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Heating the air inside a “hot-air” balloon raises the air’s temperature, causing 
it to expand, and forces some of the air out the opening at the bottom. The
reduced amount of air inside means its density is lower than the outside air, so
there is a net buoyant force upward on the balloon (Chapter 10). In this Chapter
we study temperature and its effects on matter: thermal expansion and the 
gas laws. We examine the microscopic theory of matter as atoms or molecules
that are continuously in motion, which we call kinetic theory. The temperature 
of a gas is directly related to the average translational kinetic energy of its
molecules. We will consider ideal gases, but will also look at real gases and 
how they change phase, including evaporation, vapor pressure, and humidity.

13
CHAPTER-OPENING QUESTION—Guess now!
A hot-air balloon, open at one end (see photos above), rises when the air inside
is heated by a flame. For the following properties, is the air inside the balloon
higher, lower, or the same as for the air outside the balloon?

(i) Temperature. (ii) Pressure. (iii) Density.

T his Chapter is the first of three (Chapters 13, 14, and 15) devoted to 
temperature, heat, and thermodynamics. Much of this Chapter discusses
the theory that matter is made up of atoms and that these atoms are in con-

tinuous random motion. This theory is called the kinetic theory. (“Kinetic,” you
may recall from Chapter 6, is Greek for “moving.”)

We also discuss the concept of temperature and how it is measured, as well as
the measured properties of gases which serve as a foundation for kinetic theory.

13–1 Atomic Theory of Matter
The idea that matter is made up of atoms dates back to the ancient Greeks.
According to the Greek philosopher Democritus, if a pure substance—say, a piece
of iron—were cut into smaller and smaller bits, eventually a smallest piece of that
substance would be obtained which could not be divided further. This smallest
piece was called an atom, which in Greek means “indivisible.” Today an atom is
still the smallest piece of a substance, but we do not consider it indivisible. Rather
it is viewed as consisting of a central nucleus (containing protons and neutrons)
surrounded by electrons, Chapter 27.

Monument Valley, Arizona



Today the atomic theory is universally accepted. The experimental evidence
in its favor, however, came mainly in the eighteenth, nineteenth, and twentieth
centuries, and much of it was obtained from the analysis of chemical reactions.

We will often speak of the relative masses of individual atoms and molecules—
what we call the atomic mass or molecular mass, respectively. (The terms atomic
weight and molecular weight are sometimes used.) These masses are based on
arbitrarily assigning the most abundant form of carbon atom, the atomic 
mass of exactly 12.0000 unified atomic mass units (u). In terms of kilograms,

The average atomic mass of hydrogen is 1.0079 u, and the values for other 
atoms are as listed in the Periodic Table inside the back cover of this book, and 
also in Appendix B.† The molecular mass of a compound is the sum of atomic
masses of the atoms making up the molecules of that compound.

[An element is a substance, such as neon, gold, iron, or copper, that cannot
be broken down into simpler substances by chemical means. Compounds are
substances made up of elements, and can be broken down into them; examples
are carbon dioxide and water. The smallest piece of an element is an atom; the
smallest piece of a compound is a molecule. Molecules are made up of atoms;
a molecule of water, for example, is made up of two atoms of hydrogen and one
of oxygen; its chemical formula is ]

An important piece of evidence for the atomic theory is called Brownian
motion, named after the biologist Robert Brown, who is credited with its discov-
ery in 1827. While he was observing tiny pollen grains suspended in water under
his microscope, Brown noticed that the tiny grains moved about in erratic paths
(Fig. 13–1), even though the water appeared to be perfectly still. The atomic
theory easily explains Brownian motion if we assume that the atoms of any 
substance are continually in motion. Then Brown’s tiny pollen grains are jostled
about by the vigorous barrage of rapidly moving molecules of water.

In 1905, Albert Einstein examined Brownian motion from a theoretical point
of view and was able to calculate from the experimental data the approximate
size and mass of atoms and molecules. His calculations showed that the diameter
of a typical atom is about 

At the start of Chapter 10, we distinguished the three common phases (or
states) of matter—solid, liquid, gas—based on macroscopic, or “large-scale,” prop-
erties. Now let us see how these three phases of matter differ, from the atomic 
or microscopic point of view. First of all, atoms and molecules must exert attractive
forces on each other, because only this explains why a brick or a block of aluminum
holds together in one piece.The attractive forces between molecules are of an electrical
nature (more on this in later Chapters). When molecules come too close together,
the force between them must become repulsive (electric repulsion between their
outer electrons). We need this assumption to explain that matter takes up space.
Thus molecules maintain a minimum distance from each other. In a solid material,
the attractive forces are strong enough that the atoms or molecules move only
slightly (oscillate) about relatively fixed positions, often in an array known as a
crystal lattice, as shown in Fig. 13–2a. In a liquid, the atoms or molecules are moving
more rapidly, or the forces between them are weaker, so that they are sufficiently
free to pass around one another, as in Fig. 13–2b. In a gas, the forces are so weak, or

10–10 m.

H2O.

1 u = 1.6605 * 10–27 kg.

12C,
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† The relative masses of different atoms came from analysis of chemical reactions, and the law of definite
proportions. It states that when two or more elements combine to form a compound, they always do
so in the same proportions by mass. For example, table salt is always formed from 23 parts sodium and
35 parts chlorine; and water from one part hydrogen and eight parts oxygen. A continuous theory of
matter could not account for the law of definite proportions but atomic theory does: the proportions
of each element that form a compound correspond to the relative masses of the combining atoms. One
atom of sodium (Na) combines with one atom of chlorine (Cl) to form one molecule of salt (NaCl),
and one atom of sodium has a mass 23 35 times as large as one of chlorine. Hydrogen, the lightest
atom, was arbitrarily assigned the relative mass of 1. On this scale, carbon was about 12, oxygen 16,
sodium 23, and so on. It was sometimes more complicated. For example, from the various compounds
oxygen formed, its relative mass was judged to be 16; but this was inconsistent with the mass ratio in
water of oxygen to hydrogen, only 8 to 1. This was explained by assuming two H atoms combine with
one O atom to form a water molecule.

�

(a)

(b)

(c)

FIGURE 13–2 Atomic
arrangements in (a) a crystalline
solid, (b) a liquid, and (c) a gas.

FIGURE 13–1 Path of a tiny particle
(pollen grain, for example)
suspended in water. The straight
lines connect observed positions of
the particle at equal time intervals.
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† Most materials expand when their temperature is raised, but not all. Water, for example, in the
range 0°C to 4°C contracts with an increase in temperature (see Section 13–4).

FIGURE 13–3 Expansion joint on 
a bridge. Note center white line of
highway.

FIGURE 13–4 Thermometers built
by the Accademia del Cimento
(1657–1667) in Florence, Italy, are
among the earliest known. These
sensitive and exquisite instruments
contained alcohol, sometimes colored,
like many thermometers today.

the speeds so high, that the molecules do not even stay close together. They move
rapidly every which way, Fig. 13–2c, filling any container and occasionally colliding
with one another. On average, the speeds are sufficiently high in a gas that when
two molecules collide, the force of attraction is not strong enough to keep them
close together and they fly off in new directions.

Distance between atoms. The density of
copper is and each copper atom has a mass of 63 u. Estimate
the average distance between the centers of neighboring copper atoms.

APPROACH We consider a cube of copper 1 m on a side. From the given density 
we can calculate the mass m of a cube of volume We divide
this mass m by the mass of one atom (63 u) to obtain the number of atoms in 
We assume the atoms are in a uniform array, and we let N be the number of atoms
in a 1-m length; then equals the total number of atoms in 

SOLUTION The mass of 1 copper atom is 
This means that in a cube of copper 1 m on a side
there are

The volume of a cube of side is so on one edge of the 1-m-long cube
there are Hence the distance between
neighboring atoms is

NOTE Watch out for units. Even though “atoms” is not a unit, it is helpful to
include it to make sure you calculate correctly.

NOTE The distance between atoms is essentially what we mean when we speak of
the size or diameter of an atom. So we have calculated the size of a copper atom.

1 m

4.4 * 109 atoms
= 2.3 * 10–10 m.

A8.5 * 1028B13 atoms = 4.4 * 109 atoms.
V = l3,l

8.9 * 103 kg

1.05 * 10–25 kg�atom
= 8.5 * 1028 atoms.

Avolume = 1 m3B,1.05 * 10–25 kg.
63 u = 63 * 1.66 * 10–27 kg =

1 m3.(N)(N)(N) = N3

1 m3.
V = 1 m3 (m = rV).

r

8.9 * 103 kg�m3,
EXAMPLE 13;1 ESTIMATE

13–2 Temperature and Thermometers
In everyday life, temperature is a measure of how hot or cold something is. A hot
oven is said to have a high temperature, whereas the ice of a frozen lake is said to
have a low temperature.

Many properties of matter change with temperature. For example, most mate-
rials expand when their temperature is increased.† An iron beam is longer when
hot than when cold. Concrete roads and sidewalks expand and contract slightly
according to temperature, which is why compressible spacers or expansion joints
(Fig. 13–3) are placed at regular intervals. The electrical resistance of matter
changes with temperature (Chapter 18). So too does the color radiated by objects,
at least at high temperatures: you may have noticed that the heating element of an
electric stove glows with a red color when hot. At higher temperatures, solids such
as iron glow orange or even white. The white light from an incandescent 
lightbulb comes from an extremely hot tungsten wire. The surface temperatures
of the Sun and other stars can be measured by the predominant color (more 
precisely, wavelengths) of light they emit.

Instruments designed to measure temperature are called thermometers.
There are many kinds of thermometers, but their operation always depends on
some property of matter that changes with temperature. Many common thermom-
eters rely on the expansion of a material with an increase in temperature. The first
idea for a thermometer, by Galileo, made use of the expansion of a gas. Common
thermometers today consist of a hollow glass tube filled with mercury or with alco-
hol colored with a red dye, as were the earliest usable thermometers (Fig. 13–4).



Inside a common liquid-in-glass thermometer, the liquid expands more than
the glass when the temperature is increased, so the liquid level rises in the tube
(Fig. 13–5a). Although metals also expand with temperature, the change in length
of a metal rod, say, is generally too small to measure accurately for ordinary changes
in temperature. However, a useful thermometer can be made by bonding together
two different metals with different rates of expansion (Fig. 13–5b). When the
temperature is increased, the different amounts of expansion cause the bimetallic
strip to bend. Often the bimetallic strip is in the form of a coil, one end of which
is fixed while the other is attached to a pointer, Fig. 13–6. Such thermometers are
used as ordinary air thermometers, oven thermometers, automatic off switches 
in electric coffeepots, and in room thermostats for determining when the heater
or air conditioner should go on or off. Very precise thermometers make use of
electrical properties (Chapter 18), such as resistance thermometers, thermocouples,
and thermistors, often with a digital readout.

Temperature Scales
In order to measure temperature quantitatively, some sort of numerical scale must
be defined. The most common scale today is the Celsius or centigrade scale. In the
United States, the Fahrenheit scale is common. The most important scale in scientific
work is the absolute, or Kelvin, scale, and it will be discussed later in this Chapter.

One way to define a temperature scale is to assign arbitrary values to two
readily reproducible temperatures. For both the Celsius and Fahrenheit scales
these two fixed points are chosen to be the freezing point and the boiling point†

of water, both taken at standard atmospheric pressure. On the Celsius scale, the
freezing point of water is chosen to be 0°C (“zero degrees Celsius”) and the boiling
point 100°C. On the Fahrenheit scale, the freezing point is defined as 32°F and
the boiling point 212°F. A practical thermometer is calibrated by placing it in
carefully prepared environments at each of the two temperatures and marking
the position of the liquid or pointer. For a Celsius scale, the distance between the
two marks is divided into one hundred equal intervals representing each degree
between 0°C and 100°C (hence the name “centigrade scale” meaning “hundred
steps”). For the Fahrenheit scale, the two points are labeled 32°F and 212°F and
the distance between them is divided into 180 equal intervals. For temperatures
below the freezing point of water and above the boiling point of water, the scales
may be extended using the same equally spaced intervals. However, thermome-
ters can be used only over a limited temperature range because of their own
limitations—for example, an alcohol-in-glass thermometer is rendered useless above
temperatures where the alcohol vaporizes. For very low or very high temperatures,
specialized thermometers are required, some of which we will mention later.

Every temperature on the Celsius scale corresponds to a particular temperature
on the Fahrenheit scale, Fig. 13–7. To convert from one to the other, remember
that 0°C corresponds to 32°F and that a range of 100° on the Celsius scale corre-
sponds to a range of 180° on the Fahrenheit scale. Thus, one Fahrenheit degree (1 F°)
corresponds to of a Celsius degree (1 C°). That is,
(Notice that when we refer to a specific temperature, we say “degrees Celsius,”
as in 20°C; but when we refer to a change in temperature or a temperature 
interval, we say “Celsius degrees,” as in “2 C°.”) The conversion between the two
temperature scales can be written

or

Rather than memorizing these relations, it may be simpler to remember that
and that a change of  5 C° = a change of 9 F°.0°C = 32°F

T(°F) = 9
5 T(°C) + 32.

T(°C) = 5
9 CT(°F) - 32 D

1 F° = 5
9 C°.100�180 = 5

9
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† The freezing point of a substance is defined as that temperature at which the solid and liquid phases
coexist in equilibrium—that is, without any net liquid changing into the solid or vice versa. Experi-
mentally, this is found to occur at only one definite temperature, for a given pressure. Similarly, the
boiling point is defined as that temperature at which the liquid and gas coexist in equilibrium. Since
these points vary with pressure, the pressure must be specified (usually it is 1 atm).

(a) (b)

Tube

Bulb (acts as 
a reservoir)

FahrenheitCelsius
(centigrade)

200  F

100  F

0  F

150  F

212  F100  C

50  C

50  F

0  C 32  F

FIGURE 13–7 Celsius and
Fahrenheit scales compared.

FIGURE 13–6 Photograph of a
thermometer using a coiled
bimetallic strip.

FIGURE 13–5 (a) Mercury- or
alcohol-in-glass thermometer;
(b) bimetallic strip.



Taking your temperature. Normal body temperature is
98.6°F. What is this on the Celsius scale?

APPROACH We recall that and that a change of

SOLUTION First we relate the given temperature to the freezing point of water
(0°C). That is, 98.6°F is above the freezing point of water.
Since each F° is equal to this corresponds to Celsius
degrees above the freezing point. The freezing point of water is 0°C, so normal
body temperature is 37.0°C.

