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Early Quantum Theory
and Models of the Atom
CHAPTER-OPENING QUESTION—Guess now!
It has been found experimentally that

(a) light behaves as a wave.
(b) light behaves as a particle.
(c) electrons behave as particles.
(d) electrons behave as waves.
(e) all of the above are true.
(f) only (a) and (b) are true.
(g) only (a) and (c) are true.
(h) none of the above are true.

T he second aspect of the revolution that shook the world of physics in the
early part of the twentieth century was the quantum theory (the other was
Einstein’s theory of relativity). Unlike the special theory of relativity, the

revolution of quantum theory required almost three decades to unfold, and many
scientists contributed to its development. It began in 1900 with Planck’s quantum
hypothesis, and culminated in the mid-1920s with the theory of quantum
mechanics of Schrödinger and Heisenberg which has been so effective in explain-
ing the structure of matter. The discovery of the electron in the 1890s, with which
we begin this Chapter, might be said to mark the beginning of modern physics,
and is a sort of precursor to the quantum theory.
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Electron microscopes (EM) produce images using electrons which have wave properties
just as light does. Because the wavelength of electrons can be much smaller than that of
visible light, much greater resolution and magnification can be obtained. A scanning
electron microscope (SEM) can produce images with a three-dimensional quality.

All EM images are monochromatic (black and white). Artistic coloring has been
added here, as is common. On the left is an SEM image of a blood clot forming 
(yellow-color web) due to a wound. White blood cells are colored green here for
visibility. On the right, red blood cells in a small artery. A red blood cell travels about 
15 km a day inside our bodies and lives roughly 4 months before damage or rupture.
Humans contain 4 to 6 liters of blood, and 2 to red blood cells.3 * 1013



27–1 Discovery and Properties of
the Electron

Toward the end of the nineteenth century, studies were being done on the
discharge of electricity through rarefied gases. One apparatus, diagrammed in
Fig. 27–1, was a glass tube fitted with electrodes and evacuated so only a small
amount of gas remained inside. When a very high voltage was applied to the
electrodes, a dark space seemed to extend outward from the cathode (negative
electrode) toward the opposite end of the tube; and that far end of the tube would
glow. If one or more screens containing a small hole were inserted as shown,
the glow was restricted to a tiny spot on the end of the tube. It seemed as though
something being emitted by the cathode traveled across to the opposite end of the
tube. These “somethings” were named cathode rays.

There was much discussion at the time about what these rays might be. Some
scientists thought they might resemble light. But the observation that the bright
spot at the end of the tube could be deflected to one side by an electric or magnetic
field suggested that cathode rays were charged particles; and the direction of the
deflection was consistent with a negative charge. Furthermore, if the tube con-
tained certain types of rarefied gas, the path of the cathode rays was made visible
by a slight glow.

Estimates of the charge e of the cathode-ray particles, as well as of their
charge-to-mass ratio had been made by 1897. But in that year, J. J. Thomson
(1856–1940) was able to measure directly, using the apparatus shown in 
Fig. 27–2. Cathode rays are accelerated by a high voltage and then pass between
a pair of parallel plates built into the tube. Another voltage applied to the
parallel plates produces an electric field and a pair of coils produces a
magnetic field If the cathode rays follow path b in Fig. 27–2.E = B = 0,B
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FIGURE 27–1 Discharge tube. In
some models, one of the screens is
the anode (positive plate).
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FIGURE 27–2 Cathode rays
deflected by electric and magnetic
fields. (See also Section 17–11 on
the CRT.)
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When only the electric field is present, say with the upper plate positive, the
cathode rays are deflected upward as in path a in Fig. 27–2. If only a magnetic
field exists, say inward, the rays are deflected downward along path c. These
observations are just what is expected for a negatively charged particle. The force
on the rays due to the magnetic field is where e is the charge and v is
the velocity of the cathode rays (Eq. 20–4). In the absence of an electric field, the
rays are bent into a curved path, and applying Newton’s second law 
with acceleration gives

and thus

The radius of curvature r can be measured and so can B. The velocity v can be
found by applying an electric field in addition to the magnetic field. The electric

e
m

=
v

Br
.

evB = m
v2

r
,

a = centripetal
F = ma

F = evB,



field E is adjusted so that the cathode rays are undeflected and follow path b in
Fig. 27–2. In this situation the upward force due to the electric field, is
balanced by the downward force due to the magnetic field, We equate
the two forces, and find

Combining this with the above equation we have

(27;1)

The quantities on the right side can all be measured, and although e and m could
not be determined separately, the ratio could be determined. The accepted
value today is Cathode rays soon came to be called
electrons.

Discovery in Science
The “discovery” of the electron, like many others in science, is not quite so
obvious as discovering gold or oil. Should the discovery of the electron be credited
to the person who first saw a glow in the tube? Or to the person who first called
them cathode rays? Perhaps neither one, for they had no conception of the electron
as we know it today. In fact, the credit for the discovery is generally given to
Thomson, but not because he was the first to see the glow in the tube. Rather it 
is because he believed that this phenomenon was due to tiny negatively charged
particles and made careful measurements on them. Furthermore he argued that
these particles were constituents of atoms, and not ions or atoms themselves as
many thought, and he developed an electron theory of matter. His view is close to
what we accept today, and this is why Thomson is credited with the “discovery.”
Note, however, that neither he nor anyone else ever actually saw an electron itself.
We discuss this briefly, for it illustrates the fact that discovery in science is not
always a clear-cut matter. In fact some philosophers of science think the word
“discovery” is often not appropriate, such as in this case.

Electron Charge Measurement
Thomson believed that an electron was not an atom, but rather a constituent,
or part, of an atom. Convincing evidence for this came soon with the determin-
ation of the charge and the mass of the cathode rays. Thomson’s student 
J. S. Townsend made the first direct (but rough) measurements of e in 1897. But
it was the more refined oil-drop experiment of Robert A. Millikan (1868–1953)
that yielded a precise value for the charge on the electron and showed that charge
comes in discrete amounts. In this experiment, tiny droplets of mineral oil carrying
an electric charge were allowed to fall under gravity between two parallel plates,
Fig. 27–3. The electric field E between the plates was adjusted until the drop was
suspended in midair. The downward pull of gravity, mg, was then just balanced by
the upward force due to the electric field. Thus so the charge 
The mass of the droplet was determined by measuring its terminal velocity in the
absence of the electric field. Often the droplet was charged negatively, but some-
times it was positive, suggesting that the droplet had acquired or lost electrons (by
friction, leaving the atomizer). Millikan’s painstaking observations and analysis pre-
sented convincing evidence that any charge was an integral multiple of a smallest
charge, e, that was ascribed to the electron, and that the value of e was
This value of e, combined with the measurement of gives the mass of the
electron to be This mass is
less than a thousandth the mass of the smallest atom, and thus confirmed the idea
that the electron is only a part of an atom. The accepted value today for the mass
of the electron is 

The experimental result that any charge is an integral multiple of e means that
electric charge is quantized (exists only in discrete amounts).

me = 9.11 * 10–31 kg.

9.1 * 10–31 kg.A1.6 * 10–19 CB�A1.76 * 1011 C�kgB = e�m,
1.6 * 10–19 C.

q = mg�E.qE = mg

e�m = 1.76 * 1011 C�kg.
e�m

e
m

=
E

B2r
.

v =
E

B
.

eE = evB,
F = evB.

F = eE,
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FIGURE 27–3 Millikan’s oil-drop
experiment.
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27–2 Blackbody Radiation;
Planck’s Quantum Hypothesis

Blackbody Radiation
One of the observations that was unexplained at the end of the nineteenth cen-
tury was the spectrum of light emitted by hot objects. We saw in Section 14–8
that all objects emit radiation whose total intensity is proportional to the fourth
power of the Kelvin (absolute) temperature At normal temperatures

we are not aware of this electromagnetic radiation because of its low
intensity. At higher temperatures, there is sufficient infrared radiation that we
can feel heat if we are close to the object. At still higher temperatures (on the
order of 1000 K), objects actually glow, such as a red-hot electric stove burner or
the heating element in a toaster. At temperatures above 2000 K, objects glow with
a yellow or whitish color, such as white-hot iron and the filament of a lightbulb.
The light emitted contains a continuous range of wavelengths or frequencies, and
the spectrum is a plot of intensity vs. wavelength or frequency. As the temperature
increases, the electromagnetic radiation emitted by objects not only increases in
total intensity but has its peak intensity at higher and higher frequencies.

The spectrum of light emitted by a hot dense object is shown in Fig. 27–4 for
an idealized blackbody. A blackbody is a body that, when cool, would absorb all
the radiation falling on it (and so would appear black under reflection when
illuminated by other sources). The radiation such an idealized blackbody would
emit when hot and luminous, called blackbody radiation (though not necessarily
black in color), approximates that from many real objects. The 6000-K curve in
Fig. 27–4, corresponding to the temperature of the surface of the Sun, peaks in
the visible part of the spectrum. For lower temperatures, the total intensity drops
considerably and the peak occurs at longer wavelengths (or lower frequencies).
This is why objects glow with a red color at around 1000 K. It is found experimen-
tally that the wavelength at the peak of the spectrum, is related to the Kelvin
temperature T by

(27;2)

This is known as Wien’s law.

The Sun’s surface temperature. Estimate the tempera-
ture of the surface of our Sun, given that the Sun emits light whose peak intensity
occurs in the visible spectrum at around 500 nm.

APPROACH We assume the Sun acts as a blackbody, and use in
Wien’s law (Eq. 27–2).

SOLUTION Wien’s law gives

Star color. Suppose a star has a surface temperature of
32,500 K. What color would this star appear?

APPROACH We assume the star emits radiation as a blackbody, and solve for
in Wien’s law, Eq. 27–2.

SOLUTION From Wien’s law we have

The peak is in the UV range of the spectrum, and will be way to the left in
Fig. 27–4. In the visible region, the curve will be descending, so the shortest visible
wavelengths will be strongest. Hence the star will appear bluish (or blue-white).

NOTE This example helps us to understand why stars have different colors
(reddish for the coolest stars; orangish, yellow, white, bluish for “hotter” stars.)

EXERCISE A What is the color of an object at 4000 K?

lP =
2.90 * 10–3 m�K

T
=

2.90 * 10–3 m�K

3.25 * 104 K
= 89.2 nm.

lP

EXAMPLE 27;2

T =
2.90 * 10–3 m�K

lP
=

2.90 * 10–3 m�K

500 * 10–9 m
L 6000 K.

lP = 500 nm

EXAMPLE 27;1

lP T = 2.90 * 10–3 m�K.

lP ,

(L  300 K),
AT4B.
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FIGURE 27–4 Measured spectra of
wavelengths and frequencies
emitted by a blackbody at three
different temperatures.
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Planck’s Quantum Hypothesis
In the year 1900, Max Planck (1858–1947) proposed a theory that was able to
reproduce the graphs of Fig. 27–4. His theory, still accepted today, made a new and
radical assumption: that the energy of the oscillations of atoms within molecules
cannot have just any value; instead each has energy which is a multiple of a mini-
mum value related to the frequency of oscillation by

Here h is a new constant, now called Planck’s constant, whose value was
estimated by Planck by fitting his formula for the blackbody radiation curve to
experiment. The value accepted today is

Planck’s assumption suggests that the energy of any molecular vibration could be
only a whole number multiple of hf :

(27;3)

where n is called a quantum number (“quantum” means “discrete amount” as
opposed to “continuous”). This idea is often called Planck’s quantum hypothesis,
although little attention was brought to this point at the time. In fact, it appears
that Planck considered it more as a mathematical device to get the “right answer”
rather than as an important discovery. Planck himself continued to seek a classical
explanation for the introduction of h. The recognition that this was an important
and radical innovation did not come until later, after about 1905 when others,
particularly Einstein, entered the field.

The quantum hypothesis, Eq. 27–3, states that the energy of an oscillator 
can be or 2hf, or 3hf, and so on, but there cannot be vibrations with 
energies between these values. That is, energy would not be a continuous quan-
tity as had been believed for centuries; rather it is quantized—it exists only 
in discrete amounts. The smallest amount of energy possible (hf) is called the
quantum of energy. Recall from Chapter 11 that the energy of an oscillation is
proportional to the amplitude squared. Another way of expressing the quantum
hypothesis is that not just any amplitude of vibration is possible. The possible
values for the amplitude are related to the frequency f .

A simple analogy may help. Compare a ramp, on which a box can be placed
at any height, to a flight of stairs on which the box can have only certain discrete
amounts of potential energy, as shown in Fig. 27–5.

27–3 Photon Theory of Light and
the Photoelectric Effect

In 1905, the same year that he introduced the special theory of relativity, Einstein
made a bold extension of the quantum idea by proposing a new theory of light.
Planck’s work had suggested that the vibrational energy of molecules in a radiat-
ing object is quantized with energy where n is an integer and f is the
frequency of molecular vibration. Einstein argued that when light is emitted by a
molecular oscillator, the molecule’s vibrational energy of nhf must decrease by an
amount hf (or by 2hf, etc.) to another integer times hf, such as Then
to conserve energy, the light ought to be emitted in packets, or quanta, each with
an energy

(27;4)

where f is here the frequency of the emitted light. Again h is Planck’s constant.
Because all light ultimately comes from a radiating source, this idea suggests that
light is transmitted as tiny particles, or photons as they are now called, as well as via
the waves predicted by Maxwell’s electromagnetic theory. The photon theory of
light was also a radical departure from classical ideas. Einstein proposed a test of the
quantum theory of light: quantitative measurements on the photoelectric effect.

E = hf,

(n - 1)hf.

E = nhf,

E = hf,

E = nhf,   n = 1, 2, 3, p ,

h = 6.626 * 10–34 J�s.

