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A science fantasy book called Mr Tompkins in Wonderland (1940), by physicist George Gamow,
imagined a world in which the speed of light was only Mr Tompkins had 
studied relativity and when he began “speeding” on a bicycle, he “expected that he would be 
immediately shortened, and was very happy about it as his increasing figure had lately caused him 
some anxiety. To his great surprise, however, nothing happened to him or to his cycle. On the 
other hand, the picture around him completely changed. The streets grew shorter, the windows 
of the shops began to look like narrow slits, and the policeman on the corner became the thinnest 
man he had ever seen. ‘By Jove!’
exclaimed Mr Tompkins excitedly,
‘I see the trick now. This is where
the word relativity comes in.’”

Relativity does indeed predict
that objects moving relative to us
at high speed, close to the speed
of light c, are shortened in
length. We don’t notice it as
Mr Tompkins did, because

is incredibly
fast. We will study length
contraction, time dilation,
simultaneity non-agreement, and
how energy and mass are
equivalent AE = mc2B.

c = 3 * 108 m�s

10 m�s (20 mi�h).
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The Special Theory 
of Relativity
CHAPTER-OPENING QUESTION—Guess now!
A rocket is headed away from Earth at a speed of 0.80c. The rocket fires a small
payload at a speed of 0.70c (relative to the rocket) aimed away from Earth. How
fast is the payload moving relative to Earth?

(a) 1.50c;
(b) a little less than 1.50c;
(c) a little over c;
(d) a little under c;
(e) 0.75c.

P hysics at the end of the nineteenth century looked back on a period of
great progress. The theories developed over the preceding three centuries
had been very successful in explaining a wide range of natural phenomena.

Newtonian mechanics beautifully explained the motion of objects on Earth and
in the heavens. Furthermore, it formed the basis for successful treatments of
fluids, wave motion, and sound. Kinetic theory explained the behavior of gases
and other materials. Maxwell’s theory of electromagnetism embodied all of electric
and magnetic phenomena, and it predicted the existence of electromagnetic
waves that would behave just like light—so light came to be thought of as an
electromagnetic wave. Indeed, it seemed that the natural world, as seen through
the eyes of physicists, was very well explained. A few puzzles remained, but it
was felt that these would soon be explained using already known principles.
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It did not turn out so simply. Instead, these puzzles were to be solved only by
the introduction, in the early part of the twentieth century, of two revolutionary
new theories that changed our whole conception of nature: the theory of relativity
and quantum theory.

Physics as it was known at the end of the nineteenth century (what we’ve
covered up to now in this book) is referred to as classical physics. The new
physics that grew out of the great revolution at the turn of the twentieth century
is now called modern physics. In this Chapter, we present the special theory of
relativity, which was first proposed by Albert Einstein (1879–1955; Fig. 26–1) in
1905. In Chapter 27, we introduce the equally momentous quantum theory.

†A reference frame is a set of coordinate axes fixed to some object such as the Earth, a train, or the
Moon. See Section 2–1.
‡On a rotating platform (say a merry-go-round), for example, a ball at rest starts moving outward
even though no object exerts a force on it. This is therefore not an inertial frame. See Appendix C,
Fig. C–1.

FIGURE 26–1 Albert Einstein
(1879–1955), one of the great minds
of the twentieth century, was the
creator of the special and general
theories of relativity.

26–1 Galilean–Newtonian Relativity
Einstein’s special theory of relativity deals with how we observe events, particu-
larly how objects and events are observed from different frames of reference.†

This subject had already been explored by Galileo and Newton.
The special theory of relativity deals with events that are observed and meas-

ured from so-called inertial reference frames (Section 4–2 and Appendix C),
which are reference frames in which Newton’s first law is valid: if an object
experiences no net force, the object either remains at rest or continues in motion
with constant speed in a straight line. It is usually easiest to analyze events when
they are observed and measured by observers at rest in an inertial frame. The
Earth, though not quite an inertial frame (it rotates), is close enough that for
most purposes we can approximate it as an inertial frame. Rotating or otherwise
accelerating frames of reference are noninertial frames,‡ and won’t concern us in
this Chapter (they are dealt with in Einstein’s general theory of relativity, as we
will see in Chapter 33).

A reference frame that moves with constant velocity with respect to an
inertial frame is itself also an inertial frame, since Newton’s laws hold in it as well.
When we say that we observe or make measurements from a certain reference
frame, it means that we are at rest in that reference frame.