66.6 * 5
9 = 37.05

9 C°,
98.6 - 32.0 = 66.6 F°

5 C° = 9 F°.0°C = 32°F

EXAMPLE 13;2
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C A U T I O N

Convert temperature by 
remembering and a 
change of 5 C° = 9 F°

0°C = 32°F

h

Reference
mark

Connecting
hose

Mercury

Bulb

Gas

FIGURE 13–8 Constant-volume gas
thermometer.

Standard Temperature Scale
Different materials do not expand in quite the same way over a wide temperature
range. Consequently, if we calibrate different kinds of thermometers exactly as
described above, they will not usually agree precisely.

Because of such discrepancies, some standard kind of thermometer must be
chosen so that all temperatures can be precisely defined. The chosen standard for
this purpose is the constant-volume gas thermometer. As shown in the simplified
diagram of Fig. 13–8, this thermometer consists of a bulb filled with a low-
pressure gas connected by a thin tube to a mercury manometer (Section 10–6).
The volume of the gas is kept constant by raising or lowering the right-hand tube
of the manometer so that the mercury in the left-hand tube coincides with the
reference mark. An increase in temperature causes a proportional increase in
pressure in the bulb. Thus the tube must be lifted higher to keep the gas volume
constant. The height of the mercury in the right-hand column is then a measure
of the temperature. This thermometer gives the same results for all gases in the
limit of reducing the gas pressure in the bulb toward zero. The resulting scale
serves as a basis for the standard temperature scale.

*

13–3 Thermal Equilibrium and the
Zeroth Law of Thermodynamics

If two objects at different temperatures are placed in thermal contact (meaning
thermal energy can transfer from one to the other), the two objects will eventually
reach the same temperature. They are then said to be in thermal equilibrium. For
example, you leave a fever thermometer in your mouth until it comes into thermal
equilibrium with that environment; then you read it. Two objects are defined 
to be in thermal equilibrium if, when placed in thermal contact, no net energy
flows from one to the other, and their temperatures don’t change.

The Zeroth Law of Thermodynamics
Experiments indicate that

if two systems are in thermal equilibrium with a third system, then they are in
thermal equilibrium with each other.

This postulate is called the zeroth law of thermodynamics. It has this unusual
name because it was not until after the first and second laws of thermodynamics
(Chapter 15) were worked out that scientists realized that this apparently obvious
postulate needed to be stated first.

Temperature is a property of a system that determines whether the system
will be in thermal equilibrium with other systems. When two systems are in ther-
mal equilibrium, their temperatures are (by definition) equal, and no net thermal
energy is exchanged between them. This is consistent with our everyday notion
of temperature: when a hot object and a cold one are put into contact, they even-
tually come to the same temperature. Thus the importance of the zeroth law is
that it allows a useful definition of temperature.

*



13–4 Thermal Expansion
Most substances expand when heated and contract when cooled. However, the
amount of expansion or contraction varies, depending on the material.

Linear Expansion
Experiments indicate that the change in length of almost all solids is, to a good
approximation, directly proportional to the change in temperature as long as

is not too large. The change in length is also proportional to the original
length of the object, That is, for the same temperature increase, a 4-m-long
iron rod will increase in length twice as much as a 2-m-long iron rod. We can
write this proportionality as an equation:

(13;1a)

where the proportionality constant, is called the coefficient of linear expansion
for the particular material and has units of We write 
Fig. 13–9, and rewrite this equation as

(13;1b)

where is the length initially, at temperature and is the length after heating
or cooling to a temperature T. If the temperature change is nega-
tive, then is also negative; the length shortens as the temperature
decreases.

The values of for various materials at 20°C are listed in Table 13–1. Actu-
ally, does vary slightly with temperature (which is why thermometers made of
different materials do not agree precisely). However, if the temperature range is
not too great, the variation can usually be ignored.

a

a

¢l = l - l0
¢T = T - T0

lT0 ,l0

l = l0(1 + a ¢T),

l = l0 + ¢l,(C°)–1.
a,

¢l = al0 ¢T,

l0 .
¢T

¢T,
¢l
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TABLE 13–1 Coefficients of Expansion, near 20°C

Coefficient of Linear Coefficient of Volume 
Material Expansion, (C°) Expansion, (C°)

Solids

Aluminum
Brass
Copper
Gold
Iron or steel
Lead
Glass (Pyrex®)
Glass (ordinary)
Quartz
Concrete and brick
Marble

Liquids

Gasoline
Mercury
Ethyl alcohol
Glycerin
Water

Gases

Air (and most other gases 
at atmospheric pressure) 3400 * 10–6

210 * 10–6
500 * 10–6

1100 * 10–6

180 * 10–6

950 * 10–6

4–10 * 10–61.4–3.5 * 10–6

L 36 * 10–6L 12 * 10–6

1 * 10–60.4 * 10–6

27 * 10–69 * 10–6

9 * 10–63 * 10–6

87 * 10–629 * 10–6

35 * 10–612 * 10–6
42 * 10–614 * 10–6
50 * 10–617 * 10–6
56 * 10–619 * 10–6
75 * 10–625 * 10–6

�1B�1A

at T0

l0

Δl
at T

l

FIGURE 13–9 A thin rod of length 
at temperature is heated to a new
uniform temperature T and acquires
length where l = l0 + ¢l.l,

T0

l0



Bridge expansion. The steel bed of a suspension bridge is
200 m long at 20°C. If the extremes of temperature to which it might be exposed
are to how much will it contract and expand?

APPROACH We assume the bridge bed will expand and contract linearly with
temperature, as given by Eq. 13–1a.

SOLUTION From Table 13–1, we find that for steel. The
increase in length when it is at 40°C will be

or 4.8 cm. When the temperature decreases to Then

or a decrease in length of 12 cm. The total range the expansion joints must
accommodate is (Fig. 13–3).12 cm + 4.8 cm L 17 cm

¢l = A12 * 10–6�C°B(200 m)(–50 C°) = –12.0 * 10–2 m,

–30°C,  ¢T = –50 C°.

¢l = al0 ¢T = A12 * 10–6�C°B(200 m)(40°C - 20°C) = 4.8 * 10–2 m,

a = 12 * 10–6(C°)–1

±40°C,–30°C

EXAMPLE 13;3
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P H Y S I C S  A P P L I E D

Expansion in structures

(a) (b)

FIGURE 13–10 Example 13–4.

FIGURE 13–12 Example 13–6.

6.445 cm

6.420 cm

Do holes expand or contract? If you heat a
thin, circular ring (Fig. 13–10a) in the oven, does the ring’s hole get larger or smaller?

RESPONSE If you guessed that the metal expands into the hole, making the
hole smaller, it is not so. Imagine the ring is solid, like a coin (Fig. 13–10b).
Draw a circle on it with a pen as shown. When the metal expands, the material
inside the circle will expand along with the rest of the metal; so the dashed circle
expands. Cutting the metal where the circle is shows that the hole in Fig. 13–10a
increases in diameter.

CONCEPTUAL EXAMPLE 13;4

Ring on a rod. An iron ring is to fit snugly on a cylindrical
iron rod (Fig. 13–11). At 20°C, the diameter of the rod is 6.445 cm and the inside
diameter of the ring is 6.420 cm. To slip over the rod, the ring must be slightly
larger than the rod diameter by about 0.008 cm. To what temperature must the ring
be brought if its hole is to be large enough so it will slip over the rod?

APPROACH The hole in the ring must be increased from a diameter of 6.420 cm
to The ring must be heated since the hole
diameter will increase linearly with temperature (Example 13–4).

SOLUTION We solve for in Eq. 13–1a and find

So the ring must be raised at least to

NOTE In doing Problems, do not forget the last step, adding in the initial tem-
perature (20°C here).

T = (20°C + 430 C°) = 450°C.

¢T =
¢l
al0

=
6.453 cm - 6.420 cm

A12 * 10–6�C°B(6.420 cm)
= 430 C°.

¢T

6.445 cm + 0.008 cm = 6.453 cm.

EXAMPLE 13;5

Opening a tight jar lid. When the lid of
a glass jar is tight, holding the lid under hot water for a short time will often make
it easier to open (Fig. 13–12). Why?

RESPONSE The lid may be struck by the hot water more directly than the
glass and so expand sooner. But even if not, metals generally expand more than
glass for the same temperature change ( is greater—see Table 13–1).a

CONCEPTUAL EXAMPLE 13;6

P H Y S I C S  A P P L I E D

Opening a tight lid

FIGURE 13–11

Example 13–5.



Volume Expansion
The change in volume of a material which undergoes a temperature change is
given by a relation similar to Eq. 13–1a, namely,

(13;2)

where is the original volume, is the change in volume when the tempera-
ture changes by , and is the coefficient of volume expansion. The units of 
are

Values of for various materials are given in Table 13–1. Notice that for
solids, is normally equal to approximately Note also that linear expansion
has no meaning for liquids and gases because they do not have fixed shapes.

Equations 13–1 and 13–2 are accurate only if (or ) is small compared
to (or ). This is of particular concern for liquids and even more so for gases
because of the large values of Furthermore, itself varies substantially with
temperature for gases. Therefore, a more convenient way of dealing with gases is
needed, and will be discussed starting in Section 13–5.

bb.
V0l0

¢V¢l

3a.b

b

(C°)–1.
bb¢T

¢VV0

¢V = bV0 ¢T,
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Gas tank overflow
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FIGURE 13–13 Behavior of water as
a function of temperature near 4°C.
(a) Volume of 1.00000 gram of water
as a function of temperature.
(b) Density vs. temperature. [Note
the break in each axis.]

Gas tank in the Sun. The 70-liter (L) steel gas tank of a
car is filled to the top with gasoline at 20°C. The car sits in the Sun and the tank
reaches a temperature of 40°C (104°F). How much gasoline do you expect to
overflow from the tank?

APPROACH Both the gasoline and the tank expand as the temperature increases,
and we assume they do so linearly as described by Eq. 13–2. The volume of
overflowing gasoline equals the volume increase of the gasoline minus the
increase in volume of the tank.

SOLUTION The gasoline expands by

The tank also expands. We can think of it as a steel shell that undergoes volume
expansion If the tank were solid, the surface layer
(the shell) would expand just the same (as in Example 13–4). Thus the tank
increases in volume by

so the tank expansion has little effect. More than a liter of gas could spill out.

¢V = A35 * 10–6�C°B(70 L)(40°C - 20°C) = 0.049 L,

Ab = 35 * 10–6�C° L 3aB.
= 1.3 L.

¢V = bV0¢T = A950 * 10–6�C°B(70 L)(40°C - 20°C)

EXAMPLE 13;7

Anomalous Behavior of Water Below 4°C
Most substances expand more or less uniformly with an increase in temperature,
as long as no phase change occurs. Water, however, does not follow the usual pat-
tern. If water at 0°C is heated, it actually decreases in volume until it reaches 4°C.
Above 4°C water behaves normally and expands in volume as the temperature is
increased, Fig. 13–13. Water thus has its greatest density at 4°C. This anomalous
behavior of water is of great importance for the survival of aquatic life during
cold winters. When water in a lake (or river) is above 4°C and begins to cool by contact 
with cold air, the water at the surface sinks because it is denser. It is replaced by
warmer water from below. This mixing continues until the temperature of the entire
lake reaches 4°C. As the surface water cools further, it remains on the surface
because it is less dense than the 4°C water below. Water thus freezes first at the
surface, and the ice remains on the surface since ice (specific ) is
less dense than water. The water at the bottom remains liquid unless it is so cold
that the whole body of water freezes. If water were like most substances, becoming
more dense as it cools, the water at the bottom of a lake would be frozen first.

gravity = 0.917



Lakes would freeze solid more easily because circulation would bring the warmer
water to the surface to be efficiently cooled. The complete freezing of a lake would
cause severe damage to its plant and animal life. Because of the unusual behavior
of water below 4°C, it is rare for any large and deep body of water to freeze
completely, and this is helped by the layer of ice on the surface which acts as an
insulator to reduce the flow of heat out of the water into the cold air above. Without
this peculiar but wonderful property of water, life on this planet as we know it
might not have been possible.

Not only does water expand as it cools from 4°C to 0°C, it expands even more
as it freezes to ice. This is why ice cubes float in water and pipes break when water
inside them freezes.

Thermal Stresses
In many situations, such as in buildings and roads, the ends of a beam or slab of
material are rigidly fixed, which greatly limits expansion or contraction. If the
temperature should change, large compressive or tensile stresses, called thermal
stresses, will occur. The magnitude of such stresses can be calculated using the
concept of elastic modulus developed in Chapter 9. To calculate the internal
stress in a beam, we can think of this process as occurring in two steps: (1) the
beam tries to expand (or contract) by an amount given by Eq. 13–1; (2) the
solid in contact with the beam exerts a force to compress (or expand) it, keeping
it at its original length. The force F required is given by Eq. 9–4:

where E is Young’s modulus for the material. To calculate the internal stress,
we then set in Eq. 13–1a equal to in the equation above and find

Hence, the stress is

For example, if 10-m-long concrete slabs are placed touching each other in a new
park you are designing, a 30°C increase in temperature would produce a stress

That
stress would exceed the shear strength of concrete (Table 9–2), no doubt causing
fracture and cracks. This is why soft spacers (or expansion joints) are placed between
slabs on sidewalks and highways.

13–5 The Gas Laws and 
Absolute Temperature

Equation 13–2 is not useful for describing the expansion of a gas, partly because
the expansion can be so great, and partly because gases generally expand to fill
whatever container they are in. Indeed, Eq. 13–2 is meaningful only if the pres-
sure is kept constant. The volume of a gas depends very much on the pressure as
well as on the temperature. It is therefore valuable to determine a relation
between the volume, the pressure, the temperature, and the quantity of a gas. Such
a relation is called an equation of state. (By the word state, we mean the physical
condition of the system.)

If the state of a system is changed, we will always wait until the pressure and
temperature have reached the same values throughout. We thus consider only
equilibrium states of a system—when the variables that describe it (such as tem-
perature and pressure) are the same throughout the system and are not changing in
time. We also note that the results of this Section are accurate only for gases that
are not too dense (the pressure is not too high, on the order of an atmosphere 
or less) and not close to the liquefaction (boiling) point.