E = hf.
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Photon energy

FIGURE 27–5 Ramp versus stair
analogy. (a) On a ramp, a box can have
continuous values of potential energy.
(b) But on stairs, the box can have
only discrete (quantized) values of
energy.
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When light shines on a metal surface, electrons are found to be emitted from
the surface. This effect is called the photoelectric effect and it occurs in many
materials, but is most easily observed with metals. It can be observed using the
apparatus shown in Fig. 27–6. A metal plate P and a smaller electrode C are
placed inside an evacuated glass tube, called a photocell. The two electrodes are
connected to an ammeter and a source of emf, as shown. When the photocell is in
the dark, the ammeter reads zero. But when light of sufficiently high frequency
illuminates the plate, the ammeter indicates a current flowing in the circuit. We
explain completion of the circuit by imagining that electrons, ejected from the
plate by the impinging light, flow across the tube from the plate to the “collector” C
as indicated in Fig. 27–6.

That electrons should be emitted when light shines on a metal is consistent
with the electromagnetic (EM) wave theory of light: the electric field of an 
EM wave could exert a force on electrons in the metal and eject some of them.
Einstein pointed out, however, that the wave theory and the photon theory of
light give very different predictions on the details of the photoelectric effect. For
example, one thing that can be measured with the apparatus of Fig. 27–6 is the
maximum kinetic energy of the emitted electrons. This can be done by
using a variable voltage source and reversing the terminals so that electrode C is
negative and P is positive. The electrons emitted from P will be repelled by the
negative electrode, but if this reverse voltage is small enough, the fastest electrons
will still reach C and there will be a current in the circuit. If the reversed voltage
is increased, a point is reached where the current reaches zero—no electrons
have sufficient kinetic energy to reach C. This is called the stopping potential, or
stopping voltage, and from its measurement, can be determined using
conservation of energy (loss of in potential energy):

Now let us examine the details of the photoelectric effect from the point of
view of the wave theory versus Einstein’s particle theory.

First the wave theory, assuming monochromatic light. The two important
properties of a light wave are its intensity and its frequency (or wavelength). When
these two quantities are varied, the wave theory makes the following predictions:

1. If the light intensity is increased, the number of electrons ejected and their
maximum kinetic energy should be increased because the higher intensity
means a greater electric field amplitude, and the greater electric field should
eject electrons with higher speed.

2. The frequency of the light should not affect the kinetic energy of the ejected
electrons. Only the intensity should affect 

The photon theory makes completely different predictions. First we note that
in a monochromatic beam, all photons have the same energy Increasing
the intensity of the light beam means increasing the number of photons in the
beam, but does not affect the energy of each photon as long as the frequency is
not changed. According to Einstein’s theory, an electron is ejected from the metal
by a collision with a single photon. In the process, all the photon energy is trans-
ferred to the electron and the photon ceases to exist. Since electrons are held in
the metal by attractive forces, some minimum energy is required just to get 
an electron out through the surface. is called the work function, and is a few
electron volts for most metals. If the frequency f of the
incoming light is so low that hf is less than then the photons will not have
enough energy to eject any electrons at all. If then electrons will be
ejected and energy will be conserved in the process. That is, the input energy (of
the photon), hf, will equal the outgoing kinetic energy of the electron plus the
energy required to get it out of the metal, W:

(27;5a)

The least tightly held electrons will be emitted with the most kinetic energy AkemaxB,
hf = ke + W.

ke

hf 7 W0 ,
W0 ,

A1 eV = 1.6 * 10–19 JBW0

W0

(= hf).

kemax .

kemax = eV0 .

kinetic energy = gain
kemaxV0 ,

AkemaxB
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in which case W in this equation becomes the work function and 
becomes

[least bound electrons] (27;5b)

Many electrons will require more energy than the bare minimum to get out
of the metal, and thus the kinetic energy of such electrons will be less than the
maximum.

From these considerations, the photon theory makes the following predictions:

1. An increase in intensity of the light beam means more photons are incident,
so more electrons will be ejected; but since the energy of each photon is not
changed, the maximum kinetic energy of electrons is not changed by an
increase in intensity.

2. If the frequency of the light is increased, the maximum kinetic energy of the
electrons increases linearly, according to Eq. 27–5b. That is,

This relationship is plotted in Fig. 27–7.
3. If the frequency f is less than the “cutoff” frequency where no

electrons will be ejected, no matter how great the intensity of the light.

These predictions of the photon theory are very different from the predictions
of the wave theory. In 1913–1914, careful experiments were carried out by R. A.
Millikan. The results were fully in agreement with Einstein’s photon theory.

One other aspect of the photoelectric effect also confirmed the photon
theory. If extremely low light intensity is used, the wave theory predicts a time
delay before electron emission so that an electron can absorb enough energy to
exceed the work function. The photon theory predicts no such delay—it only
takes one photon (if its frequency is high enough) to eject an electron—and
experiments showed no delay. This too confirmed Einstein’s photon theory.

Photon energy. Calculate the energy of a photon of blue
light, in air (or vacuum).

APPROACH The photon has energy (Eq. 27–4) where 
(Eq. 22–4).

SOLUTION Since we have

or (See definition of eV in
Section 17–4, )

Photons from a lightbulb. Estimate how
many visible light photons a 100-W lightbulb emits per second. Assume the bulb
has a typical efficiency of about 3% (that is, 97% of the energy goes to heat).

APPROACH Let’s assume an average wavelength in the middle of the visible
spectrum, The energy of each photon is Only
3% of the 100-W power is emitted as visible light, or The number
of photons emitted per second equals the light output of divided by 
the energy of each photon.

SOLUTION The energy emitted in one second is where N is
the number of photons emitted per second and Hence

per second, or almost photons emitted per second, an enormous number.1019

N =
E

hf
=

El

hc
=

(3 J)A500 * 10–9 mB
A6.63 * 10–34 J�sB A3.00 * 108 m�sB L 8 * 1018

f = c�l.
E = Nhf(= 3 J)

3 J�s
3 W = 3 J�s.

E = hf = hc�l.l L 500 nm.

EXAMPLE 27;4 ESTIMATE

1 eV = 1.60 * 10–19 J.
A4.4 * 10–19 JB�A1.60 * 10–19 J�eVB = 2.8 eV.

E = hf =
hc

l
=
A6.63 * 10–34 J�sB A3.00 * 108 m�sB

A4.5 * 10–7 mB = 4.4 * 10–19 J,

f = c�l,

f = c�lE = hf

l = 450 nm
EXAMPLE 27;3

hf0 = W0 ,f0 ,

kemax = hf - W0 .

AW0B
hf = kemax + W0 .

kemax :
keW0 ,
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FIGURE 27–7 Photoelectric effect:
the maximum kinetic energy of
ejected electrons increases linearly
with the frequency of incident light.
No electrons are emitted if f 6 f0 .
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EXERCISE B A beam contains infrared light of a single wavelength, 1000 nm, and
monochromatic UV at 100 nm, both of the same intensity. Are there more 100-nm photons
or more 1000-nm photons?

Photoelectron speed and energy. What is the kinetic
energy and the speed of an electron ejected from a sodium surface whose work
function is when illuminated by light of wavelength (a) 410 nm,
(b) 550 nm?

APPROACH We first find the energy of the photons If the
energy is greater than then electrons will be ejected with varying amounts
of with a maximum of

SOLUTION (a) For

The maximum kinetic energy an electron can have is given by Eq. 27–5b,
or

Since where

Most ejected electrons will have less and less speed than these maximum
values.
(b) For Since this photon
energy is less than the work function, no electrons are ejected.

NOTE In (a) we used the nonrelativistic equation for kinetic energy. If v had
turned out to be more than about 0.1c, our calculation would have been inaccurate
by more than a percent or so, and we would probably prefer to redo it using the
relativistic form (Eq. 26–5).

EXERCISE C Determine the lowest frequency and the longest wavelength needed to
emit electrons from sodium.

By converting units, we can show that the energy of a photon in electron
volts, when given the wavelength in nm, is

[photon energy in eV]

Applications of the Photoelectric Effect
The photoelectric effect, besides playing an important historical role in confirm-
ing the photon theory of light, also has many practical applications. Burglar alarms
and automatic doors often make use of the photocell circuit of Fig. 27–6. When 
a person interrupts the beam of light, the sudden drop in current in the circuit
activates a switch—often a solenoid—which operates a bell or opens the door.
UV or IR light is sometimes used in burglar alarms because of its invisibility. Many
smoke detectors use the photoelectric effect to detect tiny amounts of smoke 
that interrupt the flow of light and so alter the electric current. Photographic light
meters use this circuit as well. Photocells are used in many other devices, such as
absorption spectrophotometers, to measure light intensity. One type of film sound
track is a variably shaded narrow section at the side of the film, Fig. 27–8. Light
passing through the film is thus “modulated,” and the output electrical signal 
of the photocell detector follows the frequencies on the sound track. For many
applications today, the vacuum-tube photocell of Fig. 27–6 has been replaced by a
semiconductor device known as a photodiode (Section 29–9). In these semicon-
ductors, the absorption of a photon liberates a bound electron so it can move
freely, which changes the conductivity of the material and the current through a
photodiode is altered.

E (eV) =
1.240 * 103 eV�nm

l (nm)
.

l

l = 550 nm, hf = hc�l = 3.61 * 10–19 J = 2.26 eV.

ke

vmax = B2ke
m

= 5.1 * 105 m�s.

m = 9.1 * 10–31 kg,ke = 1
2 mv21.2 * 10–19 J.

(0.75 eV)(1.60 * 10–19 J�eV) =kemax = 3.03 eV - 2.28 eV = 0.75 eV,

hf =
hc

l
= 4.85 * 10–19 J  or  3.03 eV.

l = 410 nm,

kemax = hf - W0 .ke,
W0 ,

(E = hf = hc�l).

W0 = 2.28 eV

EXAMPLE 27;5
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FIGURE 27–8 Optical sound track
on movie film. In the projector, light
from a small source (different from
that for the picture) passes through
the sound track on the moving film.
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27–4 Energy, Mass, and
Momentum of a Photon

We have just seen (Eq. 27–4) that the total energy of a single photon is given by
Because a photon always travels at the speed of light, it is truly a rela-

tivistic particle. Thus we must use relativistic formulas for dealing with its mass,
energy, and momentum. The momentum of any particle of mass m is given by

Since for a photon, the denominator is zero. To
avoid having an infinite momentum, we conclude that the photon’s mass must be
zero: This makes sense too because a photon can never be at rest (it
always moves at the speed of light). A photon’s kinetic energy is its total energy:

[photon]

The momentum of a photon can be obtained from the relativistic formula
(Eq. 26–9) where we set so or

[photon]

Since for a photon, its momentum is related to its wavelength by

(27;6)

Photon momentum and force. Suppose the
photons emitted per second from the 100-W lightbulb in Example 27–4 were

all focused onto a piece of black paper and absorbed. (a) Calculate the momentum
of one photon and (b) estimate the force all these photons could exert on the
paper.

APPROACH Each photon’s momentum is obtained from Eq. 27–6,
Next, each absorbed photon’s momentum changes from to zero. We
use Newton’s second law, to get the force. Let

SOLUTION (a) Each photon has a momentum

(b) Using Newton’s second law for photons (Example 27–4) whose
momentum changes from to 0, we obtain

NOTE This is a tiny force, but we can see that a very strong light source could
exert a measurable force, and near the Sun or a star the force due to photons in
electromagnetic radiation could be considerable. See Section 22–6.

Photosynthesis. In photosynthesis, pigments such as 
chlorophyll in plants capture the energy of sunlight to change to useful
carbohydrate. About nine photons are needed to transform one molecule of 
to carbohydrate and Assuming light of wavelength (chlorophyll
absorbs most strongly in the range 650 nm to 700 nm), how efficient is the
photosynthetic process? The reverse chemical reaction releases an energy of

of so 4.9 eV is needed to transform CO2 to carbohydrate.

APPROACH The efficiency is the minimum energy required (4.9 eV) divided
by the actual energy absorbed, nine times the energy (hf) of one photon.

SOLUTION The energy of nine photons, each of energy , is
or 17 eV.

Thus the process is about efficient.(4.9 eV�17 eV) = 29%
(9)A6.63 * 10–34 J�sB A3.00 * 108 m�sB�A6.7 * 10–7 mB = 2.7 * 10–18 J

hf = hc�l

CO2 ,4.9 eV�molecule

l = 670 nmO2 .
CO2

CO2

EXAMPLE 27;7

F =
¢p

¢t
=

Nh�l - 0
1 s

= N 
h

l
L A1019 s–1B A10–27 kg �m�sB L 10–8 N.

h�l
N = 1019
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h

l
=
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p =
E
c

=
hf
c

=
h

l
.

E = hf

p =
E
c

.

E2 = p2c2m = 0,E2 = p2c2 + m2c4

ke = E = hf.

m = 0.

v = cp = mv�31 - v2�c2.

E = hf.
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27–5 Compton Effect
Besides the photoelectric effect, a number of other experiments were carried out
in the early twentieth century which also supported the photon theory. One of
these was the Compton effect (1923) named after its discoverer, A. H. Compton
(1892–1962). Compton aimed short-wavelength light (actually X-rays) at various
materials, and detected light scattered at various angles. He found that the scattered
light had a slightly longer wavelength than did the incident light, and therefore a
slightly lower frequency indicating a loss of energy. He explained this result on the
basis of the photon theory as incident photons colliding with electrons of the
material, Fig. 27–9. Using Eq. 27–6 for momentum of a photon, Compton applied
the laws of conservation of momentum and energy to the collision of Fig. 27–9
and derived the following equation for the wavelength of the scattered photons:

(27;7)

where is the mass of the electron. (The quantity which has the dimen-
sions of length, is called the Compton wavelength of the electron.) We see that
the predicted wavelength of scattered photons depends on the angle at which
they are detected. Compton’s measurements of 1923 were consistent with this
formula. The wave theory of light predicts no such shift: an incoming electro-
magnetic wave of frequency f should set electrons into oscillation at frequency f ;
and such oscillating electrons would reemit EM waves of this same frequency f
(Section 22–2), which would not change with angle Hence the Compton
effect adds to the firm experimental foundation for the photon theory of light.