Both Galileo and Newton were aware of what we now call the relativity principle
applied to mechanics: that the basic laws of physics are the same in all inertial
reference frames. You may have recognized its validity in everyday life. For
example, objects move in the same way in a smoothly moving (constant-velocity)
train or airplane as they do on Earth. (This assumes no vibrations or rocking
which would make the reference frame noninertial.) When you walk, drink a
cup of soup, play pool, or drop a pencil on the floor while traveling in a train,
airplane, or ship moving at constant velocity, the objects move just as they do
when you are at rest on Earth. Suppose you are in a car traveling rapidly at
constant velocity. If you drop a coin from above your head inside the car, how
will it fall? It falls straight downward with respect to the car, and hits the floor
directly below the point of release, Fig. 26–2a. This is just how objects fall on the
Earth—straight down—and thus our experiment in the moving car is in accord
with the relativity principle. (If you drop the coin out the car’s window, this won’t
happen because the moving air drags the coin backward relative to the car.)

Note in this example, however, that to an observer on the Earth, the coin fol-
lows a curved path, Fig. 26–2b. The actual path followed by the coin is different
as viewed from different frames of reference. This does not violate the relativity
principle because this principle states that the laws of physics are the same in 
all inertial frames. The same law of gravity, and the same laws of motion, apply in
both reference frames. The acceleration of the coin is the same in both reference
frames. The difference in Figs. 26–2a and b is that in the Earth’s frame of reference,
the coin has an initial velocity (equal to that of the car). The laws of physics there-
fore predict it will follow a parabolic path like any projectile (Chapter 3). In the
car’s reference frame, there is no initial velocity, and the laws of physics predict
that the coin will fall straight down. The laws are the same in both reference frames,
although the specific paths are different.

Galilean–Newtonian relativity involves certain unprovable assumptions that
make sense from everyday experience. It is assumed that the lengths of objects
are the same in one reference frame as in another, and that time passes at the
same rate in different reference frames. In classical mechanics, then, space and
time intervals are considered to be absolute: their measurement does not change
from one reference frame to another. The mass of an object, as well as all forces,
are assumed to be unchanged by a change in inertial reference frame.

The position of an object, however, is different when specified in different
reference frames, and so is velocity. For example, a person may walk inside a bus
toward the front with a speed of But if the bus moves with respect
to the Earth, the person is then moving with a speed of with respect to the
Earth. The acceleration of an object, however, is the same in any inertial
reference frame according to classical mechanics. This is because the change in
velocity, and the time interval, will be the same. For example, the person in the
bus may accelerate from 0 to in 1.0 seconds, so in the reference
frame of the bus. With respect to the Earth, the acceleration is

which is the same.

(12 m�s - 10 m�s)�(1.0 s) = 2 m�s2,

a = 2 m�s22 m�s

12 m�s
10 m�s2 m�s.
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Laws are the same, but 
paths may be different in different

reference frames

C A U T I O N

Length and time intervals
are absolute (pre-relativity)

C A U T I O N

Position and velocity are different in
different reference frames, but length

is the same (classical)

(a)
Reference frame = car

(b)
Reference frame = Earth

FIGURE 26–2 A coin is dropped by
a person in a moving car. The upper
views show the moment of the coin’s
release, the lower views are a short
time later. (a) In the reference frame
of the car, the coin falls straight down
(and the tree moves to the left).
(b) In a reference frame fixed on the
Earth, the coin has an initial velocity
( to car’s) and follows a curved
(parabolic) path.
= 
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Since neither F, m, nor a changes from one inertial frame to another, Newton’s
second law, does not change. Thus Newtons’ second law satisfies the relativity
principle. The other laws of mechanics also satisfy the relativity principle.

That the laws of mechanics are the same in all inertial reference frames
implies that no one inertial frame is special in any sense. We express this
important conclusion by saying that all inertial reference frames are equivalent
for the description of mechanical phenomena. No one inertial reference frame is
any better than another. A reference frame fixed to a car or an aircraft traveling
at constant velocity is as good as one fixed on the Earth. When you travel
smoothly at constant velocity in a car or airplane, it is just as valid to say you are
at rest and the Earth is moving as it is to say the reverse.† There is no experiment
you can do to tell which frame is “really” at rest and which is moving. Thus, there
is no way to single out one particular reference frame as being at absolute rest.

