflon® on Teflon in air 0.04 0.04
Teflon on steel in air 0.04 0.04
Lubricated ball bearings 0.01 0.01
Synovial joints (in human limbs) 0.01 0.01
† Values are approximate and intended only as a guide.
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What we have been discussing up to now is kinetic friction, when one object
slides over another. There is also static friction, which refers to a force parallel to
the two surfaces that can arise even when they are not sliding. Suppose an object
such as a desk is resting on a horizontal floor. If no horizontal force is exerted on
the desk, there also is no friction force. But now suppose you try to push the 
desk, and it doesn’t move. You are exerting a horizontal force, but the desk isn’t
moving, so there must be another force on the desk keeping it from moving (the
net force is zero on an object at rest). This is the force of static friction exerted
by the floor on the desk. If you push with a greater force without moving the desk,
the force of static friction also has increased. If you push hard enough, the desk will
eventually start to move, and kinetic friction takes over. At this point, you have
exceeded the maximum force of static friction, which is given by  
where is the coefficient of static friction (Table 4–2). Because the force of static
friction can vary from zero to this maximum value, we write

[static friction]

You may have noticed that it is often easier to keep a heavy object sliding
than it is to start it sliding in the first place. This is consistent with generally
being greater than (see Table 4–2).

Friction: static and kinetic. Our 10.0-kg mystery box rests
on a horizontal floor. The coefficient of static friction is  and the 
coefficient of kinetic friction is Determine the force of friction,
acting on the box if a horizontal applied force is exerted on it of magnitude:
(a) 0, (b) 10 N, (c) 20 N, (d) 38 N, and (e) 40 N.

APPROACH We don’t know, right off, if we are dealing with static friction or
kinetic friction, nor if the box remains at rest or accelerates. We need to draw a
free-body diagram, and then determine in each case whether or not the box will
move: the box starts moving if is greater than the maximum static friction
force (Newton’s second law). The forces on the box are gravity the normal
force exerted by the floor the horizontal applied force and the fric-
tion force as shown in Fig. 4–27.

SOLUTION The free-body diagram of the box is shown in Fig. 4–27. In the vertical
direction there is no motion, so Newton’s second law in the vertical direction 
gives which tells us Hence the normal force is

(a) Because in this first case, the box doesn’t move, and
(b) The force of static friction will oppose any applied force up to a maximum of

When the applied force is the box will not move. Newton’s second
law gives  so  
(c) An applied force of 20 N is also not sufficient to move the box. Thus

to balance the applied force.
(d) The applied force of 38 N is still not quite large enough to move the box;
so the friction force has now increased to 38 N to keep the box at rest.
(e) A force of 40 N will start the box moving since it exceeds the maximum force
of static friction, Instead of static friction, we now
have kinetic friction, and its magnitude is

There is now a net (horizontal) force on the box of magnitude
so the box will accelerate at a rate

as long as the applied force is 40 N. Figure 4–28 shows a graph that summarizes
this Example.

ax =
©F
m

=
11 N

10.0 kg
= 1.1 m�s2

F = 40 N - 29 N = 11 N,

Ffr = mk FN = (0.30)(98.0 N) = 29 N.

ms FN = (0.40)(98 N) = 39 N.

Ffr = 20 N

Ffr = 10 N.©Fx = FA - Ffr = 0,
FA = 10 N,

ms FN = (0.40)(98.0 N) = 39 N.
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FIGURE 4;28 Example 4–16.
Magnitude of the force of friction as 
a function of the external force 
applied to an object initially at rest.
As the applied force is increased in 
magnitude, the force of static friction 
increases in proportion until the 
applied force equals If the 
applied force increases further, the 
object will begin to move, and the 
friction force drops to a roughly 
constant value characteristic of kinetic 
friction.
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FIGURE 4;27 Repeated for
Example 4–16.



Friction can be a hindrance. It slows down moving objects and causes heating
and binding of moving parts in machinery. Friction can be reduced by using lubri-
cants such as oil. More effective in reducing friction between two surfaces is to
maintain a layer of air or other gas between them. Devices using this concept,
which is not practical for most situations, include air tracks and air tables in which
the layer of air is maintained by forcing air through many tiny holes. Another
technique to maintain the air layer is to suspend objects in air using magnetic
fields (“magnetic levitation”).

On the other hand, friction can be helpful. Our ability to walk depends on
friction between the soles of our shoes (or feet) and the ground. (Walking involves
static friction, not kinetic friction. Why?) The movement of a car, and also its 
stability, depend on friction. When friction is low, such as on ice, safe walking or
driving becomes difficult.
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FIGURE 4;30 Example 4–18.

A box against a wall. You can hold a box
against a rough wall (Fig. 4–29) and prevent it from slipping down by pressing
hard horizontally. How does the application of a horizontal force keep an 
object from moving vertically?

RESPONSE This won’t work well if the wall is slippery. You need friction.
Even then, if you don’t press hard enough, the box will slip. The horizontal
force you apply produces a normal force on the box exerted by the wall (the 
net force horizontally is zero since the box doesn’t move horizontally). The force
of gravity mg, acting downward on the box, can now be balanced by an upward
static friction force whose maximum magnitude is proportional to the normal
force. The harder you push, the greater is and the greater can be. If you
don’t press hard enough, then and the box begins to slide down.mg 7 ms FN

FfrFN

CONCEPTUAL EXAMPLE 4;17

EXERCISE G If  and  what minimum force F will keep the box
from falling: (a) 100 N; (b) 80 N; (c) 50 N; (d) 20 N; (e) 8 N?

mg = 20 N,ms = 0.40

Pulling against friction. A 10.0-kg box is pulled along a
horizontal surface by a force of 40.0 N applied at a 30.0° angle above hori-
zontal. This is like Example 4–11 except now there is friction, and we assume a
coefficient of kinetic friction of 0.30. Calculate the acceleration.

APPROACH The free-body diagram is shown in Fig. 4–30. It is much like that
in Fig. 4–21b, but with one more force, friction.

SOLUTION The calculation for the vertical (y) direction is just the same 
as in Example 4–11b, and 

With y positive upward and  we have

so the normal force is  Now we apply Newton’s second law for the
horizontal (x) direction (positive to the right), and include the friction force:

The friction force is kinetic friction as long as is less than
which it is:

Hence the box does accelerate:

In the absence of friction, as we saw in Example 4–11, the acceleration would be
much greater than this.

NOTE Our final answer has only two significant figures because our least sig-
nificant input value has two.Amk = 0.30B

ax =
FPx - Ffr

m
=

34.6 N - 23.4 N
10.0 kg

= 1.1 m�s2.

Ffr = mk FN = (0.30)(78.0 N) = 23.4 N.

(40.0 N) cos 30.0° = 34.6 N,
FPx =Ffr = mk FN

FPx - Ffr = max .

FN = 78.0 N.

FN - 98.0 N + 20.0 N = 0,

FN - mg + FPy = may

ay = 0,(40.0 N)(sin 30.0°) = 20.0 N.
FPy =mg = (10.0 kg)A9.80 m�s2B = 98.0 N

FP
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To push or to pull a sled? Your little sister
wants a ride on her sled. If you are on flat ground, will you exert less force if you
push her or pull her? See Figs. 4–31a and b. Assume the same angle in each case.