EXERCISE D When a photon scatters off an electron by the Compton effect, which of
the following increases: its energy, frequency, wavelength?

X-ray scattering. X-rays of wavelength 0.140 nm are
scattered from a very thin slice of carbon. What will be the wavelengths of X-rays
scattered at (a) 0°, (b) 90°, (c) 180°?

APPROACH This is an example of the Compton effect, and we use Eq. 27–7 to
find the wavelengths.

SOLUTION (a) For and Then Eq. 27–7
gives This makes sense since for there really isn’t
any collision as the photon goes straight through without interacting.
(b) For and So

that is, the wavelength is longer by one Compton wavelength 
for an electron).

(c) For which means the photon is scattered backward, returning in
the direction from which it came (a direct “head-on” collision),
and So

NOTE The maximum shift in wavelength occurs for backward scattering, and it
is twice the Compton wavelength.

The Compton effect has been used to diagnose bone disease such as osteoporo-
sis. Gamma rays, which are photons of even shorter wavelength than X-rays, coming
from a radioactive source are scattered off bone material. The total intensity of
the scattered radiation is proportional to the density of electrons, which is in turn
proportional to the bone density. A low bone density may indicate osteoporosis.

l¿ = l + 2
h

mec
= 0.140 nm + 2(0.0024 nm) = 0.145 nm.

1 - cos f = 2.
cos f = –1,

f = 180°,
= 0.0024 nm

(= h�me c2

= 0.140 nm + 2.4 * 10–12 m = 0.142 nm;

l¿ = l +
h

mec
= 0.140 nm +

6.63 * 10–34 J�s

A9.11 * 10–31 kgB A3.00 * 108 m�sB

1 - cos f = 1.f = 90°, cos f = 0,

f = 0°,l¿ = l = 0.140 nm.
1 - cos f = 0.f = 0°, cos f = 1

EXAMPLE 27;8

(f).

f

h�mec,me

l¿ = l +
h

mec
(1 - cos f),

*
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Measuring bone density

FIGURE 27–9 The Compton effect.
A single photon of wavelength 
strikes an electron in some material,
knocking it out of its atom. The
scattered photon has less energy
(some energy is given to the
electron) and hence has a longer
wavelength (shown exaggerated).
Experiments found scattered X-rays
of just the wavelengths predicted by
conservation of energy and
momentum using the photon model.
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27–6 Photon Interactions; Pair Production
When a photon passes through matter, it interacts with the atoms and electrons.
There are four important types of interactions that a photon can undergo:

1. The photoelectric effect: A photon may knock an electron out of an atom and
in the process the photon disappears.

2. The photon may knock an atomic electron to a higher energy state in the atom if
its energy is not sufficient to knock the electron out altogether. In this process
the photon also disappears, and all its energy is given to the atom. Such an
atom is then said to be in an excited state, and we shall discuss it more later.

3. The photon can be scattered from an electron (or a nucleus) and in the
process lose some energy; this is the Compton effect (Fig. 27–9). But notice
that the photon is not slowed down. It still travels with speed c, but its
frequency will be lower because it has lost some energy.

4. Pair production: A photon can actually create matter, such as the production
of an electron and a positron, Fig. 27–10. (A positron has the same mass as
an electron, but the opposite charge, )

In process 4, pair production, the photon disappears in the process of creating
the electron–positron pair. This is an example of mass being created from pure
energy, and it occurs in accord with Einstein’s equation Notice that a
photon cannot create an electron alone since electric charge would not then be
conserved. The inverse of pair production also occurs: if a positron comes close to
an electron, the two quickly annihilate each other and their energy, including
their mass, appears as electromagnetic energy of photons. Because positrons are
not as plentiful in nature as electrons, they usually do not last long.

Electron–positron annihilation is the basis for the type of medical imaging
known as PET, as discussed in Section 31–8.

Pair production. (a) What is the minimum energy of a
photon that can produce an electron–positron pair? (b) What is this photon’s
wavelength?

APPROACH The minimum photon energy E equals the rest energy of
the two particles created, via Einstein’s famous equation (Eq. 26–7).
There is no energy left over, so the particles produced will have zero kinetic
energy. The wavelength is where for the original photon.

SOLUTION (a) Because and the mass created is equal to two electron
masses, the photon must have energy

A photon with less energy cannot undergo
pair production.
(b) Since the wavelength of a 1.02-MeV photon is

which is 0.0012 nm. Such photons are in the gamma-ray (or very short X-ray)
region of the electromagnetic spectrum (Fig. 22–8).

NOTE Photons of higher energy (shorter wavelength) can also create an electron–
positron pair, with the excess energy becoming kinetic energy of the particles.

Pair production cannot occur in empty space, for momentum could not be con-
served. In Example 27–9, for instance, energy is conserved, but only enough energy
was provided to create the electron–positron pair at rest and thus with zero momen-
tum, which could not equal the initial momentum of the photon. Indeed, it can be
shown that at any energy, an additional massive object, such as an atomic nucleus
(Fig. 27–10), must take part in the interaction to carry off some of the momentum.

l =
hc

E
=
A6.63 * 10–34 J�sB A3.00 * 108 m�sB

A1.64 * 10–13 JB = 1.2 * 10–12 m,

E = hf = hc�l,

(1 MeV = 106 eV = 1.60 * 10–13 J).

E = 2A9.11 * 10–31 kgB A3.00 * 108 m�sB2 = 1.64 * 10–13 J = 1.02 MeV

E = mc2 ,

E = hfl = c�f

E = mc2
Amc2B

EXAMPLE 27;9

E = mc2.
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FIGURE 27–10 Pair production:
a photon disappears and produces an
electron and a positron.
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27–7 Wave–Particle Duality; the
Principle of Complementarity

The photoelectric effect, the Compton effect, and other experiments have placed
the particle theory of light on a firm experimental basis. But what about the classic
experiments of Young and others (Chapter 24) on interference and diffraction
which showed that the wave theory of light also rests on a firm experimental basis?

We seem to be in a dilemma. Some experiments indicate that light behaves like
a wave; others indicate that it behaves like a stream of particles. These two theories
seem to be incompatible, but both have been shown to have validity. Physicists
finally came to the conclusion that this duality of light must be accepted as a 
fact of life. It is referred to as the wave;particle duality. Apparently, light is a
more complex phenomenon than just a simple wave or a simple beam of particles.

To clarify the situation, the great Danish physicist Niels Bohr (1885–1962,
Fig. 27–11) proposed his famous principle of complementarity. It states that to
understand an experiment, sometimes we find an explanation using wave theory
and sometimes using particle theory. Yet we must be aware of both the wave and
particle aspects of light if we are to have a full understanding of light. Therefore
these two aspects of light complement one another.

It is not easy to “visualize” this duality. We cannot readily picture a combina-
tion of wave and particle. Instead, we must recognize that the two aspects of light
are different “faces” that light shows to experimenters.

Part of the difficulty stems from how we think. Visual pictures (or models) in
our minds are based on what we see in the everyday world. We apply the
concepts of waves and particles to light because in the macroscopic world we see
that energy is transferred from place to place by these two methods. We cannot
see directly whether light is a wave or particle, so we do indirect experiments. To
explain the experiments, we apply the models of waves or of particles to the
nature of light. But these are abstractions of the human mind. When we try to
conceive of what light really “is,” we insist on a visual picture. Yet there is no
reason why light should conform to these models (or visual images) taken from
the macroscopic world. The “true” nature of light—if that means anything—is
not possible to visualize. The best we can do is recognize that our knowledge is
limited to the indirect experiments, and that in terms of everyday language and
images, light reveals both wave and particle properties.

It is worth noting that Einstein’s equation itself links the particle
and wave properties of a light beam. In this equation, E refers to the energy of a
particle; and on the other side of the equation, we have the frequency f of the
corresponding wave.

27–8 Wave Nature of Matter
In 1923, Louis de Broglie (1892–1987) extended the idea of the wave–particle
duality. He appreciated the symmetry in nature, and argued that if light some-
times behaves like a wave and sometimes like a particle, then perhaps those things
in nature thought to be particles—such as electrons and other material objects—
might also have wave properties. De Broglie proposed that the wavelength of a
material particle would be related to its momentum in the same way as for a photon,
Eq. 27–6, That is, for a particle having linear momentum 
the wavelength is given by

(27;8)

and is valid classically ( for ) and relativistically
This is sometimes called the de Broglie wavelength of a 

particle.
mv�31 - v2�c2 B. Ap = gmv =v V cp = mv

l =
h
p

,

l

p = mv,p = h�l.

E = hf
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FIGURE 27–11 Niels Bohr (right),
walking with Enrico Fermi along the
Appian Way outside Rome. This
photo shows one important way
physics is done.

de Broglie wavelength



Wavelength of a ball. Calculate the de Broglie wavelength
of a 0.20-kg ball moving with a speed of 

APPROACH We use Eq. 27–8.

SOLUTION

Ordinary objects, such as the ball of Example 27–10, have unimaginably small
wavelengths. Even if the speed is extremely small, say the wavelength
would be about Indeed, the wavelength of any ordinary object is much
too small to be measured and detected. The problem is that the properties of
waves, such as interference and diffraction, are significant only when the size of
objects or slits is not much larger than the wavelength. And there are no known
objects or slits to diffract waves only long, so the wave properties of
ordinary objects go undetected.

But tiny elementary particles, such as electrons, are another matter. Since
the mass m appears in the denominator of Eq. 27–8, a very small mass should
have a much larger wavelength.

Wavelength of an electron. Determine the wavelength
of an electron that has been accelerated through a potential difference of 100 V.

APPROACH If the kinetic energy is much less than the rest energy, we can use
the classical formula, (see end of Section 26–9). For an electron,

We then apply conservation of energy: the kinetic energy
acquired by the electron equals its loss in potential energy. After solving for v,
we use Eq. 27–8 to find the de Broglie wavelength.

SOLUTION The gain in kinetic energy equals the loss in potential energy:
Thus so The ratio 

so relativity is not needed. Thus

and

Then

or 0.12 nm.

EXERCISE E As a particle travels faster, does its de Broglie wavelength decrease,
increase, or remain the same?

EXERCISE F Return to the Chapter-Opening Question, page 771, and answer it again
now. Try to explain why you may have answered differently the first time.

Electron Diffraction
From Example 27–11, we see that electrons can have wavelengths on the order
of and even smaller. Although small, this wavelength can be detected:
the spacing of atoms in a crystal is on the order of and the orderly array
of atoms in a crystal could be used as a type of diffraction grating, as was done
earlier for X-rays (see Section 25–11). C. J. Davisson and L. H. Germer per-
formed the crucial experiment: they scattered electrons from the surface of a metal
crystal and, in early 1927, observed that the electrons were scattered into a pattern
of regular peaks. When they interpreted these peaks as a diffraction pattern, the
wavelength of the diffracted electron wave was found to be just that predicted by
de Broglie, Eq. 27–8. In the same year, G. P. Thomson (son of J. J. Thomson) used
a different experimental arrangement and also detected diffraction of electrons.
(See Fig. 27–12. Compare it to X-ray diffraction, Section 25–11.) Later experiments
showed that protons, neutrons, and other particles also have wave properties.

10–10 m
10–10 m,

l =
h

mv
=

A6.63 * 10–34 J�sB
A9.1 * 10–31 kgB A5.9 * 106 m�sB = 1.2 * 10–10 m,

v = B2 eV
m

= C(2)A1.6 * 10–19 CB(100 V)

A9.1 * 10–31 kgB = 5.9 * 106 m�s.

1
2

mv2 = eV

100 eV�A0.511 * 106 eVB L 10–4 ,
ke�mc2 =ke = 100 eV.ke = eV,¢pe = eV - 0.
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2 mv2

EXAMPLE 27;11
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FIGURE 27–12 Diffraction pattern
of electrons scattered from
aluminum foil, as recorded on film.



Thus the wave–particle duality applies to material objects as well as to light.
The principle of complementarity applies to matter as well. That is, we must be
aware of both the particle and wave aspects in order to have an understanding of
matter, including electrons. But again we must recognize that a visual picture of a
“wave–particle” is not possible.

Electron diffraction. The wave nature of electrons is mani-
fested in experiments where an electron beam interacts with the atoms on the
surface of a solid, especially crystals. By studying the angular distribution of the
diffracted electrons, one can indirectly measure the geometrical arrangement of
atoms. Assume that the electrons strike perpendicular to the surface of a solid
(see Fig. 27–13), and that their energy is low, so that they interact
only with the surface layer of atoms. If the smallest angle at which a diffraction
maximum occurs is at 24°, what is the separation d between the atoms on the
surface?

SOLUTION Treating the electrons as waves, we need to determine the condi-
tion where the difference in path traveled by the wave diffracted from adjacent
atoms is an integer multiple of the de Broglie wavelength, so that constructive
interference occurs. The path length difference is (Fig. 27–13); so for the
smallest value of we must have

However, is related to the (non-relativistic) kinetic energy by

Thus

The surface inter-atomic spacing is

NOTE Experiments of this type verify both the wave nature of electrons and
the orderly array of atoms in crystalline solids.