A complication arose, however, in the last half of the nineteenth century.
Maxwell’s comprehensive and successful theory of electromagnetism (Chapter 22)
predicted that light is an electromagnetic wave. Maxwell’s equations gave the
velocity of light c as and this is just what is measured. The
question then arose: in what reference frame does light have precisely the value
predicted by Maxwell’s theory? It was assumed that light would have a different
speed in different frames of reference. For example, if observers could travel 
on a rocket ship at a speed of away from a source of light, we
might expect them to measure the speed of the light reaching them to be 

But Maxwell’s equations
have no provision for relative velocity. They predicted the speed of light to be

which seemed to imply that there must be some preferred
reference frame where c would have this value.

We discussed in Chapters 11 and 12 that waves can travel on water and along
ropes or strings, and sound waves travel in air and other materials. Nineteenth-
century physicists viewed the material world in terms of the laws of mechanics, so
it was natural for them to assume that light too must travel in some medium.
They called this transparent medium the ether and assumed it permeated all space.‡

It was therefore assumed that the velocity of light given by Maxwell’s equations
must be with respect to the ether.§

Scientists soon set out to determine the speed of the Earth relative to this
absolute frame, whatever it might be. A number of clever experiments were
designed. The most direct were performed by A. A. Michelson and E. W. Morley
in the 1880s. They measured the difference in the speed of light in different
directions using Michelson’s interferometer (Section 24–9). They expected to find
a difference depending on the orientation of their apparatus with respect to the
ether. For just as a boat has different speeds relative to the land when it moves
upstream, downstream, or across the stream, so too light would be expected to
have different speeds depending on the velocity of the ether past the Earth.

Strange as it may seem, they detected no difference at all. This was a great
puzzle. A number of explanations were put forth over a period of years, but they
led to contradictions or were otherwise not generally accepted. This null result
was one of the great puzzles at the end of the nineteenth century.

Then in 1905, Albert Einstein proposed a radical new theory that reconciled
these many problems in a simple way. But at the same time, as we shall see, it
completely changed our ideas of space and time.

c = 3.0 * 108 m�s,

A3.0 * 108 m�sB - A1.0 * 108 m�sB = 2.0 * 108 m�s.

1.0 * 108 m�s

3.00 * 108 m�s;

F = ma,

†We use the reasonable approximation that Earth is an inertial reference frame.
‡The medium for light waves could not be air, since light travels from the Sun to Earth through nearly
empty space. Therefore, another medium was postulated, the ether. The ether was not only trans-
parent but, because of difficulty in detecting it, was assumed to have zero density.
§Also, it appeared that Maxwell’s equations did not satisfy the relativity principle: They were simplest
in the frame where , in a reference frame at rest in the ether. In any other
reference frame, extra terms were needed to account for relative velocity. Although other laws of 
physics obeyed the relativity principle, the laws of electricity and magnetism apparently did not.
Einstein’s second postulate (next Section) resolved this problem: Maxwell’s equations do satisfy 
relativity.

c = 3.00 * 108 m�s



26–2 Postulates of the 
Special Theory of Relativity

The problems that existed at the start of the twentieth century with regard to
electromagnetic theory and Newtonian mechanics were beautifully resolved by
Einstein’s introduction of the special theory of relativity in 1905. Unaware of the
Michelson–Morley null result, Einstein was motivated by certain questions
regarding electromagnetic theory and light waves. For example, he asked himself:
“What would I see if I rode a light beam?” The answer was that instead of a trav-
eling electromagnetic wave, he would see alternating electric and magnetic fields
at rest whose magnitude changed in space, but did not change in time. Such fields,
he realized, had never been detected and indeed were not consistent with Maxwell’s
electromagnetic theory. He argued, therefore, that it was unreasonable to think
that the speed of light relative to any observer could be reduced to zero, or in fact
reduced at all. This idea became the second postulate of his theory of relativity.

In his famous 1905 paper, Einstein proposed doing away with the idea of the
ether and the accompanying assumption of a preferred or absolute reference frame
at rest. This proposal was embodied in two postulates. The first was an extension 
of the Galilean–Newtonian relativity principle to include not only the laws of
mechanics but also those of the rest of physics, including electricity and magnetism:

First postulate (the relati£ity principle): The laws of physics have the same
form in all inertial reference frames.

The first postulate can also be stated as: there is no experiment you can do in an
inertial reference frame to determine if you are at rest or moving uniformly at
constant velocity.

The second postulate is consistent with the first:

Second postulate (constancy of the speed of light): Light propagates through
empty space with a definite speed c independent of the speed of the source or
observer.

These two postulates form the foundation of Einstein’s special theory of relativity.
It is called “special” to distinguish it from his later “general theory of relativity,”
which deals with noninertial (accelerating) reference frames (Chapter 33). The
special theory, which is what we discuss here, deals only with inertial frames.