RESPONSE Let us draw free-body diagrams for the sled–sister combination,
as shown in Figs. 4–31c and d. They show, for the two cases, the forces exerted
by you, (an unknown), by the snow, and and gravity (a) If you
push her, and there is a vertically downward component to your force.
Hence the normal force upward exerted by the ground (Fig. 4–31c) will be
larger than mg (where m is the mass of sister plus sled). (b) If you pull her, your
force has a vertically upward component, so the normal force will be less
than mg, Fig. 4–31d. Because the friction force is proportional to the normal
force, will be less if you pull her. So you exert less force if you pull her.

Two boxes and a pulley. In Fig. 4–32a, two boxes are 
connected by a cord running over a pulley. The coefficient of kinetic friction
between box A and the table is 0.20. We ignore the mass of the cord and pulley
and any friction in the pulley, which means we can assume that a force applied
to one end of the cord will have the same magnitude at the other end. We wish 
to find the acceleration, a, of the system, which will have the same magnitude
for both boxes assuming the cord doesn’t stretch. As box B moves down, box A
moves to the right.

APPROACH The free-body diagrams for each box are shown in Figs. 4–32b and c.
The forces on box A are the pulling force of the cord gravity the nor-
mal force exerted by the table and a friction force exerted by the table 
the forces on box B are gravity and the cord pulling up,

SOLUTION Box A does not move vertically, so Newton’s second law tells us
the normal force just balances the weight,

In the horizontal direction, there are two forces on box A (Fig. 4–32b): the
tension in the cord (whose value we don’t know), and the force of friction

The horizontal acceleration (box A) is what we wish to find; we use Newton’s
second law in the x direction, which becomes (taking the positive
direction to the right and setting ):

[box A]

Next consider box B. The force of gravity
pulls downward; and the cord pulls upward with a force So we can write
Newton’s second law for box B (taking the downward direction as positive):

[box B]

[Notice that if then is not equal to ]

We have two unknowns, a and and we also have two equations. We solve
the box A equation for 

and substitute this into the box B equation:

Now we solve for a and put in numerical values:

which is the acceleration of box A to the right, and of box B down.
If we wish, we can calculate using the third equation up from here:

NOTE Box B is not in free fall. It does not fall at because an additional
force, is acting upward on it.FT ,

a = g

FT = Ffr + mA a = 9.8 N + (5.0 kg)A1.4 m�s2B = 17 N.

FT

a =
mB g - Ffr

mA + mB
=

19.6 N - 9.8 N
5.0 kg + 2.0 kg

= 1.4 m�s2,

mB g - Ffr - mA a = mB a.

FT = Ffr + mA a,

FT :
FT ,

mB g.FTa Z 0,

©FBy = mBg - FT = mBa.

FT .
mB g = (2.0 kg)A9.8 m�s2B = 19.6 N

©FAx = FT - Ffr = mAa.
aAx = a

©FAx = mAax ,

Ffr = mk FN = (0.20)(49 N) = 9.8 N.

FT ,

FN = mA g = (5.0 kg)A9.8 m�s2B = 49 N.

FT .mB g,
Ffr ;FN ,

mA g,FT ,

EXAMPLE 4;20

Ffr

FN

u 7 0,
mgB.F

B

fr ,F
B

NF
B

u

CONCEPTUAL EXAMPLE 4;19

96 CHAPTER 4

C A U T I O N

Tension in a cord supporting a falling
object may not equal object’s weight
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Inclines
Now we consider what happens when an object slides down an incline, such as 
a hill or ramp. Such problems are interesting because gravity is the accelerating
force, yet the acceleration is not vertical. Solving problems is usually easier if we
choose the xy coordinate system so the x axis points along the incline (the direction
of motion) and the y axis is perpendicular to the incline, as shown in Fig. 4–33.
Note also that the normal force is not vertical, but is perpendicular to the sloping
surface of the plane, along the y axis in Fig. 4–33.

EXERCISE H Is the normal force always perpendicular to an inclined plane? Is it always
vertical?

The skier. The skier in Fig. 4–34a has begun descending the
30° slope. If the coefficient of kinetic friction is 0.10, what is her acceleration?

APPROACH We choose the x axis along the slope, positive downslope in the
direction of the skier’s motion. The y axis is perpendicular to the surface. The
forces acting on the skier are gravity, which points vertically down-
ward (not perpendicular to the slope), and the two forces exerted on her skis by
the snow—the normal force perpendicular to the snowy slope (not vertical), and
the friction force parallel to the surface. These three forces are shown acting 
at one point in Fig. 4–34b, which is our free-body diagram for the skier.

SOLUTION We have to resolve only one vector into components, the weight 
and its components are shown as dashed lines in Fig. 4–34c. To be general, we
use rather than 30° for now. We use the definitions of sine (“side opposite”)
and cosine (“side adjacent”) to obtain the components:

where is in the negative y direction. To calculate the skier’s acceleration down
the hill, we apply Newton’s second law to the x direction:

where the two forces are the x component of the gravity force ( direction)
and the friction force ( direction). We want to find the value of but we
don’t yet know in the last equation. Let’s see if we can get from the
y component of Newton’s second law:

where we set because there is no motion in the y direction (perpendic-
ular to the slope). Thus we can solve for 

and we can substitute this into our equation above for 

There is an m in each term which can be canceled out. Thus (setting and
):

The skier’s acceleration is 0.41 times the acceleration of gravity, which in numbers†

is

NOTE The mass canceled out, so we have the useful conclusion that the accelera-
tion doesn’t depend on the mass. That such a cancellation sometimes occurs, and 
thus may give a useful conclusion as well as saving calculation, is a big advantage
of working with the algebraic equations and putting in the numbers only at the end.

a = (0.41)A9.8 m�s2B = 4.0 m�s2.

= 0.50g - (0.10)(0.866)g = 0.41g.
ax = g sin 30° - mk g cos 30°

mk = 0.10
u = 30°

mg sin u - mkAmg cos uB = max .

max :

FN = mg cos u

FN :
ay = 0

FN - mg cos u = may = 0
©Fy = may

FNFN

ax ,–x
±x

mg sin u - mk FN = max

©Fx = max

ax ,
FGy

FGy = –mg cos u
FGx = mg sin u,

u

F
B

G ,

F
B

G = mgB,
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descending a slope; is the
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FIGURE 4;33 Forces on an object
sliding down an incline.

P R O B L E M  S O L V I N G

Good choice of coordinate
system simplifies the calculation

P H Y S I C S  A P P L I E D

Skiing

P R O B L E M  S O L V I N G

It is often helpful to put in numbers
only at the end

†We used values rounded off to 2 significant figures to obtain If we kept all the extra
digits in our calculator, we would find This difference is within the expected
precision (number of significant figures, Section 1–4).

a = 0.4134g L 4.1 m�s2.
a = 4.0 m�s2.



Newton’s three laws of motion are the basic classical laws
describing motion.

Newton’s first law (the law of inertia) states that if the net
force on an object is zero, an object originally at rest remains 
at rest, and an object in motion remains in motion in a straight
line with constant velocity.

Newton’s second law states that the acceleration of an
object is directly proportional to the net force acting on it, and
inversely proportional to its mass:

(4;1)

Newton’s second law is one of the most important and funda-
mental laws in classical physics.