What Is an Electron?
We might ask ourselves: “What is an electron?” The early experiments of 
J. J. Thomson (Section 27–1) indicated a glow in a tube, and that glow moved when
a magnetic field was applied. The results of these and other experiments were best
interpreted as being caused by tiny negatively charged particles which we now call
electrons. No one, however, has actually seen an electron directly. The drawings we
sometimes make of electrons as tiny spheres with a negative charge on them are
merely convenient pictures (now recognized to be inaccurate). Again we must rely
on experimental results, some of which are best interpreted using the particle
model and others using the wave model. These models are mere pictures that we
use to extrapolate from the macroscopic world to the tiny microscopic world of
the atom. And there is no reason to expect that these models somehow reflect the
reality of an electron. We thus use a wave or a particle model (whichever works
best in a situation) so that we can talk about what is happening. But we should not
be led to believe that an electron is a wave or a particle. Instead we could say that
an electron is the set of its properties that we can measure. Bertrand Russell said
it well when he wrote that an electron is “a logical construction.”

d =
l

sin u
=

0.123 nm
sin 24°

= 0.30 nm.

=
A6.63 * 10–34 J�sB

32A9.11 * 10–31 kgB(100 eV)A1.6 * 10–19 J�eVB = 0.123 nm.
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h

32me ke
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2me
=

h2

2mel
2
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u
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Electron diffraction

FIGURE 27–13 Example 27–12.
The red dots represent atoms in an
orderly array in a solid.
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27–9 Electron Microscopes
The idea that electrons have wave properties led to the development of the
electron microscope (EM), which can produce images of much greater magnifi-
cation than a light microscope. Figures 27–14 and 27–15 are diagrams of two types,
developed around the middle of the twentieth century: the transmission electron
microscope (TEM), which produces a two-dimensional image, and the scanning
electron microscope (SEM), which produces images with a three-dimensional quality.
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Electron microscope

FIGURE 27–14 Transmission electron
microscope. The magnetic field coils
are designed to be “magnetic lenses,”
which bend the electron paths and
bring them to a focus, as shown. The
sensors of the image measure electron
intensity only, no color.
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FIGURE 27–16 Electron micrographs,
in false color, of (a) viruses attacking
a cell of the bacterium Escherichia
coli (TEM, (b) Same
subject by an SEM 
(c) SEM image of an eye’s retina
(Section 25–2); the rods and cones
have been colored beige and green,
respectively. Part (c) is also on the
cover of this book.

(L 35,000*).
L 50,000*).

In both types, the objective and eyepiece lenses are actually magnetic fields that
exert forces on the electrons to bring them to a focus. The fields are produced by
carefully designed current-carrying coils of wire. Photographs using each type are
shown in Fig. 27–16. EMs measure the intensity of electrons, producing mono-
chromatic photos. Color is often added artificially to highlight.

As discussed in Sections 25–7 and 25–8, the maximum resolution of details
on an object is about the size of the wavelength of the radiation used to view it.
Electrons accelerated by voltages on the order of have wavelengths of
about 0.004 nm. The maximum resolution obtainable would be on this order, but
in practice, aberrations in the magnetic lenses limit the resolution in transmission
electron microscopes to about 0.1 to 0.5 nm. This is still 1000 times better than a
visible-light microscope, and corresponds to a useful magnification of about a
million. Such magnifications are difficult to achieve, and more common magnifi-
cations are to The maximum resolution of a scanning electron microscope
is less, typically 5 to 10 nm although new high-resolution SEMs approach 1 nm.

105.104

105 V

FIGURE 27–15 Scanning electron
microscope. Scanning coils move an
electron beam back and forth across
the specimen. Secondary electrons
produced when the beam strikes the
specimen are collected and their
intensity affects the brightness of
pixels in a monitor to produce a
picture.



The scanning tunneling electron microscope (STM), developed in the 1980s,
contains a tiny probe, whose tip may be only one (or a few) atoms wide, that is
moved across the specimen to be examined in a series of linear passes. The tip, as
it scans, remains very close to the surface of the specimen, about 1 nm above it,
Fig. 27–17. A small voltage applied between the probe and the surface causes
electrons to leave the surface and pass through the vacuum to the probe, by a
process known as tunneling (discussed in Section 30–12). This “tunneling”
current is very sensitive to the gap width, so a feedback mechanism can be used
to raise and lower the probe to maintain a constant electron current. The probe’s
vertical motion, following the surface of the specimen, is then plotted as a
function of position, scan after scan, producing a three-dimensional image of the
surface. Surface features as fine as the size of an atom can be resolved: a resolu-
tion better than 50 pm (0.05 nm) laterally and 0.01 to 0.001 nm vertically. This
kind of resolution has given a great impetus to the study of the surface structure
of materials. The “topographic” image of a surface actually represents the
distribution of electron charge.

The atomic force microscope (AFM), developed in the 1980s, is in many
ways similar to an STM, but can be used on a wider range of sample materials.
Instead of detecting an electric current, the AFM measures the force between a
cantilevered tip and the sample, a force which depends strongly on the
tip–sample separation at each point. The tip is moved as for the STM.

27–10 Early Models of the Atom
The idea that matter is made up of atoms was accepted by most scientists by 1900.
With the discovery of the electron in the 1890s, scientists began to think of the atom
itself as having a structure with electrons as part of that structure. We now discuss
how our modern view of the atom developed, and the quantum theory with which
it is intertwined.†

A typical model of the atom in the 1890s visualized the atom as a homogene-
ous sphere of positive charge inside of which there were tiny negatively charged
electrons, a little like plums in a pudding, Fig. 27–18.

Around 1911, Ernest Rutherford (1871–1937) and his colleagues performed
experiments whose results contradicted the plum-pudding model of the atom. In
these experiments a beam of positively charged alpha particles was directed
at a thin sheet of metal foil such as gold, Fig. 27–19. (These newly discovered 

particles were emitted by certain radioactive materials and were soon shown 
to be doubly ionized helium atoms—that is, having a charge of ) It was±2e.
a

(a)
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STM and AFM

FIGURE 27–17 The probe tip of a
scanning tunneling electron
microscope, as it is moved
horizontally, automatically moves up
and down to maintain a constant
tunneling current, and this motion is
translated into an image of the
surface.
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FIGURE 27–18 Plum-pudding
model of the atom.
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FIGURE 27–19 Experimental setup
for Rutherford’s experiment:

particles emitted by radon are
deflected by the atoms of a thin metal
foil and a few rebound backward.
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†Some readers may say: “Tell us the facts as we know them today, and don’t bother us with the histor-
ical background and its outmoded theories.” Such an approach would ignore the creative aspect of
science and thus give a false impression of how science develops. Moreover, it is not really possible to
understand today’s view of the atom without insight into the concepts that led to it.

expected from the plum-pudding model that the alpha particles would not be
deflected significantly because electrons are so much lighter than alpha particles,
and the alpha particles should not have encountered any massive concentration
of positive charge to strongly repel them. The experimental results completely
contradicted these predictions. It was found that most of the alpha particles
passed through the foil unaffected, as if the foil were mostly empty space.



And of those deflected, a few were deflected at very large angles—some even
backward, nearly in the direction from which they had come. This could happen,
Rutherford reasoned, only if the positively charged alpha particles were being
repelled by a massive positive charge concentrated in a very small region of space
(see Fig. 27–20). He hypothesized that the atom must consist of a tiny but mas-
sive positively charged nucleus, containing over 99.9% of the mass of the atom,
surrounded by much lighter electrons some distance away. The electrons would
be moving in orbits about the nucleus—much as the planets move around the
Sun—because if they were at rest, they would fall into the nucleus due to electri-
cal attraction. See Fig. 27–21. Rutherford’s experiments suggested that the nucleus
must have a radius of about to From kinetic theory, and especially
Einstein’s analysis of Brownian motion (see Section 13–1), the radius of atoms
was estimated to be about Thus the electrons would seem to be at a
distance from the nucleus of about 10,000 to 100,000 times the radius of the
nucleus itself. (If the nucleus were the size of a baseball, the atom would have the
diameter of a big city several kilometers across.) So an atom would be mostly
empty space.

Rutherford’s planetary model of the atom (also called the nuclear model 
of the atom) was a major step toward how we view the atom today. It was not,
however, a complete model and presented some major problems, as we shall see.

27–11 Atomic Spectra: Key to the
Structure of the Atom

Earlier in this Chapter we saw that heated solids (as well as liquids and dense gases)
emit light with a continuous spectrum of wavelengths. This radiation is assumed to
be due to oscillations of atoms and molecules, which are largely governed by the
interaction of each atom or molecule with its neighbors.

Rarefied gases can also be excited to emit light. This is done by intense 
heating, or more commonly by applying a high voltage to a “discharge tube”
containing the gas at low pressure, Fig. 27–22. The radiation from excited gases
had been observed early in the nineteenth century, and it was found that the
spectrum was not continuous. Rather, excited gases emit light of only certain
wavelengths, and when this light is analyzed through the slit of a spectroscope 
or spectrometer, a line spectrum is seen rather than a continuous spectrum.
The line spectra emitted by a number of elements in the visible region are shown
below in Fig. 27–23, and in Chapter 24, Fig. 24–28. The emission spectrum is
characteristic of the material and can serve as a type of “fingerprint” for
identification of the gas.

We also saw (Chapter 24) that if a continuous spectrum passes through a
rarefied gas, dark lines are observed in the emerging spectrum, at wavelengths
corresponding to lines normally emitted by the gas. This is called an absorption
spectrum (Fig. 27–23c), and it became clear that gases can absorb light at the 
same frequencies at which they emit. Using film sensitive to ultraviolet and to
infrared light, it was found that gases emit and absorb discrete frequencies in
these regions as well as in the visible.

10–10 m.

10–14 m.10–15
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FIGURE 27–21 Rutherford’s model 
of the atom: electrons orbit a tiny
positive nucleus (not to scale). The atom
is visualized as mostly empty space.
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FIGURE 27–22 Gas-discharge tube:
(a) diagram; (b) photo of an actual
discharge tube for hydrogen.
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FIGURE 27–23 Emission spectra of
the gases (a) atomic hydrogen,
(b) helium, and (c) the solar
absorption spectrum.
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FIGURE 27–20 Backward rebound
of particles in Fig. 27–19 explained
as the repulsion from a heavy
positively charged nucleus.
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In low-density gases, the atoms are far apart on average and hence the light
emitted or absorbed is assumed to be by individual atoms rather than through
interactions between atoms, as in a solid, liquid, or dense gas. Thus the line
spectra serve as a key to the structure of the atom: any theory of atomic structure
must be able to explain why atoms emit light only of discrete wavelengths, and it
should be able to predict what these wavelengths are.

Hydrogen is the simplest atom—it has only one electron orbiting its nucleus.
It also has the simplest spectrum. The spectrum of most atoms shows little
apparent regularity. But the spacing between lines in the hydrogen spectrum
decreases in a regular way, Fig. 27–24. Indeed, in 1885, J. J. Balmer (1825–1898)
showed that the four lines in the visible portion of the hydrogen spectrum (with
measured wavelengths 656 nm, 486 nm, 434 nm, and 410 nm) have wavelengths
that fit the formula

(27;9)

Here n takes on the values 3, 4, 5, 6 for the four visible lines, and R, called the
Rydberg constant, has the value Later it was found that
this Balmer series of lines extended into the UV region, ending at 
as shown in Fig. 27–24. Balmer’s formula, Eq. 27–9, also worked for these lines
with higher integer values of n. The lines near 365 nm become too close together
to distinguish, but the limit of the series at 365 nm corresponds to (so

in Eq. 27–9).
Later experiments on hydrogen showed that there were similar series of lines

in the UV and IR regions, and each series had a pattern just like the Balmer
series, but at different wavelengths, Fig. 27–25. Each of these series was found to

1�n2 = 0
n = q

l = 365 nm,
R = 1.0974 * 107 m–1.

1
l

= R ¢ 1

22
-

1

n2
≤ ,   n = 3, 4, p .
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FIGURE 27–24 Balmer series of
lines for hydrogen.
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The only lines in the visible region 
of the electromagnetic spectrum are
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1
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-

1
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≤

fit a formula with the same form as Eq. 27–9 but with the replaced by
and so on. For example, the Lyman series contains lines with

wavelengths from 91 nm to 122 nm (in the UV region) and fits the formula

The wavelengths of the Paschen series (in the IR region) fit

The Rutherford model was unable to explain why atoms emit line spectra. It
had other difficulties as well. According to the Rutherford model, electrons orbit
the nucleus, and since their paths are curved the electrons are accelerating. Hence
they should give off light like any other accelerating electric charge (Chapter 22).

1
l

= R ¢ 1

32
-

1

n2
≤ ,   n = 4, 5, p .

1
l

= R ¢ 1
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-
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n2
≤ ,   n = 2, 3, p .
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Since light carries off energy and energy is conserved, the electron’s own energy
must decrease to compensate. Hence electrons would be expected to spiral into the
nucleus. As they spiraled inward, their frequency would increase in a short time
and so too would the frequency of the light emitted. Thus the two main difficulties
of the Rutherford model are these: (1) it predicts that light of a continuous range of
frequencies will be emitted, whereas experiment shows line spectra; (2) it predicts
that atoms are unstable—electrons would quickly spiral into the nucleus—but we
know that atoms in general are stable, because there is stable matter all around us.

Clearly Rutherford’s model was not sufficient. Some sort of modification
was needed, and Niels Bohr provided it in a model that included the quantum
hypothesis. Although the Bohr model has been superseded, it did provide a
crucial stepping stone to our present understanding. And some aspects of the
Bohr model are still useful today, so we examine it in detail in the next Section.

27–12 The Bohr Model
Bohr had studied in Rutherford’s laboratory for several months in 1912 and was
convinced that Rutherford’s planetary model of the atom had validity. But in
order to make it work, he felt that the newly developing quantum theory would
somehow have to be incorporated in it. The work of Planck and Einstein had
shown that in heated solids, the energy of oscillating electric charges must change
discontinuously—from one discrete energy state to another, with the emission of
a quantum of light. Perhaps, Bohr argued, the electrons in an atom also cannot
lose energy continuously, but must do so in quantum “jumps.” In working out his
model during the next year, Bohr postulated that electrons move about the nucleus
in circular orbits, but that only certain orbits are allowed. He further postulated
that an electron in each orbit would have a definite energy and would move in the
orbit without radiating energy (even though this violated classical ideas since
accelerating electric charges are supposed to emit EM waves; see Chapter 22).
He thus called the possible orbits stationary states. In this Bohr model, light is
emitted only when an electron jumps from a higher (upper) stationary state to
another of lower energy, Fig. 27–26. When such a transition occurs, a single pho-
ton of light is emitted whose energy, by energy conservation, is given by

(27;10)

where refers to the energy of the upper state and the energy of the lower
state.