The second postulate may seem hard to accept, for it seems to violate common
sense. First of all, we have to think of light traveling through empty space. Giving
up the ether is not too hard, however, since it had never been detected. But the
second postulate also tells us that the speed of light in vacuum is always the same,

no matter what the speed of the observer or the source. Thus, a per-
son traveling toward or away from a source of light will measure the same speed
for that light as someone at rest with respect to the source. This conflicts with our
everyday experience: we would expect to have to add in the velocity of the observer.
On the other hand, perhaps we can’t expect our everyday experience to be 
helpful when dealing with the high velocity of light. Furthermore, the null result of
the Michelson–Morley experiment is fully consistent with the second postulate.†

Einstein’s proposal has a certain beauty. By doing away with the idea of an
absolute reference frame, it was possible to reconcile classical mechanics with
Maxwell’s electromagnetic theory. The speed of light predicted by Maxwell’s
equations is the speed of light in vacuum in any reference frame.

Einstein’s theory required us to give up common sense notions of space and
time, and in the following Sections we will examine some strange but interesting con-
sequences of special relativity. Our arguments for the most part will be simple ones.

3.00 * 108 m�s,
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†The Michelson–Morley experiment can also be considered as evidence for the first postulate, since it
was intended to measure the motion of the Earth relative to an absolute reference frame. Its failure
to do so implies the absence of any such preferred frame.

SPEED OF LIGHT PRINCIPLE

RELATIVITY PRINCIPLE
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We will use a technique that Einstein himself did: we will imagine very simple
experimental situations in which little mathematics is needed. In this way, we can
see many of the consequences of relativity theory without getting involved in
detailed calculations. Einstein called these thought experiments.

26–3 Simultaneity
An important consequence of the theory of relativity is that we can no longer
regard time as an absolute quantity. No one doubts that time flows onward and
never turns back. But according to relativity, the time interval between two
events, and even whether or not two events are simultaneous, depends on the
observer’s reference frame. By an event, which we use a lot here, we mean some-
thing that happens at a particular place and at a particular time.

Two events are said to occur simultaneously if they occur at exactly the same
time. But how do we know if two events occur precisely at the same time? If they
occur at the same point in space—such as two apples falling on your head at the
same time—it is easy. But if the two events occur at widely separated places, it is
more difficult to know whether the events are simultaneous since we have to take
into account the time it takes for the light from them to reach us. Because light
travels at finite speed, a person who sees two events must calculate back to find
out when they actually occurred. For example, if two events are observed to
occur at the same time, but one actually took place farther from the observer
than the other, then the more distant one must have occurred earlier, and the two
events were not simultaneous.

FIGURE 26–3 A moment after
lightning strikes at points A and B, the
pulses of light (shown as blue waves)
are traveling toward the observer O,
but O “sees” the lightning only when
the light reaches O.

A

Light coming from
the two events
at A and B

O

B

We now imagine a simple thought experiment. Assume an observer, called O,
is located exactly halfway between points A and B where two events occur,
Fig. 26–3. Suppose the two events are lightning that strikes the points A and B, as
shown. For brief events like lightning, only short pulses of light (blue in
Fig. 26–3) will travel outward from A and B and reach O. Observer O “sees” the
events when the pulses of light reach point O. If the two pulses reach O at the
same time, then the two events had to be simultaneous. This is because (i) the two
light pulses travel at the same speed (postulate 2), and (ii) the distance OA
equals OB, so the time for the light to travel from A to O and from B to O must
be the same. Observer O can then definitely state that the two events occurred
simultaneously. On the other hand, if O sees the light from one event before that
from the other, then the former event occurred first.

The question we really want to examine is this: if two events are simultaneous
to an observer in one reference frame, are they also simultaneous to another
observer moving with respect to the first? Let us call the observers and 
and assume they are fixed in reference frames 1 and 2 that move with speed v
relative to one another. These two reference frames can be thought of as two
rockets or two trains (Fig. 26–4). says that is moving to the right with speed v,
as in Fig. 26–4a; and says is moving to the left with speed v, as in Fig. 26–4b.
Both viewpoints are legitimate according to the relativity principle. [There is no
third point of view that will tell us which one is “really” moving.]

O2O1

O1O2

O2O1

FIGURE 26–4 Observers and 
on two different trains (two different
reference frames), are moving with
relative speed v. (a) says that 
is moving to the right. (b) says
that is moving to the left. Both
viewpoints are legitimate: it all
depends on your reference frame.