Newton’s third law states that whenever one object exerts
a force on a second object, the second object always exerts a
force on the first object which is equal in magnitude but oppo-
site in direction:

(4;2)

where is the force on object B exerted by object A.
The tendency of an object to resist a change in its motion

is called inertia. Mass is a measure of the inertia of an object.

F
B

BA

F
B

AB = –F
B

BA

©F
B

= maB.

Weight refers to the gravitational force on an object, and is
equal to the product of the object’s mass m and the acceleration
of gravity 

(4;3)

Force, which is a vector, can be considered as a push or pull;
or, from Newton’s second law, force can be defined as an action
capable of giving rise to acceleration. The net force on an object
is the vector sum of all forces acting on that object.

When two objects slide over one another, the force of 
friction that each object exerts on the other can be written
approximately as where is the normal force
(the force each object exerts on the other perpendicular to their
contact surfaces), and is the coefficient of kinetic friction. If
the objects are at rest relative to each other, then is just 
large enough to hold them at rest and satisfies the inequality

where is the coefficient of static friction.
For solving problems involving the forces on one or more

objects, it is essential to draw a free-body diagram for each
object, showing all the forces acting on only that object.
Newton’s second law can be applied to the vector components
for each object.

msFfr 6 ms FN ,

Ffr

mk

FNFfr = mk FN ,

F
B

G = mgB.

gB:

Summary

1. Why does a child in a wagon seem to fall backward when
you give the wagon a sharp pull forward?

2. A box rests on the (frictionless) bed of a truck. The truck
driver starts the truck and accelerates forward. The box
immediately starts to slide toward the rear of the truck bed.
Discuss the motion of the box, in terms of Newton’s laws, as
seen (a) by Mary standing on the ground beside the truck,
and (b) by Chris who is riding on the truck (Fig. 4–35).

7. If you walk along a log floating on a lake, why does the log
move in the opposite direction?

8. (a) Why do you push down harder on the pedals of a bicy-
cle when first starting out than when moving at constant
speed? (b) Why do you need to pedal at all when cycling at
constant speed?

9. A stone hangs by a fine thread from the ceiling, and a
section of the same thread dangles from the bottom of 
the stone (Fig. 4–36). If a person gives a sharp pull on the
dangling thread, where is the thread likely to break:
below the stone or above it? What if the person gives a
slow and steady pull? Explain your answers.

Questions

aB

Box

FIGURE 4;35

Question 2.

3. If an object is moving, is it possible for the net force acting
on it to be zero? Explain.

4. If the acceleration of an object is zero, are no forces acting
on it? Explain.

5. Only one force acts on an object. Can the object have zero
acceleration? Can it have zero velocity? Explain.

6. When a golf ball is dropped to the pavement, it bounces
back up. (a) Is a force needed to make it bounce back up?
(b) If so, what exerts the force?

FIGURE 4;36

Question 9.

In Problems involving a slope or an “inclined plane,” avoid making errors in
the directions of the normal force and gravity. The normal force on an incline is
not vertical: it is perpendicular to the slope or plane. And gravity is not perpendic-
ular to the slope—gravity acts vertically downward toward the center of the Earth.
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Directions of gravity and 
the normal force

10. The force of gravity on a 2-kg rock is twice as great as that
on a 1-kg rock. Why then doesn’t the heavier rock fall
faster?
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11. (a) You pull a box with a constant force across a frictionless
table using an attached rope held horizontally. If you now
pull the rope with the same force at an angle to the hori-
zontal (with the box remaining flat on the table), does the
acceleration of the box increase, decrease, or remain the
same? Explain. (b) What if there is friction?

12. When an object falls freely under the influence of gravity
there is a net force mg exerted on it by the Earth. Yet by
Newton’s third law the object exerts an equal and opposite
force on the Earth. Does the Earth move? Explain.

13. Compare the effort (or force) needed to lift a 10-kg object
when you are on the Moon with the force needed to lift it 
on Earth. Compare the force needed to throw a 2-kg object
horizontally with a given speed on the Moon and on Earth.

14. According to Newton’s third law, each team in a tug of war
(Fig. 4–37) pulls with equal force on the other team. What,
then, determines which team will win?

FIGURE 4;37 Question 14. A tug of war.
Describe the forces on each of the teams and 
on the rope.

15. When you stand still on the ground, how large a force does
the ground exert on you? Why doesn’t this force make you
rise up into the air?

16. Whiplash sometimes results from an automobile accident
when the victim’s car is struck violently from the rear.
Explain why the head of the victim seems to be thrown
backward in this situation. Is it really?

17. Mary exerts an upward force of 40 N to hold a bag of gro-
ceries. Describe the “reaction” force (Newton’s third law)
by stating (a) its magnitude, (b) its direction, (c) on what
object it is exerted, and (d) by what object it is exerted.

18. A father and his young daughter are ice skating. They face
each other at rest and push each other, moving in opposite
directions. Which one has the greater final speed? Explain.

19. A heavy crate rests on the bed of a flatbed truck. When the
truck accelerates, the crate stays fixed on the truck, so it,
too, accelerates. What force causes the crate to accelerate?

20. A block is given a brief push so that it slides up a ramp. After
the block reaches its highest point, it slides back down, but
the magnitude of its acceleration is less on the descent than
on the ascent. Why?

21. Why is the stopping distance of a truck much shorter than
for a train going the same speed?

22. What would your bathroom scale read if you weighed your-
self on an inclined plane? Assume the mechanism functions
properly, even at an angle.

3. Matt, in the foreground of Fig. 4–39, is able to move the
large truck because 
(a) he is stronger than the truck.
(b) he is heavier in some respects than the truck.
(c) he exerts a greater force on the truck than the truck

exerts back on him.
(d) the ground exerts a greater friction force on Matt than

it does on the truck.
(e) the truck offers no resistance because its brakes are off.

MisConceptual Questions
1. A truck is traveling horizontally to the right (Fig.4–38). When

the truck starts to slow down, the crate on the (frictionless)
truck bed starts to slide. In what direction could the net
force be on the crate? 
(a) No direction. The net force is zero.
(b) Straight down (because of gravity).
(c) Straight up (the normal force).
(d) Horizontal and to the right.
(e) Horizontal and to the left.

FIGURE 4;38

MisConceptual Question 1.

2. You are trying to push your stalled car. Although you apply
a horizontal force of 400 N to the car, it doesn’t budge, and
neither do you. Which force(s) must also have a magnitude
of 400 N?
(a) The force exerted by the car on you.
(b) The friction force exerted by the car on the road.
(c) The normal force exerted by the road on you.
(d) The friction force exerted by the road on you. FIGURE 4;39 MisConceptual Question 3.



4. A bear sling, Fig. 4–40, is used in some national parks for
placing backpackers’ food out of the reach of bears. As the
backpacker raises the pack by pulling down on the rope, the
force F needed:
(a) decreases as the pack rises until the rope is straight

across.
(b) doesn’t change.
(c) increases until the rope is straight.
(d) increases but the rope always sags where the pack

hangs.

5. What causes the boat in Fig. 4–41 to move forward? 
(a) The force the man exerts on the paddle.
(b) The force the paddle exerts on the water.
(c) The force the water exerts on the paddle.
(d) The motion of the water itself.