In 1912–13, Bohr set out to determine what energies these orbits would have
in the simplest atom, hydrogen; the spectrum of light emitted could then be pre-
dicted from Eq. 27–10. In the Balmer formula he had the key he was looking for.
Bohr quickly found that his theory would agree with the Balmer formula if 
he assumed that the electron’s angular momentum L is quantized and equal to an
integer n times As we saw in Chapter 8 angular momentum is given by

where I is the moment of inertia and is the angular velocity. For a
single particle of mass m moving in a circle of radius r with speed v, and

hence, Bohr’s quantum condition is

(27;11)

where n is an integer and is the radius of the nth possible orbit. The allowed
orbits are numbered according to the value of n, which is called the
principal quantum number of the orbit.

Equation 27–11 did not have a firm theoretical foundation. Bohr had searched
for some “quantum condition,” and such tries as (where E represents
the energy of the electron in an orbit) did not give results in accord with experi-
ment. Bohr’s reason for using Eq. 27–11 was simply that it worked; and we now
look at how. In particular, let us determine what the Bohr theory predicts for the
measurable wavelengths of emitted light.

E = hf

1, 2, 3, p ,
rn

L = mvrn = n
h

2p
,   n = 1, 2, 3, p ,

L = Iv = Amr2B(v�r) = mvr.v = v�r;
I = mr2

vL = Iv,
h�2p.

ElEu

hf = Eu - El ,
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FIGURE 27–26 An atom emits a
photon when its
energy changes from to a lower
energy El .

Eu

(energy = hf)
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An electron in a circular orbit of radius r (Fig. 27–27) would have a centripetal
acceleration produced by the electrical force of attraction between the 
negative electron and the positive nucleus. This force is given by Coulomb’s law,

where The charge on the electron is
and that on the nucleus is where Ze is the charge on the

nucleus: is the charge on a proton, Z is the number of protons in the nucleus
(called “atomic number,” Section 28–7).† For the hydrogen atom,

In Newton’s second law, we substitute Coulomb’s law for F and
for a particular allowed orbit of radius and obtain

We solve this for 

and then substitute for v from Eq. 27–11 (which says ):

We solve for (it appears on both sides, so we cancel one of them) and find

(27;12)

where n is an integer (Eq. 27–11), and 

Equation 27–12 gives the radii of all possible orbits. The smallest orbit is for
and for hydrogen has the value

(27;13)

The radius of the smallest orbit in hydrogen, is sometimes called the Bohr radius.
From Eq. 27–12, we see that the radii of the larger orbits‡ increase as so

The first four orbits are shown in Fig. 27–28. Notice that, according to Bohr’s
model, an electron can exist only in the orbits given by Eq. 27–12. There are no
allowable orbits in between.

For an atom with we can write the orbital radii, using Eq. 27–12:

(27;14)rn =
n2

Z
A0.529 * 10–10 mB,   n = 1, 2, 3, p .

rn ,Z Z 1,

rn = n2r1 ,   n = 1, 2, 3, p .
o

r3 = 9r1 = 4.76 * 10–10 m,

r2 = 4r1 = 2.12 * 10–10 m,

n2,
r1,

r1 = 0.529 * 10–10 m.

r1 =
A1B2A6.626 * 10–34 J�sB2

4p2A9.11 * 10–31 kgB A8.99 * 109 N�m2�C2B A1.602 * 10–19 CB2
(Z = 1)n = 1,

r1 =
h2

4p2mke2
.

rn =
n2h2

4p2mkZe2
=

n2

Z
r1   n = 1, 2, 3 p ,

rn

rn =
kZe24p2mrn

2

n2h2
.

v = nh�2pmrn

rn =
kZe2

mv2
,

rn ,

k
Ze2

rn
2

=
mv2

rn
.

F = ma

rn ,a = v2�rn

F = ma,
Z = ±1.

±e
q2 = ±Ze,q1 = –e,

k = 1�4p� 0 = 8.99 * 109 N�m2�C2.

F = k
(Ze)(e)

r2
,

v2�r
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†We include Z in our derivation so that we can treat other single-electron (“hydrogenlike”) atoms
such as the ions and Helium in the neutral state has two electrons; if one
electron is missing, the remaining ion consists of one electron revolving around a nucleus of
charge Similarly, doubly ionized lithium, also has a single electron, and in this case 
‡Be careful not to believe that these well-defined orbits actually exist. Today electrons are better
thought of as forming “clouds,” as discussed in Chapter 28.

Z = 3.Li2±,±2e.
He±

Li2± (Z = 3).He± (Z = 2)

FIGURE 27–28 The four smallest
orbits in the Bohr model of
hydrogen; r1 = 0.529 * 10–10 m.

r3 � 9r1
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r4 � 16r1

r2 � 4r1

FIGURE 27–27 Electric force
(Coulomb’s law) keeps the negative
electron in orbit around the
positively charged nucleus.
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In each of its possible orbits, the electron in a Bohr model atom would have a
definite energy, as the following calculation shows. The total energy equals the
sum of the kinetic and potential energies. The potential energy of the electron is
given by where V is the potential due to a point charge as
given by Eq. 17–5: So

The total energy for an electron in the nth orbit of radius is the sum of the
kinetic and potential energies:

When we substitute v from Eq. 27–11 and from Eq. 27–12 into this equation,
we obtain

(27;15a)

If we evaluate the constant term in Eq. 27–15a and convert it to electron volts, as
is customary in atomic physics, we obtain

(27;15b)

The lowest energy level for hydrogen is

Since appears in the denominator of Eq. 27–15b, the energies of the larger
orbits in hydrogen are given by

For example,

We see that not only are the orbit radii quantized, but from Eqs. 27–15, so is the
energy. The quantum number n that labels the orbit radii also labels the energy
levels. The lowest energy level or energy state has energy and is called the
ground state. The higher states, and so on, are called excited states. The
fixed energy levels are also called stationary states.

Notice that although the energy for the larger orbits has a smaller numerical
value, all the energies are less than zero. Thus, is a higher energy than

Hence the orbit closest to the nucleus has the lowest energy (the
most negative). The reason the energies have negative values has to do with the way
we defined the zero for potential energy. For two point charges,
corresponds to zero potential energy when the two charges are infinitely far apart
(Section 17–5). Thus, an electron that can just barely be free from the atom by
reaching (or, at least, far from the nucleus) with zero kinetic energy will
have corresponding to in Eqs. 27–15. If an
electron is free and has kinetic energy, then To remove an electron that is
part of an atom requires an energy input (otherwise atoms would not be stable).
Since for a free electron, then an electron bound to an atom needs to have

. That is, energy must be added to bring its energy up, from a negative
value to at least zero in order to free it.

The minimum energy required to remove an electron from an atom initially
in the ground state is called the binding energy or ionization energy. The ionization
energy for hydrogen has been measured to be 13.6 eV, and this corresponds
precisely to removing an electron from the lowest state, up to

where it can be free.E = 0
E1 = –13.6 eV,

E 6 0
E 	 0

E 7 0.
n = qE = ke + pe = 0 + 0 = 0,

r = q

pe = kq1 q2�r

Ar1B–13.6 eV.
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E2 , E3 ,
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9
= –1.51 eV.

E2 =
–13.6 eV

4
= –3.40 eV,

En =
–13.6 eV

n2
.
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n2
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Spectra Lines Explained
It is useful to show the various possible energy values as horizontal lines on an
energy-level diagram. This is shown for hydrogen in Fig. 27–29. The electron in a
hydrogen atom can be in any one of these levels according to Bohr theory. But it
could never be in between, say at At room temperature, nearly all 
H atoms will be in the ground state At higher temperatures, or during
an electric discharge when there are many collisions between free electrons and
atoms, many atoms can be in excited states Once in an excited state, an
atom’s electron can jump down to a lower state, and give off a photon in the
process. This is, according to the Bohr model, the origin of the emission spectra
of excited gases.

Note that above an electron is free and can have any energy (E is
not quantized). Thus there is a continuum of energy states above as indi-
cated in the energy-level diagram of Fig. 27–29.

E = 0,
E = 0,

(n 7 1).

(n = 1).
–9.0 eV.
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FIGURE 27–29 Energy-level diagram
for the hydrogen atom, showing the
transitions for the spectral lines of the
Lyman, Balmer, and Paschen series
(Fig. 27–25). Each vertical arrow
represents an atomic transition that
gives rise to the photons of one spectral
line (a single wavelength or frequency).
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The vertical arrows in Fig. 27–29 represent the transitions or jumps that
correspond to the various observed spectral lines. For example, an electron
jumping from the level to would give rise to the 656-nm line in the
Balmer series, and the jump from to would give rise to the 486-nm
line (see Fig. 27–24). We can predict wavelengths of the spectral lines emitted
according to Bohr theory by combining Eq. 27–10 with Eq. 27–15. Since

we have from Eq. 27–10

where n refers to the upper state and to the lower state. Then using Eq. 27–15,

(27;16)

This theoretical formula has the same form as the experimental Balmer formula,
Eq. 27–9, with Thus we see that the Balmer series of lines corresponds to
transitions or “jumps” that bring the electron down to the second energy level.
Similarly, corresponds to the Lyman series and to the Paschen
series (see Fig. 27–29).

When the constant in Eq. 27–16 is evaluated with it is found to have
the measured value of the Rydberg constant, in Eq. 27–9,
in accord with experiment (see Problem 54).
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The great success of Bohr’s model is that it gives an explanation for why atoms
emit line spectra, and accurately predicts the wavelengths of emitted light for
hydrogen. The Bohr model also explains absorption spectra: photons of just the
right wavelength can knock an electron from one energy level to a higher one. To
conserve energy, only photons that have just the right energy will be absorbed. This
explains why a continuous spectrum of light entering a gas will emerge with dark
(absorption) lines at frequencies that correspond to emission lines (Fig. 27–23c).

The Bohr theory also ensures the stability of atoms. It establishes stability by
decree: the ground state is the lowest state for an electron and there is no lower
energy level to which it can go and emit more energy. Finally, as we saw above,
the Bohr theory accurately predicts the ionization energy of 13.6 eV for hydro-
gen. However, the Bohr model was not so successful for other atoms, and has
been superseded as we shall discuss in the next Chapter. We discuss the Bohr
model because it was an important start and because we still use the concept of
stationary states, the ground state, and transitions between states. Also, the ter-
minology used in the Bohr model is still used by chemists and spectroscopists.

Wavelength of a Lyman line. Use Fig. 27–29 to deter-
mine the wavelength of the first Lyman line, the transition from to
In what region of the electromagnetic spectrum does this lie?

APPROACH We use Eq. 27–10, with the energies obtained from
Fig. 27–29 to find the energy and the wavelength of the transition. The region 
of the electromagnetic spectrum is found using the EM spectrum in Fig. 22–8.

SOLUTION In this case,
Since we have

or 122 nm, which is in the UV region of the EM spectrum, Fig. 22–8. See also
Fig. 27–25, where this value is confirmed experimentally.

NOTE An alternate approach: use Eq. 27–16 to find and get the same result.

Wavelength of a Balmer line. Use the Bohr model to
determine the wavelength of light emitted when a hydrogen atom makes a
transition from the to the energy level.

APPROACH We can use Eq. 27–16 or its equivalent, Eq. 27–9, with

SOLUTION We find

So or 410 nm. This is the fourth line
in the Balmer series, Fig. 27–24, and is violet in color.

Absorption wavelength. Use Fig. 27–29 to determine the
maximum wavelength that hydrogen in its ground state can absorb. What would
be the next smaller wavelength that would work?

APPROACH Maximum wavelength corresponds to minimum energy, and this
would be the jump from the ground state up to the first excited state
(Fig. 27–29). The next smaller wavelength occurs for the jump from the ground
state to the second excited state.

SOLUTION The energy needed to jump from the ground state to the first excited
state is the required wavelength, as we saw in
Example 27–13, is 122 nm. The energy to jump from the ground state to the second
excited state is which corresponds to a wavelength

=
A6.63 * 10–34 J�sB A3.00 * 108 m�sB

(12.1 eV)A1.60 * 10–19 J�eVB = 103 nm.l =
c

f
=

hc

hf
=

hc

E3 - E1

13.6 eV - 1.5 eV = 12.1 eV,

13.6 eV - 3.4 eV = 10.2 eV;

EXAMPLE 27;15

l = 1�A2.44 * 106 m–1B = 4.10 * 10–7 m

1
l

= A1.097 * 107 m–1B ¢ 1
4
-

1
36
≤ = 2.44 * 106 m–1 .

R = 1.097 * 107 m–1 .

n = 2n = 6

EXAMPLE 27;14

l,

l =
c

f
=

hc

E2 - E1
=
A6.63 * 10–34 J�sB A3.00 * 108 m�sB

1.63 * 10–18 J
= 1.22 * 10–7 m,

l = c�f,(10.2 eV)A1.60 * 10–19 J�eVB = 1.63 * 10–18 J.
hf = E2 - E1 = E–3.4 eV - (–13.6 eV)F = 10.2 eV =

hf = Eu - El ,

n = 1.n = 2
EXAMPLE 27;13
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ionization energy. (a) Use the Bohr model to deter-
mine the ionization energy of the ion, which has a single electron. (b) Also
calculate the maximum wavelength a photon can have to cause ionization. The
helium atom is the second atom, after hydrogen, in the Periodic Table (next
Chapter); its nucleus contains 2 protons and normally has 2 electrons circulating
around it, so 

APPROACH We want to determine the minimum energy required to lift the
electron from its ground state and to barely reach the free state at The
ground state energy of is given by Eq. 27–15b with and 

SOLUTION (a) Since all the symbols in Eq. 27–15b are the same as for the
calculation for hydrogen, except that Z is 2 instead of 1, we see that will be

times the for hydrogen:

Thus, to ionize the ion should require 54.4 eV, and this value agrees with
experiment.
(b) The maximum wavelength photon that can cause ionization will have energy

and wavelength

If , ionization can not occur.