O2

O1

O1O2

O2 ,O1

(a)

(b)

O1

O2

O1

O2vB

vB



Now suppose that observers and observe and measure two lightning
strikes. The lightning bolts mark both trains where they strike: at and on

train, and at and on train, Fig. 26–5a. For simplicity, we assume that
is exactly halfway between and and is halfway between and 

Let us first put ourselves in reference frame, so we observe moving to the
right with speed v. Let us also assume that the two events occur simultaneously in
frame, and just at the instant when and are opposite each other, Fig. 26–5a.
A short time later, Fig. 26–5b, light from and from reach at the same time
(we assumed this). Since knows (or measures) the distances and 
as equal, knows the two events are simultaneous in the reference frame.O2O2

O2B2O2A2O2

O2B2A2

O2O1

O2’s
O1O2’s

B2 .A2O2B1 ,A1O1

O2’sB2A2O1’s
B1A1

O2O1
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FIGURE 26–5 Thought experiment on simultaneity. In both
(a) and (b) we are in the reference frame of observer 
who sees the reference frame of moving to the right.
In (a), one lightning bolt strikes the two reference frames at

and and a second lightning bolt strikes at and 
(b) A moment later, the light (shown in blue) from the two
events reaches at the same time. So according to 
observer the two bolts of lightning struck simultaneously.
But in reference frame, the light from has already
reached whereas the light from has not yet reached 
So in reference frame, the event at must have
preceded the event at Simultaneity in time is not
absolute.

A1 .
B1O1’s

O1.A1O1 ,
B1O1’s

O2 ,
O2

B2 .B1A2 ,A1

O1

O2 ,

(a)

(b)

A1 B1

A2 B2

O1

O2

A1

A2 B2

O1

O2

B1 vB

vB

But what does observer observe and measure? From our reference
frame, we can predict what will observe. We see that moves to the right
during the time the light is traveling to from and As shown in Fig. 26–5b,
we can see from our reference frame that the light from has already 
passed whereas the light from has not yet reached That is, observes
the light coming from before observing the light coming from Given 
(i) that light travels at the same speed c in any direction and in any reference
frame, and (ii) that the distance equals then observer can only
conclude that the event at occurred before the event at The two events are
not simultaneous for even though they are for 

We thus find that two events which take place at different locations and are
simultaneous to one observer, are actually not simultaneous to a second observer
who moves relative to the first.

It may be tempting to ask: “Which observer is right, or ” The answer,
according to relativity, is that they are both right. There is no “best” reference
frame we can choose to determine which observer is right. Both frames are
equally good. We can only conclude that simultaneity is not an absolute concept,
but is relative. We are not aware of this lack of agreement on simultaneity in
everyday life because the effect is noticeable only when the relative speed of the
two reference frames is very large (near c), or the distances involved are very large.

26–4 Time Dilation and the Twin Paradox
The fact that two events simultaneous to one observer may not be simultaneous
to a second observer suggests that time itself is not absolute. Could it be that time
passes differently in one reference frame than in another? This is, indeed, just what
Einstein’s theory of relativity predicts, as the following thought experiment shows.

Figure 26–6 shows a spaceship traveling past Earth at high speed. The point
of view of an observer on the spaceship is shown in part (a), and that of an observer
on Earth in part (b). Both observers have accurate clocks. The person on the space-
ship (Fig. 26–6a) flashes a light and measures the time it takes the light to travel
directly across the spaceship and return after reflecting from a mirror (the rays are
drawn at a slight angle for clarity). In the reference frame of the spaceship, the

O2?O1

O2 .O1 ,
A1 .B1

O1O1 B1 ,O1 A1

A1 .B1

O1O1 .A1O1 ,
B1O2

B1 .A1O1

O1O1

AO2BO1
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FIGURE 26–6 Time dilation can be
shown by a thought experiment: the 
time it takes for light to travel across
a spaceship and back is longer for the
observer on Earth (b) than for the
observer on the spaceship (a).

Receiver(a) Clock timer

Light
source

Mirror

(b) Earth

l l

D

D

D
2 � l

2

D 2
�
l 2

light travels a distance 2D at speed c, Fig. 26–6a; so the time required to go across
and back, is

The observer on Earth, Fig. 26–6b, observes the same process. But to this
observer, the spaceship is moving. So the light travels the diagonal path shown
going across the spaceship, reflecting off the mirror, and returning to the sender.
Although the light travels at the same speed to this observer (the second postulate),
it travels a greater distance. Hence the time required, as measured by the observer
on Earth, will be greater than that measured by the observer on the spaceship.