F�A = aE ¢T = (12 * 10–6�C°)(20 * 109 N�m2)(30 C°) = 7.2 * 106 N�m2.

F

A
= aE ¢T.

al0 ¢T =
1
E

F

A
l0 .

¢l¢lF�A,

¢l =
1
E

F

A
l0 ,
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For a given quantity of gas it is found experimentally that, to a good approxi-
mation, the volume of a gas is inversely proportional to the absolute pressure
applied to it when the temperature is kept constant. That is,

[constant T ]

where P is the absolute pressure (not “gauge pressure”—see Section 10–4). For
example, if the pressure on a gas is doubled, the volume is reduced to half its
original volume. This relation is known as Boyle’s law, after the Englishman
Robert Boyle (1627–1691), who first stated it on the basis of his own experiments.
A graph of P vs. V for a fixed temperature is shown in Fig. 13–14. Boyle’s law can
also be written

[constant T ]

for a fixed quantity of a gas kept at constant temperature. If either the pressure
or volume of a fixed amount of gas is allowed to vary, the other variable also
changes so that the product PV remains constant.

Temperature also affects the volume of a gas, but a quantitative relationship
between V and T was not found until more than a century after Boyle’s work.
The Frenchman Jacques Charles (1746–1823) found that when the pressure is not
too high and is kept constant, the volume of a gas increases with temperature at 
a nearly linear rate, as shown in Fig. 13–15a. However, all gases liquefy at low
temperatures (for example, oxygen liquefies at ), so the graph cannot be
extended below the liquefaction point. Nonetheless, the graph is essentially a
straight line and if projected to lower temperatures, as shown by the dashed line,
it crosses the axis at about 

Such a graph can be drawn for any gas, and a straight line results which
always projects back to at zero volume. This seems to imply that if a gas
could be cooled to it would have zero volume, and at lower tempera-
tures a negative volume, which makes no sense. It could be argued that 
is the lowest temperature possible; indeed, many other more recent experiments
indicate that this is so. This temperature is called the absolute zero of tempera-
ture. Its value has been determined to be 

Absolute zero forms the basis of a temperature scale known as the absolute
scale or Kelvin scale, and it is used extensively in scientific work. On this scale
the temperature is specified as degrees Kelvin or, preferably, simply as kelvvins (K)
without the degree sign. The intervals are the same as for the Celsius scale, but
the zero on this scale (0 K) is chosen as absolute zero. Thus the freezing point of
water (0°C) is 273.15 K, and the boiling point of water is 373.15 K. Indeed, any
temperature on the Celsius scale can be changed to kelvins by adding 273.15 to it:

Now let us look at Fig. 13–15b, where the graph of the volume of a gas versus
absolute temperature is a straight line that passes through the origin. Thus, to a
good approximation, the vvolume of a fixed quantity of gas is directly proportional
to the absolute temperature wwhen the pressure is kept constant. This is known as
Charles’s law, and is written

[constant P]

A third gas law, known as Gay-Lussac’s law, after Joseph Gay-Lussac
(1778–1850), states that at constant vvolume, the absolute pressure of a fixed quantity
of a gas is directly proportional to the absolute temperature:

[constant V]

The laws of Boyle, Charles, and Gay-Lussac are not really laws in the sense
that we use this term today (precise, deep, wide-ranging validity). They are really
only approximations that are accurate for real gases only as long as the pressure
and density of the gas are not too high, and the gas is not too close to liquefaction
(condensation). The term law applied to these three relationships has become
traditional, however, so we have stuck with that usage.

P r T.

V r T.

T(K) = T(°C) + 273.15.

–273.15°C.

–273°C
–273°C,

–273°C

–273°C.

–183°C

PV = constant

V r
1
P

,
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FIGURE 13–15 Volume of a fixed
amount of gas as a function of
(a) Celsius temperature, and
(b) Kelvin temperature, when the
pressure is kept constant.
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FIGURE 13–14 Pressure vs. volume
of a fixed amount of gas at a
constant temperature, showing the
inverse relationship as given by
Boyle’s law: as the pressure
decreases, the volume increases.



Why you should not put a closed glass

jar into a campfire. What could happen if you tossed an empty glass jar, with 
the lid on tight, into a fire, and why?

RESPONSE The inside of the jar is not empty. It is filled with air. As the fire
heats the air inside, its temperature rises. The volume of the glass jar changes
only slightly due to the heating. According to Gay-Lussac’s law the pressure P of
the air inside the jar can increase enough to cause the jar to explode, throwing
glass pieces outward.

CONCEPTUAL EXAMPLE 13;8
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FIGURE 13–16 Blowing up a
balloon means putting more air
(more air molecules) into the
balloon, which increases its volume.
The pressure is nearly constant, at
atmospheric pressure, except for the
small effect of the balloon’s elasticity.

13–6 The Ideal Gas Law
The gas laws of Boyle, Charles, and Gay-Lussac were obtained by means of an
important scientific technique: namely, considering one quantity and how it is
affected by changing only one other variable, keeping all other variables constant.
These laws can now be combined into a single more general relation among all
three variables—absolute pressure, volume, and absolute temperature of a fixed
amount of gas:

This relation indicates how any of the quantities P, V, or T will vary when the
other two quantities change. This relation reduces to Boyle’s, Charles’s, or 
Gay-Lussac’s law when either T, P, or V, respectively, is held constant.

Finally, we must incorporate the effect of the amount of gas present. For exam-
ple, when more air is forced into a balloon, the balloon gets bigger (Fig. 13–16).
Indeed, careful experiments show that at constant temperature and pressure, the
volume V of an enclosed gas increases in direct proportion to the mass m of gas
present. Hence we write

This proportion can be made into an equation by inserting a constant of propor-
tionality. Experiment shows that this constant has a different value for different
gases. However, the constant of proportionality turns out to be the same for all
gases if, instead of the mass m, we use the number of moles.

The “mole” is an official SI unit for the amount of substance. One mole
(abbreviated mol) is the amount of substance that contains objects
(usually atoms, molecules, or ions, etc.). This number is called Avogadro’s number,
as discussed in Section 13–8. Its value comes from measurements. The mole’s
precise definition is the number of atoms in exactly 12 grams of carbon-12 
(page 360).

Equivalently, 1 mol is that amount of substance whose mass in grams is
numerically equal to the molecular mass of the substance (Section 13–1). For
example, the mass of 1 mole of is because carbon
has atomic mass of 12 and oxygen 16 (see Periodic Table inside the rear cover).

In general, the number of moles, n, in a given sample of a pure substance is
equal to the mass of the sample in grams divided by the molecular mass specified
as grams per mole:

For example, the number of moles in 132 g of (molecular mass 44 u) is

n =
132 g

44 g�mol
= 3.0 mol.

CO2

n (mole) =
mass (grams)

molecular mass (g�mol)
.

[12 + (2 * 16)] = 44 gCO2

6.02 * 1023

PV r mT.

PV r T.
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We can now write the proportion above as an equation:

(13;3)

where n represents the number of moles and R is the constant of proportionality.
R is called the universal gas constant because its value is found experimentally to
be the same for all gases. The value of R, in several sets of units (only the first is
the proper SI unit), is

[SI units]

†

Equation 13–3 is called the ideal gas law, or the equation of state for an ideal gas.
We use the term “ideal” because real gases do not follow Eq. 13–3 precisely, par-
ticularly at high pressure (and density) or when the gas is near the liquefaction point

However, at pressures less than an atmosphere or so, and when
T is not close to the liquefaction point of the gas, Eq. 13–3 is quite accurate and
useful for real gases.

Always remember, when using the ideal gas law, that temperatures must be
given in kelvins (K) and that the pressure P must always be absolute pressure, not
gauge pressure (Section 10–4).

(= boiling point).

= 1.99 calories�(mol�K).

= 0.0821 (L �atm)�(mol�K)

R = 8.314 J�(mol�K)

PV = nRT,

(PV r mT)
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C A U T I O N

Always give T in kelvins and 
P as absolute (not gauge) pressure

P R O B L E M  S O L V I N G

1 mol of gas at STP has V = 22.4 L

† Sometimes it is useful to use R as given in terms of calories; calories will be defined in Section 14–1.

EXERCISE A Return to the Chapter-Opening Question, page 359, and answer it again
now. Try to explain why you may have answered differently the first time.

EXERCISE B An ideal gas is contained in a steel sphere at 27.0°C and 1.00 atm absolute
pressure. If no gas is allowed to escape and the temperature is raised to 127°C, what will
be the new pressure? (a) 0.21 atm; (b) 0.75 atm; (c) 1.00 atm; (d) 1.33 atm; (e) 4.7 atm.

13–7 Problem Solving with the
Ideal Gas Law

The ideal gas law is an extremely useful tool, and we now consider some Examples.
We will often refer to “standard conditions” or standard temperature and pressure
(STP), which means:

and P = 1.00 atm = 1.013 * 105 N�m2 = 101.3 kPa.T = 273 K (0°C)

Volume of one mole at STP. Determine the volume of
1.00 mol of any gas, assuming it behaves like an ideal gas, at STP.

APPROACH We use the ideal gas law, solving for V with

SOLUTION We solve for V in Eq. 13–3:

Since 1 liter (L) is 1.00 mol of any (ideal) gas has
volume  at STP.V = 22.4 L

1000 cm3 = 1.00 * 10–3 m3,

V =
nRT

P
=

(1.00 mol)(8.314 J�mol�K)(273 K)

A1.013 * 105 N�m2B = 22.4 * 10–3 m3.

n = 1.00 mol.

EXAMPLE 13;9

The value of 22.4 L for the volume of 1 mol of an ideal gas at STP is worth
remembering, for it sometimes makes calculation simpler.

EXERCISE C What is the volume of 1.00 mol of ideal gas at and
2.0 atm absolute pressure? (a) 11.2 L; (b) 22.4 L; (c) 44.8 L; (d) 67.2 L; (e) 89.6 L.

546 K (= 2 * 273 K)

IDEAL GAS LAW



Helium balloon. A helium party balloon, assumed to be
a perfect sphere, has a radius of 18.0 cm. At room temperature (20°C), its internal
pressure is 1.05 atm. Find the number of moles of helium in the balloon and the
mass of helium needed to inflate the balloon to these values.

APPROACH We can use the ideal gas law to find n, since we are given P and T,
and can find V from the given radius.

SOLUTION We get the volume V from the formula for a sphere:

The pressure is given as The temperature must
be expressed in kelvins, so we change 20°C to Finally,
we use the value because we are using SI units. Thus

The mass of helium ( as given in the Periodic Table
or Appendix B) can be obtained from

or 4.26 * 10–3 kg.

= 4.26 gmass = n * molecular mass = (1.066 mol)(4.00 g�mol)

atomic mass = 4.00 g�mol

n =
PV

RT
=
A1.064 * 105 N�m2B A0.0244 m3B

(8.314 J�mol�K)(293 K)
= 1.066 mol.

R = 8.314 J�(mol�K)
(20 + 273)K = 293 K.

1.05 atm = 1.064 * 105 N�m2.

= 4
3p (0.180 m)3 = 0.0244 m3.

V = 4
3pr3

EXAMPLE 13;10
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The mass of the air 
in a room is significant

P R O B L E M  S O L V I N G

Using the ideal gas law as a ratio

Mass of air in a room. Estimate the mass
of air in a room whose dimensions are high, at STP.

APPROACH First we determine the number of moles n using the given volume.
Then we can multiply by the mass of one mole to get the total mass.

SOLUTION Example 13–9 told us that 1 mol of a gas at 0°C has a volume of
22.4 L The room’s volume is so

Air is a mixture of about 20% oxygen and 80% nitrogen The molecular
masses are and respectively, for an average
of about 29 u. Thus, 1 mol of air has a mass of about so our
room has a mass of air

NOTE That is roughly 100 lb of air!

m L (1700 mol)(0.029 kg�mol) L 50 kg.

29 g = 0.029 kg,
2 * 14 u = 28 u,2 * 16 u = 32 u

AN2B.AO2B
n =

(5 m)(3 m)(2.5 m)

22.4 * 10–3 m3�mol
L 1700 mol.

5 m * 3 m * 2.5 m,= 22.4 * 10–3 m3.

5 m * 3 m * 2.5 m
EXAMPLE 13;11 ESTIMATE

EXERCISE D At 20°C, would there be (a) more, (b) less, or (c) the same mass of air in a
room than at 0°C?

Frequently, volume is specified in liters and pressure in atmospheres. Rather
than convert these to SI units, we can instead use the value of R given in 
Section 13–6 as

In many situations it is not necessary to use the value of R at all. For example,
many problems involve a change in the pressure, temperature, and volume of a
fixed amount of gas. In this case, since n and R remain
constant. If we now let and represent the appropriate variables initially,
and represent the variables after the change is made, then we can write 

[fixed n]

If we know any five of the quantities in this equation, we can solve for the sixth.
Or, if one of the three variables is constant ( or or )
then we can use this equation to solve for one unknown when given the other
three quantities.

T1 = T2P1 = P2 ,V1 = V2 ,

P1 V1

T1
=

P2 V2

T2

.

T2V2 ,P2 ,
T1V1 ,P1 ,

PV�T = nR = constant,

0.0821 L �atm�mol�K.



Check tires cold. An automobile tire is filled (Fig. 13–17)
to a gauge pressure of at 10°C. After a drive of 100 km, the
temperature within the tire rises to 40°C. What is the pressure within the tire now?

APPROACH We do not know the number of moles of gas, or the volume of the
tire, but we assume they are constant. We use the ratio form of the ideal gas law.

SOLUTION Since then

This is, incidentally, a statement of Gay-Lussac’s law. Since the pressure given is
the gauge pressure (Section 10–4), we must add atmospheric pressure 
to get the absolute pressure We convert
temperatures to kelvins by adding 273 and solve for 

Subtracting atmospheric pressure, we find the resulting gauge pressure to be
243 kPa, which is a 16% increase

NOTE This Example shows why car manuals emphasize checking tire pressure
when the tires are cold.

(= 35 psi).

P2 = P1 ¢T2

T1
≤ = A3.11 * 105 PaB a 313 K

283 K
b = 344 kPa.

P2 :
P1 = (210 kPa + 101 kPa) = 311 kPa.

(= 101 kPa)

P1

T1
=

P2

T2

.