NOTE If the atom absorbed a photon of greater energy (wavelength shorter
than 22.8 nm), the atom could still be ionized and the freed electron would have
kinetic energy of its own.

In this Example 27–16, we saw that for the ion is four times more
negative than that for hydrogen. Indeed, the energy-level diagram for looks
just like that for hydrogen, Fig. 27–29, except that the numerical values for each
energy level are four times larger. Note, however, that we are talking here about
the ion. Normal (neutral) helium has two electrons and its energy level
diagram is entirely different.

Hydrogen at 20°C. (a) Estimate the
average kinetic energy of whole hydrogen atoms (not just the electrons) at room
temperature. (b) Use the result to explain why, at room temperature, very few
H atoms are in excited states and nearly all are in the ground state, and hence
emit no light.

RESPONSE According to kinetic theory (Chapter 13), the average kinetic
energy of atoms or molecules in a gas is given by Eq. 13–8:

where is Boltzmann’s constant, and T is the kelvin
(absolute) temperature. Room temperature is about so

or, in electron volts:

The average of an atom as a whole is thus very small compared to the energy
between the ground state and the next higher energy state 

Any atoms in excited states quickly fall to the ground state and emit
light. Once in the ground state, collisions with other atoms can transfer energy
of only 0.04 eV on the average. A small fraction of atoms can have much more
energy (see Section 13–10 on the distribution of molecular speeds), but even a
kinetic energy that is 10 times the average is not nearly enough to excite atoms
into states above the ground state. Thus, at room temperature, practically all
atoms are in the ground state. Atoms can be excited to upper states by very high
temperatures, or by applying a high voltage so a current of high energy electrons
passes through the gas as in a discharge tube (Fig. 27–22).

10.2 eV).
(13.6 eV - 3.4 eV =

ke

G =
6.2 * 10–21 J

1.6 * 10–19 J�eV
= 0.04 eV.

G = 3
2 A1.38 * 10–23 J�KB(300 K) = 6.2 * 10–21 J,

T = 300 K,
k = 1.38 * 10–23 J�K

G = 3
2 kT,

CONCEPTUAL EXAMPLE 27;17
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He±E1

l 7 22.8 nm

l =
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f
=

hc

hf
=
A6.63 * 10–34 J�sB A3.00 * 108 m�sB

(54.4 eV)A1.60 * 10–19 J�eVB = 22.8 nm.

hf = 54.4 eV

He±

E1 = 4(–13.6 eV) = –54.4 eV.

E1Z2 = 22 = 4
E1

Z = 2.n = 1He±
E = 0.

Z = 2.
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He�EXAMPLE 27;16
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Correspondence Principle
We should note that Bohr made some radical assumptions that were at variance
with classical ideas. He assumed that electrons in fixed orbits do not radiate light
even though they are accelerating (moving in a circle), and he assumed that
angular momentum is quantized. Furthermore, he was not able to say how an
electron moved when it made a transition from one energy level to another. On
the other hand, there is no real reason to expect that in the tiny world of the atom
electrons would behave as ordinary-sized objects do. Nonetheless, he felt that
where quantum theory overlaps with the macroscopic world, it should predict
classical results. This is the correspondence principle, already mentioned in
regard to relativity (Section 26–11). This principle does work for Bohr’s theory
of the hydrogen atom. The orbit sizes and energies are quite different for
and say. But orbits with and 100,000,001 would be very
close in radius and energy (see Fig. 27–29). Indeed, transitions between such
large orbits, which would approach macroscopic sizes, would be imperceptible.
Such orbits would thus appear to be continuously spaced, which is what we
expect in the everyday world.

Finally, it must be emphasized that the well-defined orbits of the Bohr model
do not actually exist. The Bohr model is only a model, not reality. The idea of
electron orbits was rejected a few years later, and today electrons are thought of
(Chapter 28) as forming “probability clouds.”

27–13 de Broglie’s Hypothesis
Applied to Atoms

Bohr’s theory was largely of an ad hoc nature. Assumptions were made so that
theory would agree with experiment. But Bohr could give no reason why the orbits
were quantized, nor why there should be a stable ground state. Finally, ten years
later, a reason was proposed by Louis de Broglie. We saw in Section 27–8 that 
in 1923, de Broglie proposed that material particles, such as electrons, have a wave
nature; and that this hypothesis was confirmed by experiment several years later.

One of de Broglie’s original arguments in favor of the wave nature of elec-
trons was that it provided an explanation for Bohr’s theory of the hydrogen
atom. According to de Broglie, a particle of mass m moving with a nonrelativistic
speed v would have a wavelength (Eq. 27–8) of

Each electron orbit in an atom, he proposed, is actually a standing wave. As we
saw in Chapter 11, when a violin or guitar string is plucked, a vast number of
wavelengths are excited. But only certain ones—those that have nodes at the
ends—are sustained. These are the resonant modes of the string. Waves with
other wavelengths interfere with themselves upon reflection and their amplitudes
quickly drop to zero. With electrons moving in circles, according to Bohr’s theory,
de Broglie argued that the electron wave was a circular standing wave that closes
on itself, Fig. 27–30a. If the wavelength of a wave does not close on itself, as in 
Fig. 27–30b, destructive interference takes place as the wave travels around the
loop, and the wave quickly dies out. Thus, the only waves that persist are those for
which the circumference of the circular orbit contains a whole number of wave-
lengths, Fig. 27–31. The circumference of a Bohr orbit of radius is so to
have constructive interference, we need

When we substitute we get or

This is just the quantum condition proposed by Bohr on an ad hoc basis, Eq. 27–11.
It is from this equation that the discrete orbits and energy levels were derived.

mvrn =
nh

2p
.

2prn = nh�mv,l = h�mv,

2prn = nl,   n = 1, 2, 3, p .

2prn ,rn

l =
h

mv
.

n = 100,000,000n = 2,
n = 1
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FIGURE 27–30 (a) An ordinary
standing wave compared to a
circular standing wave. (b) When a
wave does not close (and hence
interferes destructively with itself),
it rapidly dies out.

FIGURE 27–31 Standing circular
waves for two, three, and five
wavelengths on the circumference;
n, the number of wavelengths, is
also the quantum number.

(a)

(b)

n � 5

n � 3

n � 2



Now we have a first explanation for the quantized orbits and energy states in the
Bohr model: they are due to the wave nature of the electron, and only resonant
“standing” waves can persist.† This implies that the wave–particle duality is at 
the root of atomic structure.

In viewing the circular electron waves of Fig. 27–31, the electron is not to be
thought of as following the oscillating wave pattern. In the Bohr model of hydrogen,
the electron moves in a circle. The circular wave, on the other hand, represents the
amplitude of the electron “matter wave,” and in Fig. 27–31 the wave amplitude 
is shown superimposed on the circular path of the particle orbit for convenience.

Bohr’s theory worked well for hydrogen and for one-electron ions. But it did
not prove successful for multi-electron atoms. Bohr theory could not predict line
spectra even for the next simplest atom, helium. It could not explain why some emis-
sion lines are brighter than others, nor why some lines are split into two or more
closely spaced lines (“fine structure”). A new theory was needed and was indeed
developed in the 1920s. This new and radical theory is called quantum mechanics.
It finally solved the problem of atomic structure, but it gives us a very different
view of the atom: the idea of electrons in well-defined orbits was replaced with the
idea of electron “clouds.” This new theory of quantum mechanics has given us a
wholly different view of the basic mechanisms underlying physical processes.
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†We note, however, that Eq. 27–11 is no longer considered valid, as discussed in the next Chapter.

FIGURE 27–31 (Repeated.) Standing
circular waves for two, three, and 
five wavelengths on the circumference;
n, the number of wavelengths,
is also the quantum number.

n � 5

n � 3

n � 2

The electron was discovered using an evacuated cathode ray
tube. The measurement of the charge-to-mass ratio of
the electron was done using magnetic and electric fields. The
charge e on the electron was first measured in the Millikan 
oil-drop experiment and then its mass was obtained from the
measured value of the ratio.

Quantum theory has its origins in Planck’s quantum hypothesis
that molecular oscillations are quantized: their energy E can only
be integer (n) multiples of hf, where h is Planck’s constant and
f is the natural frequency of oscillation:

(27;3)

This hypothesis explained the spectrum of radiation emitted by
a blackbody at high temperature.

Einstein proposed that for some experiments, light could
be pictured as being emitted and absorbed as quanta (particles),
which we now call photons, each with energy

(27;4)

and momentum

(27;6)

He proposed the photoelectric effect as a test for the photon
theory of light. In the photoelectric effect, the photon theory
says that each incident photon can strike an electron in a
material and eject it if the photon has sufficient energy. The
maximum energy of ejected electrons is then linearly related to
the frequency of the incident light.

The photon theory is also supported by the Compton
effect and the observation of electron–positron pair production.

The wave;particle duality refers to the idea that light and
matter (such as electrons) have both wave and particle proper-
ties. The wavelength of an object is given by

(27;8)

where p is the momentum of the object ( for a particle
of mass m and speed v).

p = mv

l =
h
p

,

p =
E
c

=
hf

c
=

h

l
.

E = hf

E = nhf.

e�m

(e�m)
The principle of complementarity states that we must be

aware of both the particle and wave properties of light and of
matter for a complete understanding of them.

Electron microscopes (EM) make use of the wave proper-
ties of electrons to form an image: their “lenses” are magnetic.
Various types of EM exist: some can magnify 100,000* (1000*
better than a light microscope); others can give a 3-D image.

Early models of the atom include Rutherford’s planetary
(or nuclear) model of an atom which consists of a tiny but
massive positively charged nucleus surrounded (at a relatively
great distance) by electrons.

To explain the line spectra emitted by atoms, as well as the
stability of atoms, the Bohr model postulated that: (1) elec-
trons bound in an atom can only occupy orbits for which the
angular momentum is quantized, which results in discrete
values for the radius and energy; (2) an electron in such a
stationary state emits no radiation; (3) if an electron jumps to 
a lower state, it emits a photon whose energy equals the
difference in energy between the two states; (4) the angular
momentum L of atomic electrons is quantized by the rule

where n is an integer called the quantum number.
The state is the ground state, which in hydrogen has 
an energy Higher values of n correspond to
excited states, and their energies are

(27;15b)

where Ze is the charge on the nucleus. Atoms are excited to
these higher states by collisions with other atoms or electrons,
or by absorption of a photon of just the right frequency.

De Broglie’s hypothesis that electrons (and other matter)
have a wavelength gave an explanation for Bohr’s
quantized orbits by bringing in the wave–particle duality: the
orbits correspond to circular standing waves in which the cir-
cumference of the orbit equals a whole number of wavelengths.

l = h�mv

En = –(13.6 eV)
Z2

n2
,

E1 = –13.6 eV.
n = 1

L = nh�2p,

Summary



Questions 797

1. Does a lightbulb at a temperature of 2500 K produce as
white a light as the Sun at 6000 K? Explain.

2. If energy is radiated by all objects, why can we not see them
in the dark? (See also Section 14–8.)

3. What can be said about the relative temperatures of
whitish-yellow, reddish, and bluish stars? Explain.

4. Darkrooms for developing black-and-white film were
sometimes lit by a red bulb. Why red? Explain if such a
bulb would work in a darkroom for developing color film.

5. If the threshold wavelength in the photoelectric effect
increases when the emitting metal is changed to a different
metal, what can you say about the work functions of the
two metals?

6. Explain why the existence of a cutoff frequency in the
photoelectric effect more strongly favors a particle theory
rather than a wave theory of light.

7. UV light causes sunburn, whereas visible light does not.
Suggest a reason.

8. The work functions for sodium and cesium are 2.28 eV and
2.14 eV, respectively. For incident photons of a given fre-
quency, which metal will give a higher maximum kinetic
energy for the electrons? Explain.

9. Explain how the photoelectric circuit of Fig. 27–6 could be
used in (a) a burglar alarm, (b) a smoke detector, (c) a photo-
graphic light meter.

10. (a) Does a beam of infrared photons always have less
energy than a beam of ultraviolet photons? Explain.
(b) Does a single photon of infrared light always have less
energy than a single photon of ultraviolet light? Why?

11. Light of 450-nm wavelength strikes a metal surface, and a
stream of electrons emerges from the metal. If light of the
same intensity but of wavelength 400 nm strikes the sur-
face, are more electrons emitted? Does the energy of the
emitted electrons change? Explain.

*12. If an X-ray photon is scattered by an electron, does the
photon’s wavelength change? If so, does it increase or
decrease? Explain.

*13. In both the photoelectric effect and in the Compton effect,
a photon collides with an electron causing the electron to
fly off. What is the difference between the two processes?

14. Why do we say that light has wave properties? Why do we
say that light has particle properties?

15. Why do we say that electrons have wave properties? Why
do we say that electrons have particle properties?

16. What are the differences between a photon and an
electron? Be specific: make a list.

17. If an electron and a proton travel at the same speed, which
has the shorter wavelength? Explain.

18. An electron and a proton are accelerated through the same
voltage. Which has the longer wavelength? Explain why.

19. In Rutherford’s planetary model of the atom, what keeps
the electrons from flying off into space?

20. When a wide spectrum of light passes through hydrogen
gas at room temperature, absorption lines are observed
that correspond only to the Lyman series. Why don’t we
observe the other series?