Let us determine the time interval measured by the observer on Earth
between sending and receiving the light. In time the spaceship travels 
a distance where v is the speed of the spaceship (Fig. 26–6b). The 
light travels a total distance on its diagonal path (Pythagorean theorem) of

where Therefore

We square both sides to find and solve for :

so

We combine this equation for with the formula for above, :

(26–1a)

Since is always less than 1, we see that That is, the time
interval between the two events (the sending of the light, and its reception on the
spaceship) is greater for the observer on Earth than for the observer on the space-
ship. This is a general result of the theory of relativity, and is known as time dilation.
The time dilation effect can be stated as

clocks moving relative to an observer are measured to run more slowly, as
compared to clocks at rest.

However, we should not think that the clocks are somehow at fault.
Time is actually measured to pass more slowly in any moving reference frame
as compared to your own.

This remarkable result is an inevitable outcome of the two postulates of the special
theory of relativity.

¢t 7 ¢t0 .31 - v2�c2

¢t =
¢t0

31 - v2�c2
.

¢t0 = 2D�c¢t0¢t

¢t =
2D

c31 - v2�c2
.

(¢t)2 = 4D2�Ac2 - v2B
(¢t)2c2(¢t)2 = 4D2 + v2(¢t)2,

c ¢t = 23D2 + l2 = 23D2 + v2(¢t)2�4 .

l = v ¢t�2.22D2 + l2 = c ¢t,

2l = v ¢t
¢t,

¢t

¢t0 =
2D
c

.
¢t0 ,

TIME DILATION



The factor occurs so often in relativity that we often give it
the shorthand symbol (the Greek letter “gamma”), and write Eq. 26–1a as

(26–1b)
where

(26–2)

Note that is never less than one, and has no units. At normal speeds, to
many decimal places. In general,

Values for at a few speeds v are given in Table 26–1.
is never less than 1.00 and exceeds 1.00 significantly only at very high speeds,

much above let’s say (for which ).
The concept of time dilation may be hard to accept, for it contradicts our

experience. We can see from Eq. 26–1 that the time dilation effect is indeed negli-
gible unless v is reasonably close to c. If v is much less than c, then the term 
is much smaller than the 1 in the denominator of Eq. 26–1, and then 
(see Example 26–2). The speeds we experience in everyday life are much smaller
than c, so it is little wonder we don’t ordinarily notice time dilation. But experiments
that have tested the time dilation effect have confirmed Einstein’s predictions.
In 1971, for example, extremely precise atomic clocks were flown around the Earth
in jet planes. The speed of the planes was much less than c, so the clocks
had to be accurate to nanoseconds in order to detect any time dilation.
They were this accurate, and they confirmed Eqs. 26–1 to within experimental error.
Time dilation had been confirmed decades earlier, however, by observations on
“elementary particles” which have very small masses (typically to ) and
so require little energy to be accelerated to speeds close to the speed of light, c.
Many of these elementary particles are not stable and decay after a time into
lighter particles. One example is the muon, whose mean lifetime is when at
rest. Careful experiments showed that when a muon is traveling at high speeds,
its lifetime is measured to be longer than when it is at rest, just as predicted by the
time dilation formula.

Lifetime of a moving muon. (a) What will be the mean
lifetime of a muon as measured in the laboratory if it is traveling at

with respect to the laboratory? A muon’s mean
lifetime at rest is (b) How far does a muon travel in the
laboratory, on average, before decaying?

APPROACH If an observer were to move along with the muon (the muon would
be at rest to this observer), the muon would have a mean life of To
an observer in the lab, the muon lives longer because of time dilation. We find the
mean lifetime using Eq. 26–1 and the average distance using

SOLUTION (a) From Eq. 26–1 with we have

(b) Relativity predicts that a muon with speed would travel an
average distance and this
is the distance that is measured experimentally in the laboratory.

NOTE At a speed of classical physics would tell us that 
with a mean life of an average muon would travel 

This is shorter than the distance measured.

EXERCISE A What is the muon’s mean lifetime (Example 26–1) if it is traveling at
(a) (b) (c) (d) (e) 12.0 ms.5.3 ms;5.0 ms;2.3 ms;0.42 ms;v = 0.90c?

A1.8 * 108 m�sB A2.2 * 10–6 sB = 400 m.
d = vt =2.2 ms,

1.8 * 108 m�s,

d = v ¢t = A1.80 * 108 m�sB A2.8 * 10–6 sB = 500 m,
1.80 * 108 m�s

=
2.20 * 10–6 s

31 - 0.36c2�c2
=

2.20 * 10–6 s

20.64
= 2.8 * 10–6 s.