V1 = V2 ,

210 kPa (= 30 psi)
EXAMPLE 13;12
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Pressure in a hot tire

Avogadro’s number

FIGURE 13–17 Example 13–12.

13–8 Ideal Gas Law in Terms of
Molecules: Avogadro’s Number

The fact that the gas constant, R, has the same value for all gases is a remarkable
reflection of simplicity in nature. It was first recognized, although in a slightly 
different form, by the Italian scientist Amedeo Avogadro (1776–1856). Avogadro
stated that equal volumes of gas at the same pressure and temperature contain
equal numbers of molecules. This is sometimes called Avogadro’s hypothesis.
That this is consistent with R being the same for all gases can be seen as follows.
From Eq. 13–3, we see that for the same number of moles, n, and the
same pressure and temperature, the volume will be the same for all gases as long
as R is the same. Second, the number of molecules in 1 mole is the same for all
gases (see page 369). Thus Avogadro’s hypothesis is equivalent to R being the same
for all gases.

The number of molecules in one mole of any pure substance is known as
Avogadro’s number, Although Avogadro conceived the notion, he was not
able to actually determine the value of Indeed, precise measurements were
not done until the twentieth century.

A number of methods have been devised to measure and the accepted
value today is (see inside front cover for more precise value)

Since the total number of molecules, N, in a gas is equal to times the number
of moles then the ideal gas law, Eq. 13–3, can be written in terms of
the number of molecules present:

or
(13;4)

where is called the Boltzmann constant and has the value

k =
R

NA
=

8.314 J�mol�K

6.02 * 1023�mol
= 1.38 * 10–23 J�K.

k = R�NA

PV = NkT,

PV = nRT =
N

NA
RT,

AN = nNAB,
NA

[molecules�mole]NA = 6.02 * 1023.

NA ,

NA .
NA .

PV = nRT,

IDEAL GAS LAW 
(in terms of molecules)



Hydrogen atom mass. Use Avogadro’s number to deter-
mine the mass of a hydrogen atom.
APPROACH The mass of one atom equals the mass of 1 mol divided by the
number of atoms in 1 mol,
SOLUTION One mole of hydrogen atoms ( Section 13–1
or Appendix B) has a mass of and contains 
Thus one atom has a mass

NOTE Historically, the reverse was done: a precise value of was obtained
from a precise measurement of the mass of the hydrogen atom.

NA

m =
1.008 * 10–3 kg

6.02 * 1023
= 1.67 * 10–27 kg.

6.02 * 1023 atoms.1.008 * 10–3 kg
atomic mass = 1.008 u,

NA .

EXAMPLE 13;13
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Molecules in a breath
How many molecules in one breath? Esti-

mate how many molecules you breathe in with a 1.0-L breath of air.

APPROACH We determine what fraction of a mole 1.0 L is using the result of
Example 13–9 that 1 mole has a volume of 22.4 L at STP, and then multiply that
by to get the number of molecules in this number of moles.

SOLUTION One mole corresponds to 22.4 L at STP, so 1.0 L of air is
Then 1.0 L of air contains

(0.045 mol)A6.02 * 1023 molecules�moleB L 3 * 1022 molecules.
(1.0 L)�(22.4 L�mol) = 0.045 mol.

NA

EXAMPLE 13;14 ESTIMATE

13–9 Kinetic Theory and the Molecular
Interpretation of Temperature

The analysis of matter in terms of atoms in continuous random motion is called
kinetic theory. We now investigate the properties of a gas from the point of view
of kinetic theory, which is based on the laws of classical mechanics. But to apply
Newton’s laws to each one of the vast number of molecules in a gas ( at
STP) is far beyond the capability of any present computer. Instead we take a sta-
tistical approach and determine averages of certain quantities, and connect these
averages to macroscopic variables. We will demand that our microscopic description
correspond to the macroscopic properties of gases; otherwise our theory would be
of little value. Most importantly, we will arrive at an important relation between
the average kinetic energy of molecules in a gas and the absolute temperature.

We make the following assumptions about the molecules in a gas. These
assumptions reflect a simple view of a gas, but nonetheless the results they predict
correspond well to the essential features of real gases that are at low pressure 
and are far from the liquefaction point. Under these conditions real gases follow the
ideal gas law quite closely, and indeed the gas we now describe is referred to as
an ideal gas. The assumptions representing the basic postulates of kinetic theory
for an ideal gas are:
1. There are a large number of molecules, N, each of mass m, moving in random

directions with a variety of speeds. This assumption agrees with our observation
that a gas fills its container and, in the case of air on Earth, is kept from
escaping only by the force of gravity.

2. The molecules are, on average, far apart from one another. That is, their average
separation is much greater than the diameter of each molecule.

3. The molecules are assumed to obey the laws of classical mechanics, and are
assumed to interact with one another only when they collide. Although molecules
exert weak attractive forces on each other between collisions, the potential
energy associated with these forces is small compared to the kinetic energy.

4. Collisions with another molecule or the wall of the vessel are assumed to be
perfectly elastic, like the collisions of perfectly elastic billiard balls (Chapter 7).
We assume the collisions are of very short duration compared to the time
between collisions. Then we can ignore the potential energy associated with
collisions in comparison to the kinetic energy between collisions.

71025�m3



We can see how this kinetic view of a gas can explain Boyle’s law (Section 13–5).
The pressure exerted on a wall of a container of gas is due to the constant bom-
bardment of molecules. If the volume is reduced by (say) half, the molecules are
closer together and twice as many will be striking a given area of the wall per second.
Hence we expect the pressure to be twice as great, in agreement with Boyle’s law.

Now let us calculate quantitatively the pressure a gas exerts on its container in
terms of microscopic quantities. We imagine that the molecules are inside a rectangular
container (at rest) whose ends have area A and whose length is as shown in 
Fig. 13–18a. The pressure exerted by the gas on the walls of its container is,
according to our model, due to the collisions of the molecules with the walls. Let
us focus our attention on the wall, of area A, at the left end of the container and
examine what happens when one molecule strikes this wall, as shown in Fig. 13–18b.
This molecule exerts a force on the wall, and according to Newton’s third law 
the wall exerts an equal and opposite force back on the molecule. The magnitude 
of this force on the molecule, according to Newton’s second law, is equal to the
molecule’s rate of change of momentum, (Eq. 7–2). Assuming
the collision is elastic, only the x component of the molecule’s momentum changes,
and it changes from (it is moving in the negative x direction) to Thus
the change in the molecule’s momentum, which is the final momentum
minus the initial momentum, is

for one collision. This molecule will make many collisions with the wall, each
separated by a time which is the time it takes the molecule to travel across 
the container and back again, a distance (x component) equal to Thus
or

The time between collisions with a wall is very small, so the number of colli-
sions per second is very large. Thus the average force—averaged over many
collisions—will be equal to the momentum change during one collision divided
by the time between collisions (Newton’s second law, Eq. 7–2):

[due to one molecule]

During its passage back and forth across the container, the molecule may collide
with the tops and sides of the container, but this does not alter its x component of
momentum and thus does not alter our result. [It may also collide with other
molecules, which may change its However, any loss (or gain) of momentum is
acquired by other molecules, and because we will eventually sum over all the
molecules, this effect will be included. So our result above is not altered.]

The actual force due to one molecule is intermittent, but because a huge num-
ber of molecules are striking the wall per second, the force is, on average, nearly
constant. To calculate the force due to all the molecules in the container, we have
to add the contributions of each. If all N molecules have the same mass m, the net
force on the wall is

where means for molecule number 1 (we arbitrarily assign each molecule 
a number) and the sum extends over the total number of molecules N in the 
container. The average value of the square of the x component of velocity is

(13;5)

where the overbar means “average.” Thus we can write the force as

(i)

We know that the square of any vector is equal to the sum of the squares of its
components (theorem of Pythagoras). Thus for any velocity v.v2 = vx

2 + vy
2 + vz

2

F =
m

l
NOx .

( )

Ox =
vx1

2 + vx2
2 + p + vxN

2

N
,

vxvx1

F =
m

l
Avx1

2 + vx2
2 + p + vxN

2 B,

vx .

F =
¢(mv)

¢t
=

2mvx
2l�vx

=
mvx

2

l

.

¢t

¢t =
2l
vx

.

2l = vx ¢t,2l.
¢t,

¢(mv) = mvx - A–mvxB = 2mvx

¢(mv),
±mvx .–mvx

F = ¢(mv)�¢t

l,
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FIGURE 13–18 (a) Molecules of a
gas moving about in a rectangular
container. (b) Arrows indicate the
momentum of one molecule as it
rebounds from the end wall.



Taking averages, we obtain

(ii)

Since the velocities of the molecules in our gas are assumed to be random, there
is no preference to one direction or another. Hence

(iii)

Combining Eqs. (iii) and (ii), we get

(iv)

We substitute Eq. (iv) into Eq. (i) for net force F (bottom of previous page):

The pressure on the wall is then

or

(13;6)

where is the volume of the container. This is the result we wanted, the
pressure exerted by a gas on its container expressed in terms of molecular properties.

Equation 13–6 can be rewritten in a clearer form by multiplying both sides
by V and rearranging the right-hand side:

(13;7)

The quantity is the average translational kinetic energy of the mole-
cules in the gas. If we compare Eq. 13–7 with Eq. 13–4, the ideal gas law

we see that the two agree if

or

[ideal gas] (13;8)

This equation tells us that

the average translational kinetic energy of molecules in random motion in an
ideal gas is directly proportional to the absolute temperature of the gas.

The higher the temperature, according to kinetic theory, the faster the molecules
are moving on average. This relation is one of the triumphs of kinetic theory.

G = 1
2 mO = 3

2 kT.

2
3 A12 mOB = kT,

PV = NkT,

AGB1
2 mO

PV = 2
3 NA12 mOB.

V = lA

cpressure in an
ideal gas

dP =
1
3

NmO
V

,

P =
F

A
=

1
3

NmO
Al

F =
m

l
N
O

3
.

O = 3Ox .

Ox = Oy = Oz .

O = Ox + Oy + Oz .
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TEMPERATURE RELATED TO
AVERAGE KINETIC ENERGY
OF MOLECULES

Molecular kinetic energy. What is the average transla-
tional kinetic energy of molecules in an ideal gas at 37°C?

APPROACH We use the absolute temperature in Eq. 13–8.

SOLUTION We change 37°C to 310 K and insert into Eq. 13–8:

NOTE A mole of molecules would have a total translational kinetic energy equal
to which equals the kinetic energy of a
1-kg stone traveling almost 90 m�s.
A6.42 * 10–21 JB A6.02 * 1023B = 3860 J,

G = 3
2 kT = 3

2 A1.38 * 10–23 J�KB(310 K) = 6.42 * 10–21 J.

EXAMPLE 13;15

EXERCISE E If molecules of hydrogen gas and oxygen gas were placed in the same balloon
at room temperature, how would the average kinetic energies of the molecules compare?
(a) They would be the same. (b) The hydrogen molecules would have greater kinetic energy.
(c) The oxygen molecules would have greater kinetic energy. (d) Need more information.

Equation 13–8 holds not only for gases, but also applies reasonably accurately
to liquids and solids. Thus the result of Example 13–15 would apply to molecules
within living cells at body temperature (37°C).



We can use Eq. 13–8 to calculate how fast molecules are moving on average.
Notice that the average in Eqs. 13–5 through 13–8 is over the square of the speed.
The square root of is called the root-mean-square speed, (since we are
taking the square root of the mean of the square of the speed):

(13;9)vrms = 3 O = B3kT
m

.

vrmsO
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† Mathematically, the distribution is given by where is the num-
ber of molecules with speed between v and is a constant, and exp means the expression 
in parentheses is an exponent on the “natural number” e = 2.718 p .

Cv + ¢v,
¢N¢N = Cv2 expA– 1

2 mv2�kTB¢v,

0 vP vrms Speed, v
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FIGURE 13–19 Distribution of
speeds of molecules in an ideal gas.
Note that is not at the peak of
the curve (that speed is called the
“most probable speed,” ). This is
because the curve is skewed to the
right: it is not symmetrical.

vP

vrms

Speeds of air molecules. What is the rms speed of air
molecules ( and ) at room temperature (20°C)?

APPROACH To obtain we need the masses of and molecules and
then apply Eq. 13–9 to oxygen and nitrogen separately, since they have differ-
ent masses.

SOLUTION The masses of one molecule of (molecular ) and
(molecular ) are (where )

Thus, for oxygen

and for nitrogen the result is

NOTE These speeds are more than or and are greater
than the speed of sound, at 20°C (Chapter 12).L 340 m�s

1000 mi�h,1700 km�h

vrms = 510 m�s.

vrms = B3kT
m

= C(3)A1.38 * 10–23 J�KB(293 K)

A5.3 * 10–26 kgB = 480 m�s,

m(N2) = (28)A1.66 * 10–27 kgB = 4.6 * 10–26 kg.

m(O2) = (32)A1.66 * 10–27 kgB = 5.3 * 10–26 kg,

1 u = 1.66 * 10–27 kgmass = 28 uN2

mass = 32 uO2

N2O2vrms ,

N2O2

EXAMPLE 13;16

EXERCISE F By what factor must the absolute temperature change to double 
(a) (b) 2; (c) (d) 4; (e) 16.212 ;12 ;

vrms?

Kinetic Energy Near Absolute Zero
Equation 13–8, implies that as the temperature approaches absolute
zero, the kinetic energy of molecules approaches zero. Modern quantum theory,
however, tells us this is not quite so. Instead, as absolute zero is approached, the
kinetic energy approaches a very small nonzero minimum value. Even though all
real gases become liquid or solid near 0 K, molecular motion does not cease,
even at absolute zero.

13–10 Distribution of Molecular Speeds
The molecules in a gas are assumed to be in random motion, which means that
many molecules have speeds less than the rms speed and others have greater
speeds. In 1859, James Clerk Maxwell (1831–1879) derived, on the basis of kinetic
theory, that the speeds of molecules in a gas are distributed according to the
graph shown in Fig. 13–19. This is known as the Maxwell distribution of speeds.†

The speeds vary from zero to many times the rms speed, but as the graph shows,
most molecules have speeds that are not far from the average. Less than 1% of
the molecules exceed four times 

Experiments to determine the distribution of molecular speeds in real gases,
starting in the 1920s, confirmed with considerable accuracy the Maxwell distri-
bution and the direct proportion between average kinetic energy and absolute
temperature, Eq. 13–8.

vrms .