21. How can you tell if there is oxygen near the surface of the
Sun?

22. (a) List at least three successes of the Bohr model of the
atom, according to Section 27–12. (b) List at least two
observations that the Bohr model could not explain,
according to Section 27–13.

23. According to Section 27–11, what were the two main
difficulties of the Rutherford model of the atom?

24. Is it possible for the de Broglie wavelength of a “particle”
to be greater than the dimensions of the particle? To be
smaller? Is there any direct connection? Explain.

25. How can the spectrum of hydrogen contain so many lines
when hydrogen contains only one electron?

26. Explain how the closely spaced energy levels for hydrogen
near the top of Fig. 27–29 correspond to the closely spaced
spectral lines at the top of Fig. 27–24.

27. In a helium atom, which contains two electrons, do you
think that on average the electrons are closer to the
nucleus or farther away than in a hydrogen atom? Why?

28. The Lyman series is brighter than the Balmer series,
because this series of transitions ends up in the most
common state for hydrogen, the ground state. Why then
was the Balmer series discovered first?

29. Use conservation of momentum to explain why photons
emitted by hydrogen atoms have slightly less energy than
that predicted by Eq. 27–10.

30. State if a continuous or a line spectrum is produced by
each of the following: (a) a hot solid object; (b) an
excited, rarefied gas; (c) a hot liquid; (d) light from a hot
solid that passes through a cooler rarefied gas; (e) a hot
dense gas. For each, if a line spectrum is produced, is it an
emission or an absorption spectrum?

31. Suppose we obtain an emission spectrum for hydrogen at
very high temperature (when some of the atoms are in
excited states), and an absorption spectrum at room tem-
perature, when all atoms are in the ground state. Will the
two spectra contain identical lines?

Questions
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1. Which of the following statements is true regarding how
blackbody radiation changes as the temperature of the
radiating object increases?
(a) Both the maximum intensity and the peak wavelength

increase.
(b) The maximum intensity increases, and the peak

wavelength decreases.
(c) Both the maximum intensity and the peak wavelength

decrease.
(d) The maximum intensity decreases, and the peak

wavelength increases.

2. As red light shines on a piece of metal, no electrons are
released. When the red light is slowly changed to shorter-
wavelength light (basically progressing through the rainbow),
nothing happens until yellow light shines on the metal, at
which point electrons are released from the metal. If this
metal is replaced with a metal having a higher work function,
which light would have the best chance of releasing elec-
trons from the metal?
(a) Blue.
(b) Red.
(c) Yellow would still work fine.
(d) We need to know more about the metals involved.

3. A beam of red light and a beam of blue light have equal
intensities. Which statement is true?
(a) There are more photons in the blue beam.
(b) There are more photons in the red beam.
(c) Both beams contain the same number of photons.
(d) The number of photons is not related to intensity.

4. Which of the following is necessarily true?
(a) Red light has more energy than violet light.
(b) Violet light has more energy than red light.
(c) A single photon of red light has more energy than a

single photon of violet light.
(d) A single photon of violet light has more energy than a

single photon of red light.
(e) None of the above.
(f) A combination of the above (specify).

5. If a photon of energy E ejects electrons from a metal with
kinetic energy , then a photon with energy E 2
(a) will eject electrons with kinetic energy 2.
(b) will eject electrons with an energy greater than 2.
(c) will eject electrons with an energy less than 2.
(d) might not eject any electrons.

6. If the momentum of an electron were doubled, how would
its wavelength change?
(a) No change.
(b) It would be halved.
(c) It would double.
(d) It would be quadrupled.
(e) It would be reduced to one-fourth.

7. Which of the following can be thought of as either a wave 
or a particle?
(a) Light.
(b) An electron.
(c) A proton.
(d) All of the above.

�ke
�ke

�ke
�ke

8. When you throw a baseball, its de Broglie wavelength is
(a) the same size as the ball.
(b) about the same size as an atom.
(c) about the same size as an atom’s nucleus.
(d) much smaller than the size of an atom’s nucleus.

9. Electrons and photons of light are similar in that
(a) both have momentum given by 
(b) both exhibit wave–particle duality.
(c) both are used in diffraction experiments to explore

structure.
(d) All of the above.
(e) None of the above.

10. In Rutherford’s famous set of experiments described in
Section 27–10, the fact that some alpha particles were
deflected at large angles indicated that (choose all that apply)
(a) the nucleus was positive.
(b) charge was quantized.
(c) the nucleus was concentrated in a small region of 

space.
(d) most of the atom is empty space.
(e) None of the above.

11. Which of the following electron transitions between two
energy states (n) in the hydrogen atom corresponds to the
emission of a photon with the longest wavelength?
(a)
(b)
(c)
(d)

12. If we set the potential energy of an electron and a proton 
to be zero when they are an infinite distance apart, then
the lowest energy a bound electron in a hydrogen atom can
have is
(a) 0.
(b)
(c) any possible value.
(d) any value between and 0.

13. Which of the following is the currently accepted model of
the atom?
(a) The plum-pudding model.
(b) The Rutherford atom.
(c) The Bohr atom.
(d) None of the above.

14. Light has all of the following except:
(a) mass.
(b) momentum.
(c) kinetic energy.
(d) frequency.
(e) wavelength.

–13.6 eV

–13.6 eV.

8 S 5.
5 S 8.
5 S 2.
2 S 5.

h�l.

MisConceptual Questions
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27–1 Discovery of the Electron

1. (I) What is the value of for a particle that moves in a
circle of radius 14 mm in a 0.86-T magnetic field if a perpen-
dicular electric field will make the path straight?

2. (II) (a) What is the velocity of a beam of electrons that go
undeflected when passing through crossed (perpendicular)
electric and magnetic fields of magnitude 
and respectively? (b) What is the radius of
the electron orbit if the electric field is turned off?

3. (II) An oil drop whose mass is is held at rest
between two large plates separated by 1.0 cm (Fig. 27–3),
when the potential difference between the plates is 340 V.
How many excess electrons does this drop have?

27–2 Blackbodies; Planck’s Quantum Hypothesis

4. (I) How hot is a metal being welded if it radiates most
strongly at 520 nm?

5. (I) Estimate the peak wavelength for radiation emitted from
(a) ice at 0°C, (b) a floodlamp at 3100 K, (c) helium at 4 K,
assuming blackbody emission. In what region of the EM
spectrum is each?

6. (I) (a) What is the temperature if the peak of a blackbody
spectrum is at 18.0 nm? (b) What is the wavelength at the
peak of a blackbody spectrum if the body is at a tempera-
ture of 2200 K?

7. (I) An HCl molecule vibrates with a natural frequency of
What is the difference in energy (in joules

and electron volts) between successive values of the oscilla-
tion energy?

8. (II) The steps of a flight of stairs are 20.0 cm high (vertically).
If a 62.0-kg person stands with both feet on the same step,
what is the gravitational potential energy of this person,
relative to the ground, on (a) the first step, (b) the second
step, (c) the third step, (d) the nth step? (e) What is the change
in energy as the person descends from step 6 to step 2?

9. (II) Estimate the peak wavelength of light emitted from the
pupil of the human eye (which approximates a blackbody)
assuming normal body temperature.

27–3 and 27–4 Photons and the Photoelectric Effect

10. (I) What is the energy of photons (joules) emitted by a
91.7-MHz FM radio station?

11. (I) What is the energy range (in joules and eV) of photons
in the visible spectrum, of wavelength 400 nm to 750 nm?

12. (I) A typical gamma ray emitted from a nucleus during
radioactive decay may have an energy of 320 keV. What is
its wavelength? Would we expect significant diffraction of
this type of light when it passes through an everyday
opening, such as a door?

13. (I) Calculate the momentum of a photon of yellow light of
wavelength

14. (I) What is the momentum of a X-ray photon?
15. (I) For the photoelectric effect, make a table that shows

expected observations for a particle theory of light and for
a wave theory of light. Circle the actual observed effects.
(See Section 27–3.)

16. (II) About 0.1 eV is required to break a “hydrogen bond” in
a protein molecule. Calculate the minimum frequency and
maximum wavelength of a photon that can accomplish this.

17. (II) What minimum frequency of light is needed to eject 
electrons from a metal whose work function is 4.8 * 10–19 J?

l = 0.014 nm
5.80 * 10–7 m.

8.1 * 1013 Hz.

2.8 * 10–15 kg

2.60 * 10–3 T,
1.88 * 104 V�m

640-V�m

e�m

18. (II) The human eye can respond to as little as of light
energy. For a wavelength at the peak of visual sensitivity,
550 nm, how many photons lead to an observable flash?

19. (II) What is the longest wavelength of light that will emit
electrons from a metal whose work function is 2.90 eV?

20. (II) The work functions for sodium, cesium, copper, and iron
are 2.3, 2.1, 4.7, and 4.5 eV, respectively. Which of these
metals will not emit electrons when visible light shines on it?

21. (II) In a photoelectric-effect experiment it is observed that
no current flows unless the wavelength is less than 550 nm.
(a) What is the work function of this material? (b) What stop-
ping voltage is required if light of wavelength 400 nm is used?

22. (II) What is the maximum kinetic energy of electrons
ejected from barium when illuminated by
white light, to 750 nm?

23. (II) Barium has a work function of 2.48 eV. What is the
maximum kinetic energy of electrons if the metal is illumi-
nated by UV light of wavelength 365 nm? What is their speed?

24. (II) When UV light of wavelength 255 nm falls on a metal
surface, the maximum kinetic energy of emitted electrons
is 1.40 eV. What is the work function of the metal?

25. (II) The threshold wavelength for emission of electrons
from a given surface is 340 nm. What will be the maximum
kinetic energy of ejected electrons when the wavelength is
changed to (a) 280 nm, (b) 360 nm?

26. (II) A certain type of film is sensitive only to light whose
wavelength is less than 630 nm. What is the energy (eV and

) needed for the chemical reaction to occur which
causes the film to change?

27. (II) When 250-nm light falls on a metal, the current through a
photoelectric circuit (Fig.27–6) is brought to zero at a stopping
voltage of 1.64 V. What is the work function of the metal?

28. (II) In a photoelectric experiment using a clean sodium
surface, the maximum energy of the emitted electrons was
measured for a number of different incident frequencies,
with the following results.

Frequency Energy (eV)

11.8 2.60
10.6 2.11
9.9 1.81
9.1 1.47
8.2 1.10
6.9 0.57

Plot the graph of these results and find: (a) Planck’s constant;
(b) the cutoff frequency of sodium; (c) the work function.

29. (II) Show that the energy E (in electron volts) of a photon
whose wavelength is (nm) is given by

Use at least 4 significant figures for values of h, c, e (see
inside front cover).

*27–5 Compton Effect

*30. (I) A high-frequency photon is scattered off of an electron
and experiences a change of wavelength of 
At what angle must a detector be placed to detect the scattered
photon (relative to the direction of the incoming photon)?

1.7 * 10–4 nm.

E =
1.240 * 103 eV�nm

l (nm)
.

l

(* 1014 Hz)

kcal�mol

l = 400
AW0 = 2.48 eVB

10–18 J

Problems
For assigned homework and other learning materials, go to the MasteringPhysics website.
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*31. (II) The quantity which has the dimensions of length,
is called the Comptonwavelength. Determine the Compton
wavelength for (a) an electron, (b) a proton. (c) Show 
that if a photon has wavelength equal to the Compton
wavelength of a particle, the photon’s energy is equal to the
rest energy of the particle,

*32. (II) X-rays of wavelength are scattered
from carbon. What is the expected Compton wavelength
shift for photons detected at angles (relative to the inci-
dent beam) of exactly (a) 45°, (b) 90°, (c) 180°?

27–6 Pair Production

33. (I) How much total kinetic energy will an electron–positron
pair have if produced by a 3.64-MeV photon?

34. (II) What is the longest wavelength photon that could
produce a proton–antiproton pair? (Each has a mass of

)
35. (II) What is the minimum photon energy needed to

produce a pair? The mass of each (muon) is 
207 times the mass of an electron. What is the wavelength
of such a photon?

36. (II) An electron and a positron, each moving at
collide head on, disappear, and produce

two photons, each with the same energy and momentum
moving in opposite directions. Determine the energy and
momentum of each photon.

37. (II) A gamma-ray photon produces an electron and a
positron, each with a kinetic energy of 285 keV. Determine
the energy and wavelength of the photon.

27–8 Wave Nature of Matter

38. (I) Calculate the wavelength of a 0.21-kg ball traveling at

39. (I) What is the wavelength of a neutron 
traveling at 

40. (II) Through how many volts of potential difference must
an electron, initially at rest, be accelerated to achieve a
wavelength of 0.27 nm?

41. (II) Calculate the ratio of the kinetic energy of an electron
to that of a proton if their wavelengths are equal. Assume
that the speeds are nonrelativistic.

42. (II) An electron has a de Broglie wavelength
(a) What is its momentum? (b) What

is its speed? (c) What voltage was needed to accelerate it
from rest to this speed?

43. (II) What is the wavelength of an electron of energy
(a) 10 eV, (b) 100 eV, (c) 1.0 keV?

44. (II) Show that if an electron and a proton have the same
nonrelativistic kinetic energy, the proton has the shorter
wavelength.

45. (II) Calculate the de Broglie wavelength of an electron if it
is accelerated from rest by 35,000 V as in Fig. 27–2. Is it rela-
tivistic? How does its wavelength compare to the size of the
“neck” of the tube, typically 5 cm? Do we have to worry
about diffraction problems blurring the picture on the CRT
screen?

46. (III) A Ferrari with a mass of 1400 kg approaches a freeway
underpass that is 12 m across. At what speed must the car
be moving, in order for it to have a wavelength such that 
it might somehow “diffract” after passing through this
“single slit”? How do these conditions compare to normal
freeway speeds of 30 m�s?

l = 4.5 * 10–10 m.