FIGURE 4;41 MisConceptual Question 5.

6. A person stands on a scale in an elevator. His apparent
weight will be the greatest when the elevator 
(a) is standing still.
(b) is moving upward at constant velocity.
(c) is accelerating upward.
(d) is moving downward at constant velocity.
(e) is accelerating downward.

7. When a skier skis down a hill, the normal force exerted on
the skier by the hill is 
(a) equal to the weight of the skier.
(b) greater than the weight of the skier.
(c) less than the weight of the skier.

8. A golf ball is hit with a golf club. While the ball flies through
the air, which forces act on the ball? Neglect air resistance.
(a) The force of the golf club acting on the ball.
(b) The force of gravity acting on the ball.
(c) The force of the ball moving forward through the air.
(d) All of the above.
(e) Both (a) and (c).

FIGURE 4;42 MisConceptual Question 12.

9. Suppose an object is accelerated by a force of 100 N. Sud-
denly a second force of 100 N in the opposite direction 
is exerted on the object, so that the forces cancel. The
object
(a) is brought to rest rapidly.
(b) decelerates gradually to rest.
(c) continues at the velocity it had before the second force

was applied.
(d) is brought to rest and then accelerates in the direction

of the second force.

10. You are pushing a heavy box across a rough floor. When you
are initially pushing the box and it is accelerating,
(a) you exert a force on the box, but the box does not

exert a force on you.
(b) the box is so heavy it exerts a force on you, but you do

not exert a force on the box.
(c) the force you exert on the box is greater than the force

of the box pushing back on you.
(d) the force you exert on the box is equal to the force of

the box pushing back on you.
(e) the force that the box exerts on you is greater than the

force you exert on the box.

11. A 50-N crate sits on a horizontal floor where the coefficient
of static friction between the crate and the floor is 0.50.
A 20-N force is applied to the crate acting to the right. What
is the resulting static friction force acting on the crate?
(a) 20 N to the right.
(b) 20 N to the left.
(c) 25 N to the right.
(d) 25 N to the left.
(e) None of the above; the crate starts to move.

12. The normal force on an extreme skier descending a very
steep slope (Fig. 4–42) can be zero if 
(a) his speed is great enough.
(b) he leaves the slope (no longer touches the snow).
(c) the slope is greater than 75°.
(d) the slope is vertical (90°).
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FIGURE 4;40

MisConceptual
Question 4.

13. To pull an old stump out of the ground, you and a friend tie
two ropes to the stump. You pull on it with a force of 500 N
to the north while your friend pulls with a force of 450 N to
the northwest. The total force from the two ropes is
(a) less than 950 N.
(b) exactly 950 N.
(c) more than 950 N.



12. (II) A 14.0-kg bucket is lowered vertically by a rope in
which there is 163 N of tension at a given instant. What is
the acceleration of the bucket? Is it up or down?

13. (II) A 75-kg petty thief wants to escape from a third-story jail
window. Unfortunately, a makeshift rope made of sheets tied
together can support a mass of only 58 kg. How might the
thief use this “rope” to escape? Give a quantitative answer.

14. (II) An elevator (mass 4850 kg) is to be designed so that
the maximum acceleration is 0.0680g. What are the maxi-
mum and minimum forces the motor should exert on the
supporting cable?

15. (II) Can cars “stop on a dime”? Calculate the acceleration
of a 1400-kg car if it can stop from on a dime
( ). How many g’s is this? What is the
force felt by the 68-kg occupant of the car?

16. (II) A woman stands on a bathroom scale in a motionless
elevator. When the elevator begins to move, the scale briefly
reads only 0.75 of her regular weight. Calculate the acceler-
ation of the elevator, and find the direction of acceleration.

17. (II) (a) What is the acceleration of two falling sky divers
(total including parachute) when the upward
force of air resistance is equal to one-fourth of their weight?
(b) After opening the parachute, the divers descend
leisurely to the ground at constant speed. What now is the
force of air resistance on the sky divers and their parachute?
See Fig. 4–44.

mass = 132 kg

diameter = 1.7 cm
35 km�h

Problems

Problems 101

20.0 kg

10.0 kg

FIGURE 4;43

Problem 11.

[It would be wise, before starting the Problems, to reread the 
Problem Solving Strategies on pages 30, 60, and 88.]

4;4 to 4;6 Newton’s Laws, Gravitational Force,
Normal Force [Assume no friction.]

1. (I) What force is needed to accelerate a sled  ( )
at on horizontal frictionless ice?

2. (I) What is the weight of a 68-kg astronaut (a) on Earth,
(b) on the Moon (c) on Mars
(d) in outer space traveling with constant velocity?

3. (I) How much tension must a rope withstand if it is used to
accelerate a 1210-kg car horizontally along a frictionless
surface at 

4. (II) According to a simplified model of a mammalian heart,
at each pulse approximately 20 g of blood is accelerated
from to during a period of 0.10 s. What 
is the magnitude of the force exerted by the heart muscle?

5. (II) Superman must stop a train in 150 m to keep
it from hitting a stalled car on the tracks. If the train’s mass
is how much force must he exert? Compare
to the weight of the train (give as %). How much force
does the train exert on Superman?

6. (II) A person has a reasonable chance of surviving an auto-
mobile crash if the deceleration is no more than 30 g’s.
Calculate the force on a 65-kg person accelerating at this
rate. What distance is traveled if brought to rest at this rate
from

7. (II) What average force is required to stop a 950-kg car in
8.0 s if the car is traveling at 

8. (II) Estimate the average force exerted by a shot-putter on
a 7.0-kg shot if the shot is moved through a distance of
2.8 m and is released with a speed of 

9. (II) A 0.140-kg baseball traveling strikes the
catcher’s mitt, which, in bringing the ball to rest, recoils
backward 11.0 cm. What was the average force applied by
the ball on the glove?

10. (II) How much tension must a cable withstand if it is used
to accelerate a 1200-kg car vertically upward at 

11. (II) A 20.0-kg box rests on a table. (a) What is the weight
of the box and the normal force acting on it? (b) A 10.0-kg
box is placed on top of the 20.0-kg box, as shown in 
Fig. 4–43. Determine the normal force that the table exerts
on the 20.0-kg box and the normal force that the 20.0-kg
box exerts on the 10.0-kg box.

0.70 m�s2?

35.0 m�s

13 m�s.

95 km�h?

95 km�h?

3.6 * 105 kg,

120-km�h

0.35 m�s0.25 m�s

1.20 m�s2?

3.7 m�s2B,Ag =Ag = 1.7 m�s2B,
1.4 m�s2

mass = 55 kg

18. (II) The cable supporting a 2125-kg elevator has a maximum
strength of 21,750 N. What maximum upward acceleration
can it give the elevator without breaking?

19. (III) A person jumps from the roof of a house 2.8 m high.
When he strikes the ground below, he bends his knees so
that his torso decelerates over an approximate distance of
0.70 m. If the mass of his torso (excluding legs) is 42 kg,
find (a) his velocity just before his feet strike the ground,
and (b) the average force exerted on his torso by his legs
during deceleration.

FIGURE 4;44

Problem 17.