G = 3
2 kT,

*



Figure 13–20 shows the Maxwell distribution for two different temperatures.
Just as increases with temperature, so the whole distribution curve shifts to
the right at higher temperatures. Kinetic theory can be applied approximately to
liquids and solutions. Figure 13–20 illustrates how kinetic theory can explain why
many chemical reactions, including those in biological cells, take place more
rapidly as the temperature increases. Most chemical reactions occur in a liquid
solution, and the molecules have a speed distribution close to the Maxwell distri-
bution. Two molecules may chemically react only if their kinetic energy is above
some particular minimum value (called the activation energy), so that when
they collide, they penetrate into each other somewhat. Figure 13–20 shows that
at a higher temperature, many more molecules have a speed and kinetic energy
KE above the needed threshold EA .

EA ,

vrms
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How chemical reactions depend on T
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FIGURE 13–20 Distribution of
molecular speeds for two different
temperatures. Color shading shows
proportions of molecules above a
certain speed (corresponding to an
activation energy ).EA = 1
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FIGURE 13–21 PV diagram for a
real substance. Curves A, B, C,
and D represent the same substance
at different temperatures
(TA 7 TB 7 TC 7 TD).

13–11 Real Gases and Changes of Phase
The ideal gas law, , is an accurate description of the behavior of a
real gas as long as the pressure is not too high and the temperature is far from 
the liquefaction point. But what happens when these two criteria are not satisfied?
First we discuss real gas behavior, and then we examine how kinetic theory can
help us understand this behavior.

Let us look at a graph of pressure plotted against volume for a given amount
of gas. On such a PV diagram, Fig. 13–21, each point represents the pressure and
volume of an equilibrium state of the given substance. The various curves
(labeled A, B, C, and D) show how the pressure varies as a function of volume
for four different values of constant temperature and The red
dashed curve represents the behavior of a gas as predicted by the ideal gas
law; that is, The solid curve A represents the behavior of a real
gas at the same temperature. Notice that at high pressure, the volume of a 
real gas is less than that predicted by the ideal gas law. The curves B and C in
Fig. 13–21 represent the gas at successively lower temperatures, and we see that
the behavior deviates even more from the curves predicted by the ideal gas law
(for example, ), and the deviation is greater the closer the gas is to liquefying.

To explain this behavior, note that at higher pressure we expect the molecules
to be closer together. And at lower temperatures, the potential energy associated
with attractive forces between the molecules (which we ignored before) is no 
longer negligible. These attractive forces tend to pull the molecules closer together so
the volume is less than expected from the ideal gas law. At still lower temperatures,
these forces cause liquefaction, and the molecules become very close together.

Curve D represents the situation when liquefaction occurs. At low pressure
on curve D (on the right in Fig. 13–21), the substance is a gas and occupies a large
volume. As the pressure is increased, the volume decreases until point b is reached.
From point b to point a, the volume decreases with no change in pressure; the
substance is gradually changing from the gas to the liquid phase. At point a, all of
the substance has changed to liquid. Further increase in pressure reduces the
volume only slightly—liquids are nearly incompressible—so on the left the curve
is very steep as shown. The shaded area under the gold dashed line represents the
region where the gas and liquid phases exist together in equilibrium.

Curve C in Fig. 13–21 represents the behavior of the substance at its critical
temperature; the point c (the one point where curve C is horizontal) is called the
critical point. At temperatures less than the critical temperature, a gas will change
to the liquid phase if sufficient pressure is applied. Above the critical tempera-
ture (and this is the definition of the term), no amount of pressure can cause a gas
to change phase and become a liquid. (Thus curves A and B represent the sub-
stance at temperatures where it can only be a gas.) The critical temperatures for
various gases are given in Table 13–2. Scientists tried for many years to liquefy
oxygen without success, which led to the idea that there must be a critical point.
Oxygen can be liquefied only if first cooled below its critical temperature of –118°C.

B¿

PV = constant.
A¿

TD .TC ,TB ,TA ,

PV = NkT

TABLE 13–2 Critical
Temperatures and Pressures

Critical
Temperature Critical 

Pressure
Substance °C K (atm)

Water 374 647 218
31 304 72.8

Oxygen 118 155 50
Nitrogen 147 126 33.5
Hydrogen 239.9 33.3 12.8
Helium 267.9 5.3 2.3–

–

–

–

CO2



Often a distinction is made between the terms “gas” and “vapor”: a substance
below its critical temperature in the gaseous state is called a vapor; above the
critical temperature, it is called a gas.

The behavior of a substance can be diagrammed not only on a PV diagram but
also on a PT diagram. A PT diagram, often called a phase diagram, is particu-
larly convenient for comparing the different phases of a substance. Figure 13–22
is the phase diagram for water. The curve labeled represents those points
where the liquid and vapor phases are in equilibrium—it is thus a graph of the 
boiling point versus pressure. Note that the curve correctly shows that at a pres-
sure of 1 atm the boiling point is 100°C and that the boiling point is lowered 
for a decreased pressure. The curve represents points where solid and liquid
exist in equilibrium and thus is a graph of the freezing point versus pressure.

s-l

l-v
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FIGURE 13–23 Phase diagram for
carbon dioxide.
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FIGURE 13–22 Phase diagram for
water (note that the scales are not
linear).

At 1 atm, the freezing point of water is 0°C, as shown. Notice also in Fig. 13–22
that at a pressure of 1 atm, the substance is in the liquid phase if the temperature 
is between 0°C and 100°C, but is in the solid or vapor phase if the temperature is
below 0°C or above 100°C. The curve labeled s-v is the sublimation point versus
pressure curve. Sublimation refers to the process whereby at low pressures a
solid changes directly into the vapor phase without passing through the liquid
phase. For water, sublimation occurs if the pressure of the water vapor is less than
0.0060 atm. Carbon dioxide, which in the solid phase is called dry ice, sublimates
even at atmospheric pressure (Fig. 13–23).

The intersection of the three curves (in Fig. 13–22) is the triple point. For
water this occurs at and It is only at the
triple point that the three phases can exist together in equilibrium. Because the
triple point corresponds to a unique value of temperature and pressure, it is pre-
cisely reproducible and is often used as a point of reference. For example, the
standard of temperature is usually specified as exactly 273.16 K at the triple point
of water, rather than 273.15 K at the freezing point of water at 1 atm.

Notice that the solid-liquid curve for water (Fig. 13–22) slopes upward to
the left. This is true only of substances that expand upon freezing: at a higher pres-
sure, a lower temperature is needed to cause the liquid to freeze. More commonly,
substances contract upon freezing and the curve slopes upward to the right,
as shown for carbon dioxide in Fig. 13–23.

The phase transitions we have been discussing are the common ones. Some 
substances, however, can exist in several forms in the solid phase. A transition
from one phase to another occurs at a particular temperature and pressure, just
like ordinary phase changes. For example, ice has been observed in at least eight
forms at very high pressure. Ordinary helium has two distinct liquid phases, called
helium I and II. They exist only at temperatures within a few degrees of absolute
zero. Helium II exhibits very unusual properties referred to as superfluidity.
It has essentially zero viscosity and exhibits strange properties such as climbing
up the sides of an open container. Also interesting are liquid crystals (used for
computer and TV monitors, Section 24–11) which can be considered to be in a
phase between liquid and solid.

ACO2B
s-l

(s-l)

P = 6.03 * 10–3 atm.T = 273.16 K



13–12 Vapor Pressure and Humidity
Evaporation
If a glass of water is left out overnight, the water level will have dropped by morning.
We say the water has evaporated, meaning that some of the water has changed to
the vapor or gas phase.

This process of evaporation can be explained on the basis of kinetic theory.
The molecules in a liquid move past one another with a variety of speeds that
follow, approximately, the Maxwell distribution. There are strong attractive
forces between these molecules, which is what keeps them close together in the
liquid phase. A molecule near the surface of the liquid may, because of its speed,
leave the liquid momentarily. But just as a rock thrown into the air returns to the
Earth, so the attractive forces of the other molecules can pull the vagabond mole-
cule back to the liquid surface—that is, if its velocity is not too large. A molecule
with a high enough velocity, however, will escape the liquid entirely, like a rocket
escaping the Earth, and become part of the gas phase. Only those molecules that
have kinetic energy above a particular value can escape to the gas phase. We have
already seen that kinetic theory predicts that the relative number of molecules
with kinetic energy above a particular value (such as in Fig. 13–20) increases
with temperature. This is in accord with the well-known observation that the
evaporation rate is greater at higher temperatures.

Because it is the fastest molecules that escape from the surface, the average
speed of those remaining is less. When the average speed is less, the absolute tem-
perature is less. Thus kinetic theory predicts that evaporation is a cooling process.
You may have noticed this effect when you stepped out of a warm shower and
felt cold as the water on your body began to evaporate; and after working up a
sweat on a hot day, even a slight breeze makes you feel cool through evaporation.
Try licking your finger and then blow on it.

Vapor Pressure
Air normally contains water vapor (water in the gas phase), and it comes mainly
from evaporation. To look at this process in a little more detail, consider a closed
container that is partially filled with water (or another liquid) and from which the
air has been removed (Fig. 13–24). The fastest moving molecules quickly evaporate
into the empty space above the liquid’s surface. As they move about, some of these
molecules strike the liquid surface and again become part of the liquid phase: this
is called condensation. The number of molecules in the vapor increases until 
the number of molecules returning to the liquid equals the number leaving in the
same time interval. Equilibrium then exists, and the space above the liquid surface is
said to be saturated. The pressure of the vapor when it is saturated is called the
saturated vapor pressure (or simply the vapor pressure).

The saturated vapor pressure of any substance depends on the temperature.
At higher temperatures, more molecules have sufficient kinetic energy to break
from the liquid surface into the vapor phase. Hence equilibrium will be reached
at a higher vapor pressure. The saturated vapor pressure of water at various tempera-
tures is given in Table 13–3. Notice that even solids—for example, ice—have a
measurable saturated vapor pressure.

In everyday situations, evaporation from a liquid takes place into the air
above it rather than into a vacuum. This does not materially alter the discussion
above relating to Fig. 13–24. Equilibrium will still be reached when there are 
sufficient molecules in the gas phase that the number reentering the liquid equals
the number leaving. The concentration of particular molecules (such as water) in
the gas phase is not affected by the presence of air, although collisions with air
molecules may lengthen the time needed to reach equilibrium. Thus equilibrium
occurs at the same value of the saturated vapor pressure as if air were not there.

If the container is large or is not closed, all the liquid may evaporate before
saturation is reached. And if the container is not sealed—as, for example, a room
in your house—it is not likely that the air will become saturated with water vapor
(unless it is raining outside).

EA
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FIGURE 13–24 Vapor appears
above a liquid in a closed container.
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Evaporation cools

TABLE 13–3 Saturated 
Vapor Pressure of Water

Temp-
Saturated Vapor Pressure

erature torr Pa
(°C)

0.030 4.0
1.95

0 4.58
5 6.54

10 9.21
15 12.8
20 17.5
25 23.8
30 31.8
40 55.3
50 92.5
60 149
70† 234
80 355
90 526

100‡ 760
120 1489
150 3570

† Boiling point on summit of Mt. Everest.
‡ Boiling point at sea level.

4.76 * 105
1.99 * 105
1.01 * 105
7.01 * 104
4.73 * 104
3.12 * 104
1.99 * 104
1.23 * 104
7.37 * 103
4.24 * 103
3.17 * 103
2.33 * 103
1.71 * 103
1.23 * 103
8.72 * 102
6.11 * 102
2.60 * 102–10

–50

(� N�m2)(� mm-Hg)



Boiling
The saturated vapor pressure of a liquid increases with temperature. When the
temperature is raised to the point where the saturated vapor pressure at that
temperature equals the external pressure, boiling occurs (Fig. 13–25). As the boil-
ing point is approached, tiny bubbles tend to form in the liquid, which indicate 
a change from the liquid to the gas phase. However, if the vapor pressure inside
the bubbles is less than the external pressure, the bubbles immediately are crushed.
As the temperature is increased, the saturated vapor pressure inside a bubble
eventually becomes equal to or exceeds the external air pressure. The bubble will
then not collapse but can rise to the surface. Boiling has then begun. A liquid boils
when its saturated vapor pressure equals the external pressure. This occurs for
water at a pressure of 1 atm (760 torr) at 100°C, as can be seen from Table 13–3.

The boiling point of a liquid depends on the external pressure. At high ele-
vations, the boiling point of water is somewhat less than at sea level because the 
air pressure is less up there. For example, on the summit of Mt. Everest (8850 m)
the air pressure is about one-third of what it is at sea level, and from Table 13–3
we can see that water will boil at about 70°C. Cooking food by boiling takes
longer at high elevations, because the boiling water is cooking at a lower
temperature. Pressure cookers reduce cooking time because they build up a 
pressure as high as 2 atm, allowing a higher boiling (and cooking) temperature to
be attained (Problem 64 and Fig. 13–32).

Partial Pressure and Humidity
When we refer to the weather as being dry or humid, we are referring to the
water vapor content of the air. In a gas such as air, which is a mixture of several
types of gases, the total pressure is the sum of the partial pressures of each gas
present.† By partial pressure, we mean the pressure each gas would exert if it
alone were present. The partial pressure of water in the air can be as low as zero
and can vary up to a maximum equal to the saturated vapor pressure of water at
the given temperature. Thus, at 20°C, the partial pressure of water cannot exceed
17.5 torr (see Table 13–3) or about 0.02 atm. The relative humidity is defined as
the ratio of the partial pressure of water vapor to the saturated vapor pressure at
a given temperature. It is usually expressed as a percentage:

Thus, when the humidity is close to 100%, the air holds nearly all the water vapor
it can.

Relative humidity =
partial pressure of H2O

saturated vapor pressure of H2O
* 100%.
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† For example, 78% (by volume) of air molecules are nitrogen and 21% oxygen, with much smaller
amounts of water vapor, argon, carbon dioxide, and other gases. At an air pressure of 1 atm, oxygen
exerts a partial pressure of 0.21 atm and nitrogen 0.78 atm.

FIGURE 13–25 Boiling: bubbles of
water vapor float upward from the
bottom (where the temperature is
highest).
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Humidity and comfort

Relative humidity. On a particular hot day, the tempera-
ture is 30°C and the partial pressure of water vapor in the air is 21.0 torr. What 
is the relative humidity?
APPROACH From Table 13–3, we see that the saturated vapor pressure of
water at 30°C is 31.8 torr.