8.5 * 104 m�s?1.67 * 10–27 kgB
Am =

0.10 m�s.

3.0 * 105 m�s,

mm±m–

1.67 * 10–27 kg.

l = 0.140 nm
mc2.

h�mc, 27–9 Electron Microscope

47. (II) What voltage is needed to produce electron wavelengths
of 0.26 nm? (Assume that the electrons are nonrelativistic.)

48. (II) Electrons are accelerated by 2850 V in an electron
microscope. Estimate the maximum possible resolution of
the microscope.

27–11 and 27–12 Spectra and the Bohr Model

49. (I) For the three hydrogen transitions indicated below, with
n being the initial state and being the final state, is the
transition an absorption or an emission? Which is higher, the
initial state energy or the final state energy of the atom? Finally,
which of these transitions involves the largest energy photon?
(a) (b) (c)

50. (I) How much energy is needed to ionize a hydrogen atom
in the state?

51. (I) The second longest wavelength in the Paschen series in
hydrogen (Fig. 27–29) corresponds to what transition?

52. (I) Calculate the ionization energy of doubly ionized
lithium, which has (and is in the ground state).

53. (I) (a) Determine the wavelength of the second Balmer
line ( to transition) using Fig. 27–29. Deter-
mine likewise (b) the wavelength of the second Lyman line
and (c) the wavelength of the third Balmer line.

54. (I) Evaluate the Rydberg constant R using the Bohr model
(compare Eqs. 27–9 and 27–16) and show that its value is

(Use values inside front cover to
5 or 6 significant figures.)

55. (II) What is the longest wavelength light capable of
ionizing a hydrogen atom in the ground state?

56. (II) What wavelength photon would be required to ionize
a hydrogen atom in the ground state and give the ejected
electron a kinetic energy of 11.5 eV?

57. (II) In the Sun, an ionized helium atom makes a
transition from the state to the state, emit-
ting a photon. Can that photon be absorbed by hydrogen
atoms present in the Sun? If so, between what energy
states will the hydrogen atom transition occur?

58. (II) Construct the energy-level diagram for the ion
(like Fig. 27–29).

59. (II) Construct the energy-level diagram for doubly ionized
lithium,

60. (II) Determine the electrostatic potential energy and the
kinetic energy of an electron in the ground state of the
hydrogen atom.

61. (II) A hydrogen atom has an angular momentum of
According to the Bohr model, what

is the energy (eV) associated with this state?
62. (II) An excited hydrogen atom could, in principle, have a

radius of 1.00 cm. What would be the value of n for a Bohr
orbit of this size? What would its energy be?

63. (II) Is the use of nonrelativistic formulas justified in the
Bohr atom? To check, calculate the electron’s velocity, v,
in terms of c, for the ground state of hydrogen, and then
calculate

64. (III) Show that the magnitude of the electrostatic potential
energy of an electron in any Bohr orbit of a hydrogen atom
is twice the magnitude of its kinetic energy in that orbit.

65. (III) Suppose an electron was bound to a proton, as in the
hydrogen atom, but by the gravitational force rather than
by the electric force. What would be the radius, and energy,
of the first Bohr orbit?

21 - v2�c2 .

5.273 * 10–34 kg �m2�s.

Li2± .

He±

n = 2n = 6
AHe±B

R = 1.0974 * 107 m–1.

n = 2n = 4

Z = 3Li2±,

n = 3

n¿ = 5.n = 4,n = 6, n¿ = 2;n = 1, n¿ = 3;

n¿



General Problems 801

66. The Big Bang theory (Chapter 33) states that the beginning
of the universe was accompanied by a huge burst of
photons. Those photons are still present today and make up
the so-called cosmic microwave background radiation.
The universe radiates like a blackbody with a temperature
today of about 2.7 K. Calculate the peak wavelength of this
radiation.

67. At low temperatures, nearly all the atoms in hydrogen gas
will be in the ground state. What minimum frequency photon
is needed if the photoelectric effect is to be observed?

68. A beam of 72-eV electrons is scattered from a crystal, as 
in X-ray diffraction, and a first-order peak is observed at

What is the spacing between planes in the
diffracting crystal? (See Section 25–11.)

69. A microwave oven produces electromagnetic radiation at
and produces a power of 720 W. Calculate the

number of microwave photons produced by the microwave
oven each second.

70. Sunlight reaching the Earth’s atmosphere has an intensity of
about Estimate how many photons per square
meter per second this represents. Take the average wave-
length to be 550 nm.

71. A beam of red laser light hits a black wall
and is fully absorbed. If this light exerts a total force

on the wall, how many photons per second are
hitting the wall?

72. A flashlight emits 2.5 W of light. As the light leaves the
flashlight in one direction, a reaction force is exerted on
the flashlight in the opposite direction. Estimate the size of
this reaction force.

73. A photomultiplier tube (a very sensitive light sensor), is
based on the photoelectric effect: incident photons strike a
metal surface and the resulting ejected electrons are
collected. By counting the number of collected electrons,
the number of incident photons (i.e., the incident light
intensity) can be determined. (a) If a photomultiplier tube
is to respond properly for incident wavelengths through-
out the visible range (410 nm to 750 nm), what is the
maximum value for the work function (eV) of its metal
surface? (b) If for its metal surface is above a certain
threshold value, the photomultiplier will only function for
incident ultraviolet wavelengths and be unresponsive to
visible light. Determine this threshold value (eV).

74. If a 100-W lightbulb emits 3.0% of the input energy as
visible light (average wavelength 550 nm) uniformly in all
directions, estimate how many photons per second of
visible light will strike the pupil (4.0 mm diameter) of the
eye of an observer, (a) 1.0 m away, (b) 1.0 km away.

75. An electron and a positron collide head on, annihilate, and
create two 0.85-MeV photons traveling in opposite direc-
tions. What were the initial kinetic energies of electron
and positron?

76. By what potential difference must (a) a proton 
and (b) an electron 

be accelerated from rest to have a wavelength
l = 4.0 * 10–12 m?

Am = 9.11 * 10–31 kgB,1.67 * 10–27 kgB,
Am =

W0

W0

F = 5.8 nN

(l = 633 nm)

1300 W�m2 .

l = 12.2 cm

u = 38°.

77. In some of Rutherford’s experiments (Fig. 27–19) the 
particles had a kinetic energy

of 4.8 MeV. How close could they get to the surface of a 
gold nucleus 
Ignore the recoil motion of the nucleus.

78. By what fraction does the mass of an H atom decrease
when it makes an to transition?

79. Calculate the ratio of the gravitational force to the electric
force for the electron in the ground state of a hydrogen
atom. Can the gravitational force be reasonably ignored?

80. Electrons accelerated from rest by a potential difference
of 12.3 V pass through a gas of hydrogen atoms at room
temperature. What wavelengths of light will be emitted?

81. In a particular photoelectric experiment, a stopping
potential of 2.10 V is measured when ultraviolet light of
wavelength 270 nm is incident on the metal. Using the
same setup, what will the new stopping potential be if blue
light of wavelength 440 nm is used, instead?

82. Neutrons can be used in diffraction experiments to probe
the lattice structure of crystalline solids. Since the neutron’s
wavelength needs to be on the order of the spacing
between atoms in the lattice, about 0.3 nm, what should
the speed of the neutrons be?

83. In Chapter 22, the intensity of light striking a surface was
related to the electric field of the associated electro-
magnetic wave. For photons, the intensity is the number of
photons striking a area per second. Suppose

of 497-nm light are incident on a 
surface every second. What is the intensity of the light?
Using the wave model of light, what is the maximum
electric field of the electromagnetic wave?

84. The intensity of the Sun’s light in the vicinity of the Earth
is about Imagine a spacecraft with a mirrored
square sail of dimension 1.0 km. Estimate how much thrust
(in newtons) this craft will experience due to collisions with
the Sun’s photons. [Hint: Assume the photons bounce off the
sail with no change in the magnitude of their momentum.]

85. Light of wavelength 280 nm strikes a metal whose work
function is 2.2 eV. What is the shortest de Broglie wave-
length for the electrons that are produced as photoelectrons?

86. Photons of energy 6.0 eV are incident on a metal. It is
found that current flows from the metal until a stopping
potential of 3.8 V is applied. If the wavelength of the
incident photons is doubled, what is the maximum kinetic
energy of the ejected electrons? What would happen if the
wavelength of the incident photons was tripled?

87. What would be the theoretical limit of resolution for an
electron microscope whose electrons are accelerated
through 110 kV? (Relativistic formulas should be used.)

88. Assume hydrogen atoms in a gas are initially in their
ground state. If free electrons with kinetic energy 12.75 eV
collide with these atoms, what photon wavelengths will be
emitted by the gas?

89. Visible light incident on a diffraction grating with slit
spacing of 0.010 mm has the first maximum at an angle of
3.6° from the central peak. If electrons could be diffracted
by the same grating, what electron velocity would produce
the same diffraction pattern as the visible light?

1350 W�m2.

1-m21.0 * 1012 photons
1-m2

n = 1n = 3

(radius L 7.0 * 10–15 m, charge = ±79e)?

Amass = 6.64 * 10–27 kgBa

General Problems
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90. (a) Suppose an unknown element has an absorption spec-
trum with lines corresponding to 2.5, 4.7, and 5.1 eV above
its ground state and an ionization energy of 11.5 eV. Draw
an energy level diagram for this element. (b) If a 5.1-eV
photon is absorbed by an atom of this substance, in which
state was the atom before absorbing the photon? What will
be the energies of the photons that can subsequently be
emitted by this atom?

91. A photon of momentum is emitted
from a hydrogen atom. To what spectrum series does this
photon belong, and from what energy level was it ejected?

92. Light of wavelength 464 nm falls on a metal which has a
work function of 2.28 eV. (a) How much voltage should be
applied to bring the current to zero? (b) What is the
maximum speed of the emitted electrons? (c) What is the
de Broglie wavelength of these electrons?

3.53 * 10–28 kg �m�s

93. An electron accelerated from rest by a 96-V potential
difference is injected into a magnetic field
where it travels in an 18-cm-diameter circle. Calculate 
from this information.

94. Estimate the number of photons emitted by the Sun in a
year. (Take the average wavelength to be 550 nm and the
intensity of sunlight reaching the Earth (outer atmosphere)
as )

95. Apply Bohr’s assumptions to the Earth–Moon system to
calculate the allowed energies and radii of motion. Given
the known distance between the Earth and Moon, is the
quantization of the energy and radius apparent?

96. At what temperature would the average kinetic energy
(Chapter 13) of a molecule of hydrogen gas be suffi-
cient to excite a hydrogen atom out of the ground state?

(H2)

1350 W�m2 .

e�m
3.67 * 10–4 T

1. Name the person or people who did each of the following:
(a) made the first direct measurement of the charge-to-
mass ratio of the electron (Section 27–1); (b) measured
the charge on the electron and showed that it is quantized
(Section 27–1); (c) proposed the radical assumption that
the vibrational energy of molecules in a radiating object is
quantized (Sections 27–2, 27–3); (d) found that light 
(X-rays) scattered off electrons in a material will decrease
the energy of the photons (Section 27–5); (e) proposed
that the wavelength of a material particle would be related
to its momentum in the same way as for a photon 
(Section 27–8); (f ) performed the first crucial experiment
illustrating electron diffraction (Section 27–8); (g) deciphered
the nuclear model of the atom by aiming particles at 
gold foil (Section 27–10).

2. State the principle of complementarity, and give at least two
experimental results that support this principle for electrons
and for photons. (See Section 27–7 and also Sections 27–3
and 27–8.)

3. Imagine the following Young’s double-slit experiment
using matter rather than light: electrons are accelerated
through a potential difference of 12 V, pass through two
closely spaced slits separated by a distance d, and create 
an interference pattern. (a) Using Example 27–11 and
Section 24–3 as guides, find the required value for d if the
first-order interference fringe is to be produced at an angle
of 10°. (b) Given the approximate size of atoms, would it
be possible to construct the required two-slit set-up for 
this experiment?

4. Does each of the following support the wave nature or the
particle nature of light? (a) The existence of the cutoff
frequency in the photoelectric effect; (b) Young’s double-
slit experiment; (c) the shift in the photon frequency in
Compton scattering; (d) the diffraction of light.

a

5. (a) From Sections 22–3, 24–4, and 27–3, estimate the mini-
mum energy (eV) that initiates the chemical process on the
retina responsible for vision. (b) Estimate the threshold
photon energy above which the eye registers no sensation
of sight.

6. (a) A rubidium atom is at rest with one electron
in an excited energy level. When the electron jumps to 
the ground state, the atom emits a photon of wavelength

Determine the resulting (nonrelativistic)
recoil speed v of the atom. (b) The recoil speed sets the
lower limit on the temperature to which an ideal gas of
rubidium atoms can be cooled in a laser-based atom trap.
Using the kinetic theory of gases (Chapter 13), estimate
this “lowest achievable” temperature.

7. Suppose a particle of mass m is confined to a one-
dimensional box of width L. According to quantum theory,
the particle’s wave (with ) is a standing wave
with nodes at the edges of the box. (a) Show the possible
modes of vibration on a diagram. (b) Show that the kinetic
energy of the particle has quantized energies given by

where n is an integer. (c) Calculate the
ground-state energy for an electron confined to a
box of width (d) What is the ground-state
energy, and speed, of a baseball in a box
0.65 m wide? (e) An electron confined to a box has a
ground-state energy of 22 eV. What is the width of the box?
[Hint: See Sections 27–8, 27–13, and 11–12.]

(m = 140 g)
0.50 * 10–10 m.

(n = 1)
ke = n2h2�8mL2,

l = h�mv

l = 780 nm.

(m = 85 u)

Search and Learn

A: so red.
B: More 1000-nm photons (each has lower energy).
C: 545 nm.5.50 * 1014 Hz,

lp = 725 nm, D: Only
E: Decrease.
F: (e).

l.
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