For assigned homework and other learning materials, go to the MasteringPhysics website.



27. (II) A train locomotive is pulling two cars of the same mass
behind it, Fig. 4–51. Determine the ratio of the tension in
the coupling (think of it as a cord) between the locomotive
and the first car to that between the first car and the
second car for any nonzero acceleration of the train.AFT2B,

AFT1B,

10.0°

FIGURE 4;47 Problem 23.
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FIGURE 4;51 Problem 27.
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FIGURE 4;52 Problem 28.

21. (I) Draw the free-body
diagram for a basketball
player (a) just before leav-
ing the ground on a jump,
and (b) while in the air.
See Fig. 4–46.
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26. (II) Two snowcats in Antarctica are towing a housing unit
north, as shown in Fig. 4–50. The sum of the forces

and exerted
on the unit by the
horizontal cables
is north, parallel 
to the line L,
and
Determine and
the magnitude of
F
B

A + F
B

B .

FB

FA = 4500 N.

F
B

BF
B

A

22. (I) Sketch the free-body diagram of a baseball (a) at the
moment it is hit by the bat, and again (b) after it has left
the bat and is flying toward the outfield. Ignore air resistance.

23. (II) Arlene is to walk across a “high wire” strung horizontally
between two buildings 10.0 m apart. The sag in the rope
when she is at the midpoint is 10.0°, as shown in Fig. 4–47.
If her mass is 50.0 kg, what is the tension in the rope at this
point?

28. (II) The two forces and shown in Fig. 4–52a and b
(looking down) act on an 18.5-kg object on a frictionless
tabletop. If and find the net
force on the object and its acceleration for (a) and (b).

F2 = 16.0 N,F1 = 10.2 N

F
B

2F
B

1

FIGURE 4;46

Problem 21.

24. (II) A window washer pulls herself upward
using the bucket–pulley apparatus shown in
Fig. 4–48. (a) How hard must she pull down-
ward to raise herself slowly at constant
speed? (b) If she increases this force by 15%,
what will her acceleration be? The mass of
the person plus the bucket is 72 kg.

25. (II) One 3.2-kg paint bucket is hanging by a massless cord
from another 3.2-kg paint bucket, also hanging by a mass-
less cord, as shown in Fig. 4–49. (a) If the
buckets are at rest, what is the tension in 
each cord? (b) If the two buckets are pulled 
upward with an acceleration of by 
the upper cord, calculate the tension in each
cord.

1.25 m�s2

FIGURE 4;49

Problem 25.

FIGURE 4;48

Problem 24.
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FIGURE 4;50

Problem 26.

4;7 Newton’s Laws and Vectors [Ignore friction.]
20. (I) A box weighing 77.0 N rests on

a table. A rope tied to the box runs
vertically upward over a pulley and
a weight is hung from the other
end (Fig. 4–45). Determine the
force that the table exerts on 
the box if the weight hanging 
on the other side of the pulley
weighs (a) 30.0 N, (b) 60.0 N, and
(c) 90.0 N.

FIGURE 4;45

Problem 20.



29. (II) At the instant a race began, a 65-kg sprinter exerted a
force of 720 N on the starting block at a 22° angle with
respect to the ground. (a) What was the horizontal acceler-
ation of the sprinter? (b) If the force was exerted for 0.32 s,
with what speed did the sprinter leave the starting block?

30. (II) A 27-kg chandelier hangs from a ceiling on a vertical
4.0-m-long wire. (a) What horizontal force would be neces-
sary to displace its position 0.15 m to one side? (b) What
will be the tension in the wire?

31. (II) An object is hanging by a string from your rearview
mirror. While you are decelerating at a constant rate from

to rest in 6.0 s, (a) what angle does the string make
with the vertical, and (b) is it toward the windshield or
away from it? [Hint: See Example 4–15.]

32. (II) Figure 4–53 shows a block (mass ) on a smooth hori-
zontal surface, connected by a thin cord that passes over 
a pulley to a second block which hangs vertically.
(a) Draw a free-body diagram for each block, showing the
force of gravity on each, the force (tension) exerted by the
cord, and any normal force. (b) Apply Newton’s second law
to find formulas for the acceleration of the system and for
the tension in the cord. Ignore friction and the masses of
the pulley and cord.

AmBB,
mA

25 m�s

Problems 103

mB

mA

FIGURE 4;53

Problems 32 and 33.
Mass rests on a 
smooth horizontal 
surface; hangs 
vertically.

mB

mA

33. (II) (a) If and in Fig. 4–53,
determine the acceleration of each block. (b) If initially

is at rest 1.250 m from the edge of the table, how long
does it take to reach the edge of the table if the system is
allowed to move freely? (c) If how large
must be if the acceleration of the system is to be kept
at

34. (III) Three blocks on a frictionless horizontal surface are 
in contact with each other as shown in Fig. 4–54. A force 
is applied to block A (mass ). (a) Draw a free-body dia-
gram for each block. Determine (b) the acceleration of the
system (in terms of and ), (c) the net force on
each block, and (d) the force of contact that each block
exerts on its neighbor. (e) If and

give numerical answers to (b), (c), and (d).
Explain how your answers make sense intuitively.
F = 96.0 N,

mA = mB = mC = 10.0 kg

mCmB ,mA ,

mA

F
B

1
100 g?

mA

mB = 1.0 kg,

mA

mB = 5.0 kgmA = 13.0 kg

mA mCmBF
B

FIGURE 4;54

Problem 34.

35. (III) Suppose the pulley in
Fig. 4–55 is suspended by
a cord C. Determine the
tension in this cord after
the masses are released
and before one hits the
ground. Ignore the mass
of the pulley and cords. 3.2 kg

C

1.2 kg

FIGURE 4;55

Problem 35.

4;8 Newton’s Laws with Friction, Inclines

36. (I) If the coefficient of kinetic friction between a 22-kg
crate and the floor is 0.30, what horizontal force is required
to move the crate at a steady speed across the floor? What
horizontal force is required if is zero?

37. (I) A force of 35.0 N is required to start a 6.0-kg box moving
across a horizontal concrete floor. (a) What is the coefficient
of static friction between the box and the floor? (b) If the
35.0-N force continues, the box accelerates at 
What is the coefficient of kinetic friction?

38. (I) Suppose you are standing on a train accelerating at
0.20 g. What minimum coefficient of static friction must
exist between your feet and the floor if you are not to slide?

39. (II) The coefficient of static friction between hard rubber
and normal street pavement is about 0.90. On how steep 
a hill (maximum angle) can you leave a car parked?

40. (II) A flatbed truck is carrying a heavy crate. The coeffi-
cient of static friction between the crate and the bed of 
the truck is 0.75. What is the maximum rate at which the
driver can decelerate and still avoid having the crate slide
against the cab of the truck?

41. (II) A 2.0-kg silverware drawer does not slide readily. The
owner gradually pulls with more and more force, and when
the applied force reaches 9.0 N, the drawer suddenly opens,
throwing all the utensils to the floor. What is the coefficient
of static friction between the drawer and the cabinet?

42. (II) A box is given a push so that it slides across the floor.
How far will it go, given that the coefficient of kinetic fric-
tion is 0.15 and the push imparts an initial speed of 

43. (II) A 1280-kg car pulls a 350-kg trailer. The car exerts a
horizontal force of against the ground in order
to accelerate. What force does the car exert on the trailer?
Assume an effective friction coefficient of 0.15 for the trailer.