¢t =
¢t0

31 - v2�c2

v = 0.60c,

d = v ¢t.

2.20 * 10–6 s.

2.20 ms = 2.20 * 10–6 s.
v = 0.60c = 1.80 * 108 m�s

EXAMPLE 26;1

2.2 ms

10–27 kg10–30

A10–9 sBA103 km�hB

¢t L ¢t0

v2�c2

g = 1.000006106 m�s
g

g = 1�21 - v2�c2

g � 1.
g = 1g

g =
1

31 - v2�c2
.

¢t = g ¢t0

g
1�31 - v2�c2
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TABLE 26–1 Values of 

£

0 1.00000
0.01c 1.00005
0.10c 1.005
0.50c 1.15
0.90c 2.3
0.99c 7.1

p

G

G
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C A U T I O N

Proper time is for 2 events at
the same point in space

¢t0

C A U T I O N

Proper time is shortest:
¢t 7 ¢t0

We need to clarify how to use Eq. 26–1, and the meaning of 
and The equation is true only when represents the time interval between
the two events in a reference frame where an observer at rest sees the two events
occur at the same point in space (as in Fig. 26–6a where the two events are the
light flash being sent and being received). This time interval, is called the
proper time. Then in Eqs. 26–1 represents the time interval between the two
events as measured in a reference frame moving with speed v with respect to the
first. In Example 26–1 above, (and not ) was set equal to 
because it is only in the rest frame of the muon that the two events (“birth” and
“decay”) occur at the same point in space. The proper time is the shortest time
between the events any observer can measure. In any other moving reference
frame, the time is greater.

Time dilation at 100 km/h. Let us check time dilation for
everyday speeds. A car traveling covers a certain distance in 10.00 s
according to the driver’s watch. What does an observer at rest on Earth measure
for the time interval?

APPROACH The car’s speed relative to Earth, written in meters per second,
is The driver is at rest in the
reference frame of the car, so we set in the time dilation 
formula.

SOLUTION We use Eq. 26–1a:

If you put these numbers into a calculator, you will obtain because
the denominator differs from 1 by such a tiny amount. The time measured by an
observer fixed on Earth would show no difference from that measured by the
driver, even with the best instruments. A computer that could calculate to a large
number of decimal places would reveal a slight difference between and 

NOTE We can estimate the difference using the binomial expansion (Appendix A–5),

In our time dilation formula, we have the factor Thus†

So the difference between and is predicted to be an extremely
small amount.

EXERCISE B A certain atomic clock keeps precise time on Earth. If the clock is taken
on a spaceship traveling at a speed does this clock now run slow according to
the people (a) on the spaceship, (b) on Earth?

v = 0.60c,

4 * 10–14 s,¢t0¢t

L  10.00 s + 4 * 10–14 s.

L  10.00 s c1 + 1
2
¢ 27.8 m�s

3.00 * 108 m�s
≤ 2

d

L ¢t0 ¢1 +
1
2

v2

c2
≤¢t = g ¢t0 = ¢t0 ¢1 -

v2

c2
≤ – 1

2

g = A1 - v2�c2B– 1
2.

[for x V 1](16x)n L  16nx.

¢t0 .¢t

¢t = 10.00 s,

=
10.00 s

31 - A8.59 * 10–15B .

¢t =
¢t0

C1 -
v2

c2

=
10.00 s

C1 - ¢ 27.8 m�s

3.00 * 108 m�s
≤ 2

¢t0 = 10.00 s
= 27.8 m�s.100 km�h = A1.00 * 105 mB�A3600 sB

100 km�h
EXAMPLE 26;2

¢t

¢t0

2.2 * 10–6 s¢t¢t0

¢t
¢t0 ,

¢t0¢t0 .
¢t¢t = g ¢t0 ,

P R O B L E M  S O L V I N G

Use of the binomial expansion

†Recall that is written as such as Appendix A–2.1�x2 = x–2,x–n,1�xn



Reading a magazine on a spaceship. A passenger on a
fictional high-speed spaceship traveling between Earth and Jupiter at a steady
speed of 0.75c reads a magazine which takes 10.0 min according to her watch.
(a) How long does this take as measured by Earth-based clocks? (b) How much
farther is the spaceship from Earth at the end of reading the article than it 
was at the beginning?