SOLUTION The relative humidity is thus
21.0 torr
31.8 torr

* 100% = 66%.

EXAMPLE 13;17

Humans are sensitive to humidity. A relative humidity of 40–50% is generally
optimum for both health and comfort. High humidity, particularly on a hot day,
reduces the evaporation of moisture from the skin, which is one of the body’s
vital mechanisms for regulating body temperature. Very low humidity, on the other
hand, can dry the skin and mucous membranes.



Air is saturated with water vapor when the partial pressure of water in the air
is equal to the saturated vapor pressure at that temperature. If the partial pressure
of water exceeds the saturated vapor pressure, the air is said to be supersaturated.
This situation can occur when a temperature decrease occurs. For example,
suppose the temperature is 30°C and the partial pressure of water is 21 torr, which
represents a humidity of 66% as we saw in Example 13–17. Suppose now that the
temperature falls to, say, 20°C, as might happen at nightfall. From Table 13–3 we
see that the saturated vapor pressure of water at 20°C is 17.5 torr. Hence the 
relative humidity would be greater than 100%, and the supersaturated air cannot
hold this much water vapor. The excess water may condense and appear as dew,
clouds, or as fog or rain (Fig. 13–26).

When air containing a given amount of water is cooled, a temperature is
reached where the partial pressure of water equals the saturated vapor pressure.
This is called the dew point. Measurement of the dew point is the most accurate
means of determining the relative humidity. One method uses a polished metal sur-
face which is gradually cooled down while in contact with air. The temperature at
which moisture begins to appear on the surface is the dew point, and the partial
pressure of water can then be obtained from saturated vapor pressure Tables. If, for
example, on a given day the temperature is 20°C and the dew point is 5°C, then the
partial pressure of water (Table 13–3) in the 20°C air is 6.54 torr, whereas its satu-
rated vapor pressure is 17.5 torr; hence the relative humidity is 6.54�17.5 = 37%.
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(a)

(b)

(c)

FIGURE 13–26 (a) Fog or mist
settling in a valley where the
temperature has dropped below the
dew point. (b) Dew drops on a leaf.
(c) Clouds form on a sunny day at
the beach due to air, nearly
saturated with water vapor, rising to
an altitude where the cooler
temperature is at the dew point.
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Weather

(a) (b) (c)

FIGURE 13–27 A few drops of
food coloring (a) dropped into
water, (b) spreads slowly
throughout the water, eventually
(c) becoming uniform.

Dryness in winter. Why does the air
inside heated buildings seem very dry on a cold winter day?

RESPONSE Suppose the relative humidity outside on a day is 50%.
Table 13–3 tells us the partial pressure of water in the air is about 1.0 torr.
If this air is brought indoors and heated to the relative humidity is

Even if the outside air were saturated at a partial
pressure of 1.95 torr, the inside relative humidity would still be at a low 11%.
(1.0 torr)�(17.5 torr) = 5.7%.

±20°C,

–10°C

CONCEPTUAL EXAMPLE 13;18

13–13 Diffusion
If you carefully place a few drops of food coloring in a glass of water as in 
Fig. 13–27, you will find that the color spreads throughout the water. The process
may take some time (assuming you do not shake the glass), but eventually the
color will become uniform. This mixing, known as diffusion, is readly explained by
kinetic theory as due to the random movement of the molecules. Diffusion occurs
in gases too. Common examples include perfume or smoke (or the odor of some-
thing cooking on a stove) diffusing in air, although convection (moving air currents)
often plays a greater role in spreading odors than does diffusion. Diffusion
depends on concentration, by which we mean the number of molecules or moles
per unit volume. In general, the diffusing substance moves from a region where
its concentration is high to a region where its concentration is low.

*



Diffusion can be readily understood on the basis of kinetic theory and the
random motion of molecules. Consider a tube of cross-sectional area A containing
molecules in a higher concentration on the left than on the right, Fig. 13–28.
We assume the molecules are in random motion. Yet there will be a net flow of
molecules to the right. To see why, let us consider the small section of tube 
of length as shown. Molecules from both regions 1 and 2 cross into this 
central section as a result of their random motion. The more molecules there are
in a region, the more will strike a given area or cross a boundary. Since there is a
greater concentration of molecules in region 1 than in region 2, more molecules
cross into the central section from region 1 than from region 2. There is, then, a net
flow of molecules from left to right, from high concentration toward low
concentration The net flow becomes zero only when the concentrations
become equal.

We might expect that the greater the difference in concentration, the greater
the flow rate. Indeed, the rate of diffusion, J (number of molecules or moles or
kg per second), is directly proportional to the difference in concentration per
unit distance, (which is called the concentration gradient), and to
the cross-sectional area A (see Fig. 13–28):

(13;10)

D is a constant of proportionality called the diffusion constant. Equation 13–10 is
known as the diffusion equation, or Fick’s law. If the concentrations are given in

then J is the number of moles passing a given point per second. If the con-
centrations are given in then J is the mass movement per second 
The length is given in meters, and area A in m2. The values of D for a variety
of substances diffusing in a particular medium are given in Table 13–4.

¢x
(kg�s).kg�m3,

mol�m3,

J = DA
C1 - C2

¢x
.

AC1 - C2B�¢x

AC2B.
AC1B

¢x
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TABLE 13–4 Diffusion
Constants, D (20°C, 1 atm)

Diffusing
Molecules Medium

Air
Air
Water

Glycine (an 
amino acid) Water

Blood
hemoglobin Water

DNA (mass 
) Water 0.13 * 10–116 * 106 u

6.9 * 10–11

95 * 10–11

100 * 10–11O2

1.8 * 10–5O2

6.3 * 10–5H2

D (m2�s)

P H Y S I C S  A P P L I E D

Diffusion time

xRegion 1;
concentration
= C1

Region 2;
concentration
= C2

A

Δ

FIGURE 13–28 Diffusion occurs
from a region of high concentration
to one of lower concentration (only
one type of molecule is shown).

Diffusion of ammonia in air. To get an idea
of the time required for diffusion, estimate how long it might take for ammonia

to be detected 10 cm from a bottle after it is opened, assuming only 
diffusion is occurring.

APPROACH This will be an order-of-magnitude calculation. The rate of diffu-
sion J can be set equal to the number of molecules N diffusing across area A in
a time : Then the time where J is given by Eq. 13–10.
We will have to make some assumptions and rough approximations about 
concentrations to use Eq. 13–10.

SOLUTION Using Eq. 13–10, we find

The average concentration (midway between bottle and nose) can be approxi-
mated by where V is the volume over which the molecules move 
and is roughly on the order of where is We
substitute into the above equation:

The concentration of ammonia is high near the bottle (C) and low near the
detecting nose so or Since 
molecules have a size somewhere between and from Table 13–4 we 
can estimate Then

or about a minute or two.

NOTE This result seems rather long from experience, suggesting that air currents
(convection) are more important than diffusion for transmitting odors.

t L 1
2

(0.10 m)2

A4 * 10–5 m2�sB L 100 s,

D L 4 * 10–5 m2�s.
O2 ,H2

NH3(K�¢C) L 1
2 .K L C�2 L ¢C�2,(L 0),

t L
(KA ¢x) ¢x

DA ¢C
=
K

¢C

(¢x)2

D
.

N = KV = KA ¢x
10 cm = 0.10 m.¢xV L A ¢x,

K L N�V,

t =
N

J
=

N

DA
¢x
¢C

.

t = N�J,J = N�t.t

ANH3B
EXAMPLE 13;19 ESTIMATE



Diffusion is extremely important for living organisms. For example, molecules
produced in certain chemical reactions within cells diffuse to other areas where
they take part in other reactions.

Gas diffusion is important too. Plants require carbon dioxide for photosyn-
thesis. The diffuses into leaves from the outside air through tiny openings
(stomata). As is utilized by the cells, its concentration drops below that in
the air outside, and more diffuses inward. Water vapor and oxygen produced by
the cells diffuse outward into the air.

Animals also exchange oxygen and with the environment. Oxygen is
required for energy-producing reactions and must diffuse into cells. is 
produced as an end product of many metabolic reactions and must diffuse out of
cells. But diffusion is slow over longer distances, so only the smallest organisms in
the animal world could survive without having developed complex respiratory and
circulatory systems. In humans, oxygen is taken into the lungs, where it diffuses
short distances across lung tissue and into the blood. Then the blood circulates 
it to cells throughout the body. The blood also carries produced by the cells
back to the lungs, where it diffuses outward.

CO2

CO2

CO2

CO2

CO2
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Diffusion in 
living organisms

The atomic theory of matter postulates that all matter is made
up of tiny entities called atoms, which are typically in
diameter.

Atomic and molecular masses are specified on a scale
where the most common form of carbon is arbitrarily
given the value 12.0000 u (atomic mass units), exactly.

The distinction between solids, liquids, and gases can be
attributed to the strength of the attractive forces between the
atoms or molecules and to their average speed.

Temperature is a measure of how hot or cold something 
is. Thermometers are used to measure temperature on the
Celsius (°C), Fahrenheit (°F), and Kelvin (K) scales. Two stan-
dard points on each scale are the freezing point of water (0°C,
32°F, 273.15 K) and the boiling point of water (100°C, 212°F,
373.15 K). A one-kelvin change in temperature equals a change
of one Celsius degree or Fahrenheit degrees. Kelvins are
related to °C by

When two objects at different temperatures are placed in
contact, they eventually reach the same temperature and are
then said to be in thermal equilibrium.

The change in length, of a solid, when its temperature
changes by an amount is directly proportional to the 
temperature change and to its original length That is,

(13–1a)

where is the coefficient of linear expansion.
The change in volume of most solids, liquids, and gases is

proportional to the temperature change and to the original
volume

(13–2)

The coefficient of volume expansion, is approximately equal
to for uniform solids.

Water is unusual because, unlike most materials whose
volume increases with temperature, its volume in the range from
0°C to 4°C actually decreases as the temperature increases.

The ideal gas law, or equation of state for an ideal gas,
relates the pressure P, volume V, and temperature T (in kelvins)
of n moles of gas by the equation

(13–3)

where for all gases. Real gases obey theR = 8.314 J�mol �K

PV = nRT,

3a
b,

¢V = bV0 ¢T.
V0:

a

¢l = al0 ¢T,

l0 .
¢T,
¢l,

T(K) = T(°C) + 273.15.

9
5

A12CB

10–10 m
ideal gas law quite accurately if they are not at too high a pres-
sure or near their liquefaction point.

One mole is that amount of a substance whose mass in
grams is numerically equal to the atomic or molecular mass of
that substance.

Avogadro’s number, is the number of
atoms or molecules in 1 mol of any pure substance.

The ideal gas law can be written in terms of the number of
molecules N in the gas as

(13–4)

where is Boltzmann’s constant.
According to the kinetic theory of gases, which is based on

the idea that a gas is made up of molecules that are moving
rapidly and randomly, the average translational kinetic energy
of molecules is proportional to the Kelvin temperature T:

(13–8)

where k is Boltzmann’s constant. At any moment, there exists
a wide distribution of molecular speeds within a gas.

The behavior of real gases at high pressure, and/or when
near their liquefaction point, deviates from the ideal gas law
due to the attractive forces between molecules. Below the
critical temperature, a gas can change to a liquid if sufficient
pressure is applied; but if the temperature is higher than the
critical temperature, no amount of pressure will cause a liquid
surface to form. The triple point of a substance is that unique
temperature and pressure at which all three phases—solid,
liquid, and gas—can coexist in equilibrium.

Evaporation of a liquid is the result of the fastest moving
molecules escaping from the surface. Saturated vapor pressure
refers to the pressure of the vapor above a liquid when the two
phases are in equilibrium. The vapor pressure of a substance
(such as water) depends strongly on temperature, and at the
boiling point is equal to atmospheric pressure. Relative humidity
of air is the ratio of the actual partial pressure of water vapor in
the air to the saturated vapor pressure at that temperature; it is
usually expressed as a percentage.

[*Diffusion is the process whereby molecules of a sub-
stance move (on average) from one area to another because of
a difference in that substance’s concentration.]

G = 1
2 mO = 3

2 kT,

k = R�NA = 1.38 * 10–23 J�K

PV = NkT,

NA = 6.02 * 1023,

Summary
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1. Which has more atoms: 1 kg of lead or 1 kg of copper?
(See the Periodic Table or Appendix B.) Explain why.

2. Name several properties of materials that could be used 
to make a thermometer.

3. Which is larger, 1 C° or 1 F°? Explain why.
4. In the relation should be the initial length,

the final length, or does it matter?
5. A flat bimetallic strip consists of a strip of aluminum riv-

eted to a strip of iron. When heated, the strip will bend.
Which metal will be on the outside of the curve? Why?
[Hint: See Table 13–1.]

6. Long steam pipes that are fixed at the ends often have a
section in the shape of a Why?

7. Figure 13–29 shows a diagram of a simple bimetallic
thermostat used to control a furnace (or other heating or
cooling system). The electric switch (attached to the bime-
tallic strip) is a glass vessel containing liquid mercury that
conducts electricity when it touches both contact wires.
Explain how this device controls the furnace and how it
can be set at different temperatures.

´.

l0¢l = al0¢T,

13. Will a clock using a pendulum supported on a long thin
brass rod that is accurate at 20°C run fast or slow on a hot
day (30°C)? Explain.

14. Freezing a can of soda will cause its bottom and top to bulge
so badly the can will not stand up. What has happened?

15. Will the buoyant force on an aluminum sphere submerged
in water increase, decrease, or remain the same, if the 
temperature is increased from 20°C to 40°C? Explain.

16. Can you determine the temperature of a vacuum? Explain.
17. Escape velocity from the Earth refers to the minimum speed

an object must have to leave the Earth and never return.
(a) The escape velocity from the Moon is about one-fifth what
it is for the Earth, due to the Moon’s smaller mass. Explain
why the Moon has practically no atmosphere. (b) If hydro-
gen was once in the Earth’s atmosphere, why would it 
have probably escaped?

18. What exactly does it mean when we say that oxygen boils
at

19. A length of thin wire is placed over a block of ice (or an ice
cube) at 0°C. The wire hangs down both sides of the ice,
and weights are hung from the ends of the wire. It is found
that the wire cuts its way through the ice cube, but leaves a
solid block of ice behind it. This process is called regelation.
Explain how this happens by inferring how the freezing
point of water depends on pressure.