44. (II) Police investigators, examining the scene of an accident
involving two cars, measure 72-m-long skid marks of one
of the cars, which nearly came to a stop before colliding.
The coefficient of kinetic friction between rubber and the
pavement is about 0.80. Estimate the initial speed of that
car assuming a level road.

45. (II) Drag-race tires in contact with an asphalt surface 
have a very high coefficient of static friction. Assuming a
constant acceleration and no slipping of tires, estimate 
the coefficient of static friction needed for a drag racer to
cover 1.0 km in 12 s, starting from rest.

46. (II) For the system of Fig. 4–32 (Example 4–20), how large
a mass would box A have to have to prevent any motion
from occurring? Assume ms = 0.30.

3.6 * 103 N

3.5 m�s?

0.60 m�s2.

mk



50. (II) A person pushes a 14.0-kg lawn mower at constant
speed with a force of directed along the handle,
which is at an angle of 45.0° to the horizontal (Fig. 4–58).
(a) Draw the free-body diagram showing all forces acting
on the mower. Calculate (b) the horizontal friction force
on the mower, then (c) the normal force exerted vertically
upward on the mower by the ground. (d) What force 
must the person exert on the lawn mower to accelerate it
from rest to in 2.5 seconds, assuming the same 
friction force?

1.5 m�s

F = 88.0 N

45°
F
B

FIGURE 4;58

Problem 50.

60. (II) A crate is given an initial speed of up the 25.0°
plane shown in Fig. 4–60. (a) How far up the plane will it
go? (b) How much time elapses before it returns to its
starting point? Assume

61. (II) A car can decelerate at without skidding
when coming to rest on a level road. What would its decel-
eration be if the road is inclined at 9.3° and the car moves
uphill? Assume the same static friction coefficient.

62. (II) A skier moves down a 12° slope at constant speed. What
can you say about the coefficient of friction, Assume the
speed is low enough that air resistance can be ignored.

63. (II) The coefficient of kinetic friction for a 22-kg bobsled
on a track is 0.10. What force is required to push it down 
along a 6.0° incline and achieve a speed of at the
end of 75 m?

60 km�h

mk?

–3.80 m�s2
mk = 0.12.

3.0 m�s

125 kg650 N 65 kg

FIGURE 4;57

Problem 49.

x

y

m

θ
FIGURE 4;60

Crate on inclined plane.
Problems 59 and 60.
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mB =
2.0 kg

mA

FIGURE 4;56

Problem 47.

51. (II) A child on a sled reaches the bottom of a hill with a
velocity of and travels 25.0 m along a horizontal
straightaway to a stop. If the child and sled together have 
a mass of 60.0 kg, what is the average retarding force on
the sled on the horizontal straightaway?

52. (II) (a) A box sits at rest on a rough 33° inclined plane.
Draw the free-body diagram, showing all the forces acting
on the box. (b) How would the diagram change if the box
were sliding down the plane? (c) How would it change if 
the box were sliding up the plane after an initial shove?

10.0 m�s

48. (II) A small box is held in place against a rough vertical
wall by someone pushing on it with a force directed upward
at 28° above the horizontal. The coefficients of static and
kinetic friction between the box and wall are 0.40 and 
0.30, respectively. The box slides down unless the applied
force has magnitude 23 N. What is the mass of the box?

49. (II) Two crates, of mass 65 kg and 125 kg, are in contact and
at rest on a horizontal surface (Fig. 4–57). A 650-N force 
is exerted on the 65-kg crate. If the coefficient of kinetic
friction is 0.18, calculate (a) the acceleration of the sys-
tem, and (b) the force that each crate exerts on the other.
(c) Repeat with the crates reversed.

θ

y

x

m

53. (II) A wet bar of soap slides down a ramp 9.0 m long
inclined at 8.0°. How long does it take to reach the bottom?
Assume

54. (II) A skateboarder, with an initial speed of rolls
virtually friction free down a straight incline of length 18 m
in 3.3 s. At what angle is the incline oriented above the
horizontal?

55. (II) Uphill escape ramps are sometimes provided to the side
of steep downhill highways for trucks with overheated brakes.
For a simple 11° upward ramp, what minimum length would
be needed for a runaway truck traveling Note
the large size of your calculated length. (If sand is used for
the bed of the ramp, its length can be reduced by a factor
of about 2.)

56. (II) A 25.0-kg box is released on a 27° incline and accel-
erates down the incline at Find the friction force
impeding its motion. What is the coefficient of kinetic
friction?

57. (II) The block shown in Fig. 4–59 has mass  
and lies on a fixed smooth frictionless plane
tilted at an angle to the hori-

zontal. (a) Determine the acceleration 
of the block as it slides down the plane.

(b) If the block starts from rest 12.0 m
up the plane from its base, what

will be the block’s speed when
it reaches the bottom of

the incline?

u = 22.0°

m = 7.0 kg

0.30 m�s2.

140 km�h?

u

2.0 m�s,
mk = 0.060.

FIGURE 4;59 Block on inclined plane.
Problems 57 and 58.

58. (II) A block is given an initial speed of up the 22.0°
plane shown in Fig. 4–59. (a) How far up the plane will it
go? (b) How much time elapses before it returns to its
starting point? Ignore friction.

4.5 m�s

47. (II) In Fig. 4–56 the coefficient of static friction between
mass and the table is 0.40, whereas the coefficient of
kinetic friction is 0.20.
(a) What minimum value
of will keep the
system from starting to
move? (b) What value(s)
of will keep the system
moving at constant speed?
[Ignore masses of the cord and the
(frictionless) pulley.]

mA

mA

mA

59. (II) The crate shown in Fig. 4–60 lies on a plane tilted at an
angle to the horizontal, with

(a) Determine the acceleration
of the crate as it slides down the plane.
(b) If the crate starts from rest 8.15 m up
along the plane from its base, what will

be the crate’s speed when it reaches
the bottom of the incline?

mk = 0.19.
u = 25.0°
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64. (II) On an icy day, you worry about parking your car in
your driveway, which has an incline of 12°. Your neighbor’s
driveway has an incline of 9.0°, and the driveway across
the street is at 6.0°. The coefficient of static friction
between tire rubber and ice is 0.15. Which driveway(s) 
will be safe to park in?

65. (III) Two masses and are on
inclines and are connected together by a string as shown in
Fig. 4–61. The coefficient of kinetic friction between each
mass and its incline is If moves up, and 
moves down, determine their acceleration. [Ignore masses
of the (frictionless) pulley and the cord.]

mBmAmk = 0.30.

mB = 5.0 kgmA = 2.0 kg

mB
mA

θFIGURE 4;62

Problem 67.

66. (III) A child slides down a slide with a 34° incline, and at
the bottom her speed is precisely half what it would have
been if the slide had been frictionless. Calculate the coef-
ficient of kinetic friction between the slide and the child.

67. (III) (a) Suppose the coefficient of kinetic friction between
and the plane in Fig. 4–62 is and that

As moves down, determine the
magnitude of the acceleration of and given
(b) What smallest value of will keep the system from
accelerating? [Ignore masses of the (frictionless) pulley and
the cord.]

mk

u = 34°.mB,mA

mBmA = mB = 2.7 kg.
mk = 0.15,mA

mB
mA

21	51	

vB

FIGURE 4;61 Problem 65.

73. Francesca dangles her watch from a thin piece of string
while the jetliner she is in accelerates for takeoff, which
takes about 16 s. Estimate the takeoff speed of the aircraft
if the string makes an angle of 25° with
respect to the vertical, Fig. 4–64.

General Problems

5.0°

P

FIGURE 4;63

Problem 69.

70. A 75.0-kg person stands on a scale in an elevator. What
does the scale read (in N and in kg) when (a) the elevator
is at rest, (b) the elevator is climbing at a constant speed 
of (c) the elevator is descending at (d) the
elevator is accelerating upward at (e) the elevator
is accelerating downward at 

71. A city planner is working on the redesign of a hilly portion
of a city. An important consideration is how steep the
roads can be so that even low-powered cars can get up the
hills without slowing down. A particular small car, with a
mass of 920 kg, can accelerate on a level road from rest to

in 12.5 s. Using these data, calculate the
maximum steepness of a hill.

72. If a bicyclist of mass 65 kg (including the bicycle) can coast
down a 6.5° hill at a steady speed of because of
air resistance, how much force must be applied to climb
the hill at the same speed (and the same air resistance)?

6.0 km�h

21 m�s (75 km�h)

3.0 m�s2?
3.0 m�s2,

3.0 m�s,3.0 m�s,

25°

T

m

F
B

gB
aB

FIGURE 4;64

Problem 73.

74. Bob traverses a chasm by stringing a rope between a tree
on one side of the chasm and a tree on the opposite side,
25 m away, Fig. 4–65. Assume the rope can provide a 
tension force of up to 29 kN before breaking, and use a
“safety factor” of 10 (that is, the rope should only be
required to undergo a tension force of 2.9 kN). (a) If Bob’s
mass is 72.0 kg, determine the distance x that the rope
must sag at a point halfway across if it is to be within its
recommended safety range. (b) If the rope sags by only one-
fourth the distance found in (a), determine the tension
force in the rope. Will the rope break?

x

FIGURE 4;65 Problem 74.

68. A 2.0-kg purse is dropped from the top of the Lean-
ing Tower of Pisa and falls 55 m before reaching the ground
with a speed of What was the average force of air
resistance?

69. A crane’s trolley at point P in Fig. 4–63 moves for a few
seconds to the right with constant acceleration, and the
870-kg load hangs on a light cable at a 5.0° angle to the 
vertical as shown. What is the acceleration of the trolley
and load?

27 m�s.



75. Piles of snow on slippery roofs can become dangerous pro-
jectiles as they melt. Consider a chunk of snow at the ridge
of a roof with a slope of 34°. (a) What is the minimum
value of the coefficient of static friction that will keep the
snow from sliding down? (b) As the snow begins to melt,
the coefficient of static friction decreases and the snow
finally slips. Assuming that the distance from the chunk to
the edge of the roof is 4.0 m and the coefficient of kinetic
friction is 0.10, calculate the speed of the snow chunk when it
slides off the roof. (c) If the roof edge is 10.0 m above ground,
estimate the speed of the snow when it hits the ground.

76. (a) What minimum force F is needed 
to lift the piano (mass M) using the
pulley apparatus shown in Fig. 4–66?
(b) Determine the tension in each
section of rope: and 
Assume pulleys are massless and
frictionless, and that ropes are massless.

FT4 .FT1 , FT2 , FT3 ,

FT1FT2

FT4

F

FT3

FIGURE 4;66

Problem 76.
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77. In the design of a supermarket, there are to be several ramps
connecting different parts of the store. Customers will have
to push grocery carts up the ramps and it is desirable that
this not be too difficult. The engineer has done a survey and
found that almost no one complains if the force required 
is no more than 18 N. Ignoring friction, at what maximum
angle should the ramps be built, assuming a full 25-kg cart?

78. A jet aircraft is accelerating at as it climbs at an
angle of 18° above the horizontal (Fig. 4–67). What is the
total force that the cockpit seat exerts on the 75-kg pilot?

3.8 m�s2
u

18	FIGURE 4;67

Problem 78.

79. A 7180-kg helicopter accelerates upward at while
lifting a 1080-kg frame at a construction site, Fig. 4–68.
(a) What is the lift force
exerted by the air on 
the helicopter rotors?
(b) What is the tension
in the cable (ignore its
mass) which connects the
frame to the helicopter?
(c) What force does the
cable exert on the
helicopter?

0.80 m�s2

T

m

F
B

gB

aB

FIGURE 4;68

Problem 79.

80. An elevator in a tall building is allowed to reach a maxi-
mum speed of going down. What must the tension
be in the cable to stop this elevator over a distance of 
2.6 m if the elevator has a mass of 1450 kg including
occupants?

81. A fisherman in a boat is using a “10-lb test” fishing line.
This means that the line can exert a force of 45 N without
breaking (a) How heavy a fish can the
fisherman land if he pulls the fish up vertically at constant
speed? (b) If he accelerates the fish upward at 
what maximum weight fish can he land? (c) Is it possible
to land a 15-lb trout on 10-lb test line? Why or why not?

82. A “doomsday” asteroid with a mass of is
hurtling through space. Unless the asteroid’s speed is
changed by about it will collide with Earth and
cause tremendous damage. Researchers suggest that a
small “space tug” sent to the asteroid’s surface could exert
a gentle constant force of 2.5 N. For how long must this
force act?

83. Three mountain climbers who are roped together in a line
are ascending an icefield inclined at 31.0° to the horizontal
(Fig. 4–69). The last climber slips, pulling the second
climber off his feet. The first climber is able to hold them
both. If each climber has a mass of 75 kg, calculate the ten-
sion in each of the two sections of rope between the three
climbers. Ignore friction between the ice and the fallen
climbers.

0.20 cm�s,

1.0 * 1010 kg

2.0 m�s2 ,

(1 lb = 4.45 N).

3.5 m�s

31.0	

FIGURE 4;69 Problem 83.

84. As shown in Fig. 4–70, five balls (masses 2.00, 2.05, 2.10,
2.15, 2.20 kg) hang from a crossbar. Each mass is sup-
ported by “5-lb test” fishing line which will break when 
its tension force exceeds When this
device is placed in an elevator, which accelerates upward,
only the lines attached to the 2.05 and 2.00 kg masses do
not break. Within what range is the elevator’s acceleration?

22.2 N  (= 5.00 lb).

aB

2.20 2.15 2.10 2.05 2.00 kg

FIGURE 4;70

Problem 84.
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FIGURE 4;71

Problem 85.

85. Two rock climbers, Jim and Karen, use safety ropes of simi-
lar length. Karen’s rope is more elastic, called a dynamic
rope by climbers. Jim has a static rope, not recommended
for safety purposes in pro climbing. (a) Karen (Fig. 4–71)
falls freely about 2.0 m and then the rope stops her over a
distance of 1.0 m. Estimate how large a force (assume 
constant) she will feel from the rope. (Express the result 
in multiples of her weight.) (b) In a similar fall, Jim’s rope
stretches by only 30 cm. How many times his weight will
the rope pull on him? Which climber is more likely to 
be hurt?