20. (a) Why does food cook faster in a pressure cooker?
(b) Why does pasta or rice need to boil longer at high alti-
tudes? (c) Is it harder to boil water at high altitudes?

21. Is it possible to boil water at room temperature (20°C)
without heating it? Explain.

22. Why does exhaled air appear as a little white cloud in the
winter (Fig. 13–30)?

–183°C?

Questions

Liquid mercury

Temperature
setting lever

Bimetallic strip

Liquid mercury
switch

Wires to
heater

FIGURE 13–30

Question 22.

FIGURE 13–29

A thermostat
(Question 7).

8. A glass container may break if one part of it is heated or
cooled more rapidly than adjacent parts. Explain.

9. Explain why it is advisable to add water to an overheated
automobile engine only slowly, and only with the engine
running.

10. The units for the coefficient of linear expansion are
and there is no mention of a length unit such as

meters. Would the expansion coefficient change if we used
feet or millimeters instead of meters? Explain.

11. When a cold alcohol-in-glass thermometer is first placed 
in a hot tub of water, the alcohol initially descends a bit
and then rises. Explain.

12. The principal virtue of Pyrex glass is that its coefficient of
linear expansion is much smaller than that for ordinary
glass (Table 13–1). Explain why this gives rise to the higher
heat resistance of Pyrex.

(C°)–1,
a

23. Explain why it is dangerous to open the radiator cap of an
overheated automobile engine.

1. Rod A has twice the diameter of rod B, but both are made
of iron and have the same initial length. Both rods are now
subjected to the same change in temperature (but remain
solid). How would the change in the rods’ lengths compare?
(a) Rod B.
(b) Rod A.
(c) Rod B.
(d) Need to know whether the rods were cooled or heated.

A = rod
B 7 rod
A 7 rod

MisConceptual Questions
2. The linear expansion of a material depends on which of

the following?
(a) The length of the material.
(b) The change in temperature of the material.
(c) The type of material.
(d) All of the above.
(e) Both (b) and (c).
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8. An ideal gas is in a sealed rigid container. The average
kinetic energy of the gas molecules depends most on
(a) the size of the container.
(b) the number of molecules in the container.
(c) the temperature of the gas.
(d) the mass of the molecules.

9. Two ideal gases, A and B, are at the same temperature. If the
molecular mass of the molecules in gas A is twice that of the
molecules in gas B, the molecules’ root-mean-square speed is
(a) the same in both gases. (d) twice as great in B.
(b) twice as great in A. (e) 1.4 times greater in B.
(c) 1.4 times greater in A.

10. In a mixture of the gases oxygen and helium, which state-
ment is valid?
(a) The helium atoms will be moving faster than the

oxygen molecules, on average.
(b) Both will be moving at the same speed.
(c) The oxygen molecules will, on average, be moving

more rapidly than the helium atoms.
(d) The kinetic energy of helium atoms will exceed that of

oxygen molecules.
(e) None of the above.

11. Which of the following is not true about an ideal gas?
(a) The average kinetic energy of the gas molecules

increases as the temperature increases.
(b) The volume of an ideal gas increases with temperature

if the pressure is held constant.
(c) The pressure of an ideal gas increases with temperature

if the volume is held constant.
(d) All gas molecules have the same speed at a particular

temperature.
(e) The molecules are assumed to be far apart compared to

their size.
12. When using the ideal gas law, which of the following rules

must be obeyed?
(a) Always use temperature in kelvins and absolute pressure.
(b) Always use volume in and temperature in kelvins.
(c) Always use gauge pressure and temperature in

degrees Celsius.
(d) Always use gauge pressure and temperature in kelvins.
(e) Always use volume in and gauge pressure.m3

m3

3. A steel plate has a hole in it with a diameter of exactly
1.0 cm when the plate is at a temperature of 20°C. A steel
ring has an inner diameter of exactly 1.0 cm at 20°C. Both
the plate and the ring are heated to 100°C. Which state-
ment is true?
(a) The hole in the plate gets smaller, and the opening in

the ring gets larger.
(b) The opening in the ring gets larger, but we need the

relative size of the plate and the hole to know what
happens to the hole.

(c) The hole in the plate and the opening in the ring get
larger.

(d) The hole in the plate and the opening in the ring get
smaller.

(e) The hole in the plate gets larger, and the opening in
the ring gets smaller.

4. One mole of an ideal gas in a sealed rigid container is ini-
tially at a temperature of 100°C. The temperature is then
increased to 200°C. The pressure in the gas
(a) remains constant.
(b) increases by about 25%.
(c) doubles.
(d) triples.

5. When an ideal gas is warmed from 20°C to 40°C, the gas’s
temperature T that appears in the ideal gas law increases
by a factor
(a) of 2.
(b) of 1.07.
(c) that depends on the temperature scale you use.

6. Two identical bottles at the same temperature contain the
same gas. If bottle B has twice the volume and contains
half the number of moles of gas as bottle A, how does 
the pressure in B compare with the pressure in A?
(a)
(b)
(c)
(d)
(e)

7. The temperature of an ideal gas increases. Which of the
following is true?
(a) The pressure must decrease.
(b) The pressure must increase.
(c) The pressure must increase while the volume

decreases.
(d) The volume must increase while the pressure decreases.
(e) The pressure, the volume, or both, may increase.

PB = PA .
PB = 4PA .
PB = 1

4 PA .
PB = 2PA .
PB = 1

2 PA .

13–1 Atomic Theory

1. (I) How does the number of atoms in a 27.5-gram gold ring
compare to the number in a silver ring of the same mass?

2. (I) How many atoms are there in a 3.4-g copper coin?

13–2 Temperature and Thermometers

3. (I) (a) “Room temperature” is often taken to be 68°F. What
is this on the Celsius scale? (b) The temperature of the fil-
ament in a lightbulb is about 1900°C. What is this on the
Fahrenheit scale?

4. (I) Among the highest and lowest natural air temperatures
claimed are 136°F in the Libyan desert and in
Antarctica. What are these temperatures on the Celsius
scale?

5. (I) A thermometer tells you that you have a fever of
38.9°C. What is this in Fahrenheit?

6. (I) (a) 18° below zero on the Celsius scale is what Fahrenheit
temperature? (b) 18° below zero on the Fahrenheit scale is
what Celsius temperature?

–129°F

Problems

13. The rms speed of the molecules of an ideal gas
(a) is the same as the most probable speed of the molecules.
(b) is always equal to times the maximum molecular speed.
(c) will increase as the temperature of a gas increases.
(d) All of the above.

12

For assigned homework and other learning materials, go to the MasteringPhysics website.
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7. (II) Determine the temperature at which the Celsius and
Fahrenheit scales give the same numerical reading

8. (II) In an alcohol-in-glass thermometer, the alcohol col-
umn has length 12.61 cm at 0.0°C and length 22.79 cm at
100.0°C. What is the temperature if the column has length
(a) 18.70 cm, and (b) 14.60 cm?

13–4 Thermal Expansion

9. (I) The Eiffel Tower (Fig. 13–31) is built of wrought iron
approximately 300 m tall.
Estimate how much its
height changes between
January (average temper-
ature of 2°C) and July
(average temperature of
25°C). Ignore the angles
of the iron beams and
treat the tower as a verti-
cal beam.

ATC = TFB.
18. (II) A certain car has 14.0 L of liquid coolant circulating at a

temperature of 93°C through the engine’s cooling system.
Assume that, in this normal condition, the coolant com-
pletely fills the 3.5-L volume of the aluminum radiator and
the 10.5-L internal cavities within the aluminum engine. When
a car overheats, the radiator, engine, and coolant expand
and a small reservoir connected to the radiator catches any
resultant coolant overflow. Estimate how much coolant
overflows to the reservoir if the system goes from 93°C 
to 105°C. Model the radiator and engine as hollow shells
of aluminum. The coefficient of volume expansion for
coolant is

*19. (II) An aluminum bar has the desired length when at 12°C.
How much stress is required to keep it at this length if the
temperature increases to 35°C? [See Table 9–1.]

20. (III) The pendulum in a grandfather clock is made of brass
and keeps perfect time at 17°C. How much time is gained or
lost in a year if the clock is kept at 29°C? (Assume the fre-
quency dependence on length for a simple pendulum applies.)
[Hint: See Chapter 8.]

13–5 Gas Laws; Absolute Temperature

21. (I) Absolute zero is what temperature on the Fahrenheit
scale?

22. (II) Typical temperatures in the interior of the Earth and
Sun are about 4000°C and respectively.
(a) What are these temperatures in kelvins? (b) What 
percent error is made in each case if a person forgets to
change °C to K?

13–6 and 13–7 Ideal Gas Law

23. (I) If of a gas initially at STP is placed under a
pressure of 3.20 atm, the temperature of the gas rises to
38.0°C. What is the volume?

24. (I) In an internal combustion engine, air at atmospheric
pressure and a temperature of about 20°C is compressed 
in the cylinder by a piston to of its original volume 
(compression ). Estimate the temperature of the
compressed air, assuming the pressure reaches 40 atm.

25. (II) If 16.00 mol of helium gas is at 10.0°C and a gauge 
pressure of 0.350 atm, calculate (a) the volume of the
helium gas under these conditions, and (b) the temperature
if the gas is compressed to precisely half the volume at a
gauge pressure of 1.00 atm.

26. (II) A storage tank contains 21.6 kg of nitrogen at an
absolute pressure of 3.45 atm. What will the pressure be if
the nitrogen is replaced by an equal mass of at the same
temperature?

27. (II) A storage tank at STP contains 28.5 kg of nitrogen 
(a) What is the volume of the tank? (b) What is the pres-
sure if an additional 32.2 kg of nitrogen is added without
changing the temperature?

28. (II) A scuba tank is filled with air to a gauge pressure of
204 atm when the air temperature is 29°C. A diver then jumps
into the ocean and, after a short time on the ocean surface,
checks the tank’s gauge pressure and finds that it is only
191 atm. Assuming the diver has inhaled a negligible amount
of air from the tank, what is the temperature of the ocean
water?

29. (II) What is the pressure inside a 38.0-L container holding
105.0 kg of argon gas at 21.6°C?

AN2B.
CO2

AN2B

ratio = 9.0

1
9

3.50 m3

15 * 106 °C,

b = 410 * 10–6�C°.

10. (I) A concrete highway is built of slabs 12 m long (15°C).
How wide should the expansion cracks between the slabs be
(at 15°C) to prevent buckling if the range of temperature 
is to

11. (I) Super Invar™, an alloy of iron and nickel, is a strong
material with a very low coefficient of thermal expansion

A 1.8-m-long tabletop made of this alloy
is used for sensitive laser measurements where extremely
high tolerances are required. How much will this alloy table
expand along its length if the temperature increases 6.0 C°?
Compare to tabletops made of steel.

12. (II) To what temperature would you have to heat a brass
rod for it to be 1.5% longer than it is at 25°C?

13. (II) To make a secure fit, rivets that are larger than the
rivet hole are often used and the rivet is cooled (usually 
in dry ice) before it is placed in the hole. A steel rivet
1.872 cm in diameter is to be placed in a hole 1.870 cm in
diameter in a metal at 22°C. To what temperature must the
rivet be cooled if it is to fit in the hole?

14. (II) An ordinary glass is filled to the brim with 450.0 mL of
water at 100.0°C. If the temperature of glass and water is
decreased to 20.0°C, how much water could be added to
the glass?

15. (II) An aluminum sphere is 8.75 cm in diameter. What will
be its % change in volume if it is heated from 30°C to 160°C?

16. (II) It is observed that 55.50 mL of water at 20°C completely
fills a container to the brim. When the container and the
water are heated to 60°C, 0.35 g of water is lost. (a) What 
is the coefficient of volume expansion of the container?
(b) What is the most likely material of the container?
Density of water at 60°C is 

17. (II) A brass plug is to be placed in a ring made of iron. At
15°C, the diameter of the plug is 8.755 cm and that of the
inside of the ring is 8.741 cm. They must both be brought
to what common temperature in order to fit?

0.98324 g�mL.

A0.20 * 10–6�C°B.

±50°C?–30°C

FIGURE 13–31 Problem 9.
The Eiffel Tower in Paris.
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30. (II) A sealed metal container contains a gas at 20.0°C and
1.00 atm. To what temperature must the gas be heated for
the pressure to double to 2.00 atm? (Ignore expansion of the
container.)

31. (II) A tire is filled with air at 15°C to a gauge pressure of
230 kPa. If the tire reaches a temperature of 38°C, what
fraction of the original air must be removed if the original
pressure of 230 kPa is to be maintained?

32. (II) If 61.5 L of oxygen at 18.0°C and an absolute pressure
of 2.45 atm are compressed to 38.8 L and at the same time
the temperature is raised to 56.0°C, what will the new pres-
sure be?

33. (II) You buy an “airtight” bag of potato chips packaged at
sea level, and take the chips on an airplane flight. When
you take the potato chips out of your “carry-on”bag, you notice
it has noticeably “puffed up.” Airplane cabins are typically
pressurized at 0.75 atm, and assuming the temperature
inside an airplane is about the same as inside a potato chip
processing plant, by what percentage has the bag “puffed
up” in comparison to when it was packaged?

34. (II) A helium-filled balloon escapes a child’s hand at sea
level and 20.0°C. When it reaches an altitude of 3600 m,
where the temperature is 5.0°C and the pressure only
0.68 atm, how will its volume compare to that at sea level?

35. (II) Compare the value for the density of water vapor at
exactly 100°C and 1 atm (Table 10–1) with the value predicted
from the ideal gas law. Why would you expect a difference?

36. (III) A sealed test tube traps of air at a pressure of
1.00 atm and temperature of 18°C. The test tube’s stopper
has a diameter of 1.50 cm and will “pop off” the test tube 
if a net upward force of 10.0 N is applied to it. To what
temperature would you have to heat the trapped air in order
to “pop off” the stopper? Assume the air surrounding the
test tube is always at a pressure of 1.00 atm.

37. (III) An air bubble at the bottom of a lake 41.0 m deep has
a volume of If the temperature at the bottom is
5.5°C and at the top 18.5°C, what is the radius of the bubble
just before it reaches the surface?