86. A coffee cup on the horizontal dashboard of a car slides
forward when the driver decelerates from to rest
in 3.5 s or less, but not if she decelerates in a longer time.
What is the coefficient of static friction between the cup
and the dash? Assume the road and the dashboard are
level (horizontal).

87. A roller coaster reaches the top of the steepest hill with a
speed of It then descends the hill, which is at an
average angle of 45° and is 45.0 m long. What will its speed
be when it reaches the bottom? Assume

88. A motorcyclist is coasting with the engine off at a steady
speed of but enters a sandy stretch where the
coefficient of kinetic friction is 0.70. Will the cyclist emerge
from the sandy stretch without having to start the engine if
the sand lasts for 15 m? If so, what will be the speed upon
emerging?

89. The 70.0-kg climber in Fig. 4–72 is supported in the
“chimney” by the friction forces exerted on his shoes and
back. The static coefficients of friction between his shoes
and the wall, and between his
back and the wall, are 0.80 and
0.60, respectively. What is the
minimum normal force he must
exert? Assume the walls are ver-
tical and that the static friction
forces are both at their maximum.
Ignore his grip on the rope.

20.0 m�s

mk = 0.12.

6.0 km�h.

45 km�h

FIGURE 4;72

Problem 89.

28.0 kg

FIGURE 4;73

Problem 90.

90. A 28.0-kg block is connected to an empty 2.00-kg bucket
by a cord running over a frictionless pulley (Fig. 4–73).
The coefficient of static friction between the table and 
the block is 0.45 and the coefficient of kinetic friction 
between the table and the block is 0.32. Sand is gradually
added to the bucket until the system just begins to move.
(a) Calculate the mass of sand added to the bucket.
(b) Calculate the acceleration of the system. Ignore mass
of cord.

k � 0.25


FT � 240 N
θ

FIGURE 4;74 Problem 91.

91. A 72-kg water skier is being accelerated by a ski boat on 
a flat (“glassy”) lake. The coefficient of kinetic friction
between the skier’s skis and the water surface is
(Fig. 4–74). (a) What is the skier’s acceleration if the rope
pulling the skier behind the boat applies a horizontal ten-
sion force of magnitude to the skier
(b) What is the skier’s horizontal acceleration if the rope
pulling the skier exerts a force of on the 
skier at an upward angle (c) Explain why the
skier’s acceleration in part (b) is greater than that in 
part (a).

u = 12°?
FT = 240 N

(u = 0°)?FT = 240 N

mk = 0.25

92. A 75-kg snowboarder has an initial velocity of 
at the top of a 28° incline (Fig. 4–75). After sliding down
the 110-m-long incline (on which the coefficient of kinetic
friction is ), the snowboarder has attained a
velocity v. The snowboarder then slides along a flat surface
(on which ) and comes to rest after a distance x.
Use Newton’s second law to find the snowboarder’s accel-
eration while on the incline and while on the flat surface.
Then use these accelerations to determine x.

mk = 0.15

mk = 0.18

5.0 m�s

k � 0.15μ

k � 0.18μ

5.0 m/s

v

x

110 m

28°

FIGURE 4;75 Problem 92.
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A: No force is needed. The car accelerates out from under the
cup, which tends to remain at rest. Think of Newton’s first
law (see Example 4–1).

B: (a).
C: (i) The same; (ii) the tennis ball; (iii) Newton’s third law

for part (i), second law for part (ii).

D: (b).
E: (b).
F: (b).
G: (c).
H: Yes; no.

A N S W E R S  TO  E X E R C I S E S

θ θ

θ θ

(a)

(b)

x

y

BR

RB

P

P

CR

RC

F
B

F
B

F
B

F
B

F
B

F
B

B C

FIGURE 4;78 (a) Getting a car out of the mud,
showing the forces on the boulder, on the car,
and exerted by the person. (b) The free-body
diagram: forces on a small segment of rope.

1. (a) Finding her car stuck in the mud, a bright graduate of a
good physics course ties a strong rope to the back bumper
of the car, and the other end to a boulder, as shown in 
Fig. 4–78a. She pushes at the midpoint of the rope with 
her maximum effort, which she estimates to be a force

The car just begins to budge with the rope at
an angle , which she estimates to be 5°. With what force 
is the rope pulling on the car? Neglect the mass of the rope.
(b) What is the “mechanical advantage” of this technique
[Section 4–7]? (c) At what angle would this technique
become counterproductive? [Hint: Consider the forces on
a small segment of rope where acts, Fig. 4–78b.]F

B

P

u

u

FP L 300 N.

2. (a) Show that the minimum stopping distance for an automo-
bile traveling on a level road at speed v is equal to 
where is the coefficient of static friction between the tires
and the road, and g is the acceleration of gravity. (b) What
is this distance for a 1200-kg car traveling if

(c) What would it be if the car were on the
Moon (the acceleration of gravity on the Moon is about 
g 6) but all else stayed the same?

3. In the equation for static friction in Section 4–8, what is
the significance of the sign? When should you use the
equals sign in the static friction equation?

4. Referring to Example 4–21, show that if a skier moves at
constant speed straight down a slope of angle , then the
coefficient of kinetic friction between skis and snow is
mk = tan u.

u

6

�

ms = 0.65?
95 km�h

ms

v2�(2 ms g),

Search and Learn

97. An 18-kg child is riding in a
child-restraint chair, securely
fastened to the seat of a car
(Fig. 4–77). Assume the car
has speed when it hits
a tree and is brought to rest 
in 0.20 s. Assuming constant
deceleration during the colli-
sion, estimate the net horizontal
force F that the straps of the
restraint chair exert on the child
to hold her in the chair.

45 km�h

FIGURE 4;77

Problem 97.

mB

mA

θ

93. (a) If the horizontal acceleration produced briefly by an
earthquake is a, and if an object is going to “hold its place”
on the ground, show that the coefficient of static friction
with the ground must be at least (b) The famous
Loma Prieta earthquake that stopped the 1989 World
Series produced ground accelerations of up to in
the San Francisco Bay Area. Would a chair have started 
to slide on a floor with coefficient of static friction 0.25?

94. Two blocks made of different materials, connected by a thin
cord, slide down a plane ramp inclined at an angle to the
horizontal, Fig. 4–76 (block B is above block A). The masses
of the blocks are and and the coefficients of fric-
tion are and If and

and determine 
(a) the acceleration of the blocks and
(b) the tension in the cord, for an
angle u = 32°.

mB = 0.30,mA = 0.20
mA = mB = 5.0 kg,mB .mA

mB ,mA

u

4.0 m�s2

ms = a�g.

95. A car starts rolling down a 1-in-4 hill (1-in-4 means that 
for each 4 m traveled along the sloping road, the elevation
change is 1 m). How fast is it going when it reaches the
bottom after traveling 55 m? (a) Ignore friction. (b) Assume
an effective coefficient of friction equal to 0.10.

96. A 65-kg ice skater coasts with no effort for 75 m until she
stops. If the coefficient of kinetic friction between her
skates and the ice is how fast was she moving
at the start of her coast?

mk = 0.10,

FIGURE 4;76

Problem 94.