13–8 Ideal Gas Law in Terms of Molecules;
Avogadro’s Number

38. (I) Calculate the number of in an ideal gas
at STP.

39. (I) How many moles of water are there in 1.000 L at STP?
How many molecules?

40. (II) Estimate the number of (a) moles and (b) molecules
of water in all the Earth’s oceans. Assume water covers
75% of the Earth to an average depth of 3 km.

41. (II) The lowest pressure attainable using the best available
vacuum techniques is about At such a pressure,
how many molecules are there per at 0°C?

42. (II) Is a gas mostly empty space? Check by assuming that
the spatial extent of the gas molecules in air is about

so one gas molecule occupies an approximate
volume equal to Assume STP.

13–9 Molecular Interpretation of Temperature

43. (I) (a) What is the average translational kinetic energy of a
nitrogen molecule at STP? (b) What is the total transla-
tional kinetic energy of 1.0 mol of molecules at 25°C?

44. (I) Calculate the rms speed of helium atoms near the 
surface of the Sun at a temperature of about 6000 K.

N2

l
3
0 .

l0 = 0.3 nm

cm3
10–12 N�m2.

molecules�m3

1.00 cm3.

25.0 cm3

45. (I) By what factor will the rms speed of gas molecules
increase if the temperature is increased from 20°C to 160°C?

46. (I) A gas is at 20°C. To what temperature must it be raised
to triple the rms speed of its molecules?

47. (I) What speed would a 1.0-g paper clip have if it had the
same kinetic energy as a molecule at 22°C?

48. (II) The rms speed of molecules in a gas at 20.0°C is to be
increased by 4.0%. To what temperature must it be raised?

49. (II) If the pressure in a gas is tripled while its volume is
held constant, by what factor does change?

50. (II) Show that the rms speed of molecules in a gas is given
by where P is the pressure in the gas and

is the gas density.

51. (II) Show that for a mixture of two gases at the same tem-
perature, the ratio of their rms speeds is equal to the inverse
ratio of the square roots of their molecular masses,

52. (II) What is the rms speed of nitrogen molecules contained
in an volume at 2.9 atm if the total amount of 
nitrogen is 2100 mol?

53. (II) Two isotopes of uranium, and (the superscripts
refer to their atomic masses), can be separated by a gas
diffusion process by combining them with fluorine to make
the gaseous compound Calculate the ratio of the rms
speeds of these molecules for the two isotopes, at constant T.
Use Appendix B for masses.

54. (III) Calculate (a) the rms speed of an oxygen molecule at
0°C and (b) determine how many times per second it would
move back and forth across a 5.0-m-long room on average,
assuming it made no collisions with other molecules.

13–11 Real Gases; Phase Changes

55. (I) exists in what phase when the pressure is 35 atm
and the temperature is 35°C (Fig. 13–23)?

56. (I) (a) At atmospheric pressure, in what phases can 
exist? (b) For what range of pressures and temperatures can

be a liquid? Refer to Fig. 13–23.

57. (I) Water is in which phase when the pressure is 0.01 atm
and the temperature is (a) 90°C, (b)

58. (II) You have a sample of water and are able to control
temperature and pressure arbitrarily. (a) Using Fig. 13–22,
describe the phase changes you would see if you started at a
temperature of 85°C, a pressure of 180 atm, and decreased
the pressure down to 0.004 atm while keeping the temper-
ature fixed. (b) Repeat part (a) with the temperature at
0.0°C. Assume that you held the system at the starting 
conditions long enough for the system to stabilize before
making further changes.

13–12 Vapor Pressure and Humidity

59. (I) What is the partial pressure of water vapor at 30°C if
the humidity is 75%?

60. (I) What is the air pressure at a place where water boils at
80°C?

61. (II) What is the dew point if the humidity is 65% on a day
when the temperature is 25°C?

62. (II) If the air pressure at a particular place in the mountains
is 0.80 atm, estimate the temperature at which water boils.

–20°C?

CO2

CO2

CO2

UF6 .

238U235U

8.5-m3

v1�v2 = 1M2�M1 .

r

vrms = 13P�r ,

vrms
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63. (II) What is the mass of water in a closed room
when the temperature is 25°C and

the relative humidity is 55%?

64. (II) A pressure cooker is a sealed pot designed to cook food
with the steam produced by boiling water somewhat above
100°C. The pressure cooker in Fig. 13–32 uses a weight of
mass m to allow steam to escape at a certain pressure through
a small hole (diameter d) in the cooker’s lid. If
what should m be in
order to cook food at
120°C? Assume that
atmospheric pressure
outside the cooker is

65. (II) If the humidity in a sealed room of volume at
20°C is 65%, what mass of water can still evaporate from
an open pan?

66. (III) Air that is at its dew point of 5°C is drawn into a
building where it is heated to 22°C. What will be the relative
humidity at this temperature? Assume constant pressure
of 1.0 atm. Take into account the expansion of the air.

420 m3

1.01 * 105 Pa.

d = 3.0 mm,

5.0 m * 6.0 m * 2.4 m

 Water

m
Weight

(mass m)

 Water

Steam

m

Diameter d

FIGURE 13–32

Problem 64.

67. (III) When using a mercury barometer (Section 10–6), the
vapor pressure of mercury is usually assumed to be zero.
At room temperature mercury’s vapor pressure is about
0.0015 mm-Hg. At sea level, the height h of mercury in a
barometer is about 760 mm. (a) If the vapor pressure of
mercury is neglected, is the true atmospheric pressure
greater or less than the value read from the barometer?
(b) What is the percent error? (c) What is the percent error
if you use a water barometer and ignore water’s saturated
vapor pressure at STP?

*13–13 Diffusion

*68. (II) Estimate the time needed for a glycine molecule (see
Table 13–4) to diffuse a distance of in water at 20°C if
its concentration varies over that distance from 
to Compare this “speed” to its rms (thermal)
speed. The molecular mass of glycine is about 75 u.

*69. (II) Oxygen diffuses from the surface of insects to the 
interior through tiny tubes called tracheae. An average
trachea is about 2 mm long and has cross-sectional area of

Assuming the concentration of oxygen inside
is half what it is outside in the atmosphere, (a) show that
the concentration of oxygen in the air (assume 21% is
oxygen) at 20°C is about then (b) calculate the
diffusion rate J, and (c) estimate the average time for a
molecule to diffuse in. Assume the diffusion constant is
1 * 10–5 m2�s.

8.7 mol�m3,

2 * 10–9 m2.

0.50 mol�m3?
1.00 mol�m3

25 mm

70. A Pyrex measuring cup was calibrated at normal room tem-
perature. How much error will be made in a recipe calling
for 375 mL of cool water, if the water and the cup are hot,
at 95°C, instead of at room temperature? Neglect the glass
expansion.

71. A precise steel tape measure has been calibrated at 14°C.
At 37°C, (a) will it read high or low, and (b) what will be
the percentage error?

72. A cubic box of volume is filled with air at
atmospheric pressure at 15°C. The box is closed and heated
to 165°C. What is the net force on each side of the box?

73. The gauge pressure in a helium gas cylinder is initially
32 atm. After many balloons have been blown up, the gauge
pressure has decreased to 5 atm. What fraction of the orig-
inal gas remains in the cylinder?

74. If a scuba diver fills his lungs to full capacity of 5.5 L when
9.0 m below the surface, to what volume would his lungs
expand if he quickly rose to the surface? Is this advisable?

75. A house has a volume of (a) What is the total mass
of air inside the house at 15°C? (b) If the temperature drops
to what mass of air enters or leaves the house?

76. Estimate the number of air molecules in a room of length
6.0 m, width 3.0 m, and height 2.5 m. Assume the tempera-
ture is 22°C. How many moles does that correspond to?

77. An iron cube floats in a bowl of liquid mercury at 0°C.
(a) If the temperature is raised to 25°C, will the cube float
higher or lower in the mercury? (b) By what percent will
the fraction of volume submerged change? [Hint: See
Chapter 10.]

–15°C,

1200 m3.

6.15 * 10–2 m3

78. A helium balloon, assumed to be a perfect sphere, has a
radius of 24.0 cm. At room temperature (20°C), its internal
pressure is 1.08 atm. Determine the number of moles of
helium in the balloon, and the mass of helium needed to
inflate the balloon to these values.

79. A standard cylinder of oxygen used in a hospital has 
gauge (13,800 kPa) and 14 L

at How long will the cylinder last if
the flow rate, measured at atmospheric pressure, is constant
at

80. A brass lid screws tightly onto a glass jar at 15°C. To help
open the jar, it can be placed into a bath of hot water.
After this treatment, the temperatures of the lid and the
jar are both 55°C. The inside diameter of the lid is 8.0 cm.
Find the size of the gap (difference in radius) that develops
by this procedure.

81. The density of gasoline at 0°C is (a) What
is the density on a hot day, when the temperature is 33°C?
(b) What is the percent change in density?

82. The first real length standard, adopted more than 200 years
ago, was a platinum bar with two very fine marks separated
by what was defined to be exactly one meter. If this standard
bar was to be accurate to within how carefully
would the trustees have needed to control the temperature?
The coefficient of linear expansion is 

83. If a steel band were to fit snugly around the Earth’s equator
at 25°C, but then was heated to 55°C, how high above the
Earth would the band be (assume equal everywhere)?

9 * 10–6�C°.

&1.0 mm,

0.68 * 103 kg�m3.

2.1 L�min?

T = 295 K.A0.014 m3B
volume =pressure = 2000 psi

General Problems
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84. In outer space the density of matter is about one atom per
mainly hydrogen atoms, and the temperature is about

2.7 K. Calculate the rms speed of these hydrogen atoms,
and the pressure (in atmospheres).

85. (a) Estimate the rms speed of an amino acid, whose molecular
mass is 89 u, in a living cell at 37°C. (b) What would be the
rms speed of a protein of molecular mass 85,000 u at 37°C?

86. The escape speed from the Earth is so that
a gas molecule traveling away from Earth near the outer
boundary of the Earth’s atmosphere would, at this speed,
be able to escape from the Earth’s gravitational field and be
lost to the atmosphere. At what temperature is the rms
speed of (a) oxygen molecules, and (b) helium atoms 
equal to (c) Can you explain why our
atmosphere contains oxygen but not helium?

87. Consider a container of oxygen gas at a temperature of 23°C
that is 1.00 m tall. Compare the gravitational potential energy
of a molecule at the top of the container (assuming the
potential energy is zero at the bottom) with the average
kinetic energy of the molecules. Is it reasonable to neglect
the potential energy?

1.12 * 104 m�s?

1.12 * 104 m�s,

cm3,
88. A space vehicle returning from the Moon enters the Earth’s

atmosphere at a speed of about Molecules
(assume nitrogen) striking the nose of the vehicle with this
speed correspond to what temperature? (Because of this
high temperature, the nose of a space vehicle must be made
of special materials; indeed, part of it does vaporize, and
this is seen as a bright blaze upon reentry.)

89. A sauna has of air volume, and the temperature is
85°C. The air is perfectly dry. How much water (in kg)
should be evaporated if we want to increase the relative
humidity from 0% to 10%? (See Table 13–3.)

90. A 0.50-kg trash-can lid is suspended against gravity by tennis
balls thrown vertically upward at it. How many tennis balls
per second must rebound from the lid elastically, assuming
they have a mass of 0.060 kg and are thrown at 

91. In humid climates, people constantly dehumidify their cel-
lars to prevent rot and mildew. If the cellar in a house (kept
at 20°C) has of floor space and a ceiling height of
2.4 m, what is the mass of water that must be removed
from it in order to drop the humidity from 95% to a more
reasonable 40%?

105 m2

15 m�s?

8.5 m3

42,000 km�h.

1. This Chapter gives two ways to calculate the thermal expan-
sion of a gas at a constant pressure of 1.0 atm. Use both
methods to calculate the volume change of 1000 L of an
ideal gas as it goes from to 0°C and from 0°C to
100°C. Why are the answers different?

2. A scuba tank when fully charged has a pressure of 180 atm at
18°C. The volume of the tank is 11.3 L. (a) What would the
volume of the air be at 1.00 atm and at the same tempera-
ture? (b) Before entering the water, a person consumes 2.0 L
of air in each breath, and breathes 12 times a minute. At this
rate, how long would the tank last? (c) At a depth of 23.0 m
in sea water at a temperature of 10°C, how long would the
same tank last assuming the breathing rate does not change?

3. A 28.4-kg solid aluminum cylindrical wheel of radius 
0.41 m is rotating about its axle in frictionless bearings with
angular velocity If its temperature is then
raised from 15.0°C to 95.0°C, what is the fractional change
in

4. A hot-air balloon achieves its buoyant lift by heating 
the air inside the balloon, which makes it less dense than 
the air outside. Suppose the volume of a balloon is 
and the required lift is 3300 N (rough estimate of the weight
of the equipment and passenger). Calculate the tempera-
ture of the air inside the balloon which will produce the
required lift. Assume the outside air is an ideal gas at 0°C.
What factors limit the maximum altitude attainable by this
method for a given load? [Hint: See Chapter 10.]

1800 m3

v?

v = 32.8 rad�s.

–100°C

5. Estimate how many molecules of air are in each 2.0-L
breath you inhale that were also in the last breath Galileo
took. Assume the atmosphere is about 10 km high and of
constant density. What other assumptions did you make?

6. (a) The second postulate of kinetic theory is that the molecules
are, on average, far apart from one another. That is, their
average separation is much greater than the diameter of
each molecule. Is this assumption reasonable? To check,
calculate the average distance between molecules of a gas 
at STP, and compare it to the diameter of a typical gas mole-
cule, about 0.3 nm. (b) If the molecules were the diameter of
ping-pong balls, say 4 cm, how far away would the next
ping-pong ball be on average? (c) Repeat part a, but now
assume the gas has been compressed so that the pressure is
now 3 atm but still at 273 K. (d) Estimate what of the
total volume of gas is taken up by molecules themselves in
parts a and c. [Note that the volume of the molecules them-
selves can become a significant part of the total volume at
lower temperatures and higher pressures. Hence the actual
volume the molecules have to bounce around in is less than
the total volume. This contributes to the effect shown in
Fig. 13–21 at high pressures where real gases (solid red lines)
deviate from ideal gas behavior (dashed lines ).]A¿ and B¿

%
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A: (i) Higher, (ii) same, (iii) lower.
B: (d).
C: (b).

D: (b) Less.
E: (a).
F: (d).
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