APPROACH (a) The time interval in one reference frame is related to the time
interval in the other by Eq. 26–1a or b. (b) At constant speed, distance is

Because there are two time intervals ( and ) we will get
two distances, one for each reference frame. [This surprising result is explored
in the next Section (26–5).]

SOLUTION (a) The given 10.0-min time interval is the proper time —starting
and finishing the magazine happen at the same place on the spaceship. Earth
clocks measure

(b) In the Earth frame, the rocket travels a distance 

In the spaceship’s frame, the Earth is moving away from the spaceship at 0.75c,
but the time is only 10.0 min, so the distance is measured to be

Space Travel?
Time dilation has aroused interesting speculation about space travel. According
to classical (Newtonian) physics, to reach a star 100 light-years away would not
be possible for ordinary mortals (1 light-year is the distance light can travel 
in ). Even if a spaceship
could travel at close to the speed of light, it would take over 100 years to reach
such a star. But time dilation tells us that the time involved could be less. In
a spaceship traveling at the time for such a trip would be only about

Thus time dilation
allows such a trip, but the enormous practical problems of achieving such speeds
may not be possible to overcome, certainly not in the near future.

When we talk in this Chapter and in the Problems about spaceships moving
at speeds close to c, it is for understanding and for fun, but not realistic, although
for tiny elementary particles such high speeds are realistic.

In this example, 100 years would pass on Earth, whereas only 4.5 years would
pass for the astronaut on the trip. Is it just the clocks that would slow down for the
astronaut? No.

All processes, including aging and other life processes, run more slowly for 
the astronaut as measured by an Earth observer. But to the astronaut, time
would pass in a normal way.

The astronaut would experience 4.5 years of normal sleeping, eating, reading,
and so on. And people on Earth would experience 100 years of ordinary activity.

Twin Paradox
Not long after Einstein proposed the special theory of relativity, an apparent
paradox was pointed out. According to this twin paradox, suppose one of a pair
of 20-year-old twins takes off in a spaceship traveling at very high speed to a
distant star and back again, while the other twin remains on Earth. According to
the Earth twin, the astronaut twin will age less. Whereas 20 years might pass for
the Earth twin, perhaps only 1 year (depending on the spacecraft’s speed) would
pass for the traveler. Thus, when the traveler returns, the earthbound twin could
expect to be 40 years old whereas the traveling twin would be only 21.

¢t0 = ¢t21 - v2�c2 = (100 yr)21 - (0.999)2 = 4.5 yr.
v = 0.999c,

1 year = 3.0 * 108 m�s * 3.16 * 107 s = 9.5 * 1015 m

(2.25 * 108 m�s)(600 s) = 1.35 * 1011 m.
D0 = v ¢t0 =

2.04 * 1011 m.(0.75c)(15.1 min) = (0.75)A3.0 * 108 m�sB(15.1 min * 60 s�min) =
D = v ¢t =

¢t =
¢t0

31 - Av2�c2B =
10.00 min

31 - (0.75)2
= 15.1 min.

¢t0

¢t0¢tspeed * time.

EXAMPLE 26;3
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FIGURE 26–7 A visiting professor
of physics uses the GPS on her smart
phone to find a restaurant (red dot).
Her location in the physics
department is the blue dot. Traffic
on some streets is also shown
(green good, orange slow,
red heavy traffic) which comes in
part by tracking cell phone
movements.

=
==

This is the viewpoint of the twin on the Earth. But what about the traveling
twin? If all inertial reference frames are equally good, won’t the traveling twin
make all the claims the Earth twin does, only in reverse? Can’t the astronaut twin
claim that since the Earth is moving away at high speed, time passes more slowly
on Earth and the twin on Earth will age less? This is the opposite of what the
Earth twin predicts. They cannot both be right, for after all the spacecraft returns
to Earth and a direct comparison of ages and clocks can be made.

There is, however, no contradiction here. One of the viewpoints is indeed
incorrect. The consequences of the special theory of relativity—in this case, time
dilation—can be applied only by observers in an inertial reference frame. The
Earth is such a frame (or nearly so), whereas the spacecraft is not. The spacecraft
accelerates at the start and end of its trip and when it turns around at the far
point of its journey. Part of the time, the astronaut twin may be in an inertial
frame (and is justified in saying the Earth twin’s clocks run slow). But during the
accelerations, the twin on the spacecraft is not in an inertial frame. So she cannot
use special relativity to predict their relative ages when she returns to Earth. The
Earth twin stays in the same inertial frame, and we can thus trust her predictions
based on special relativity. Thus, there is no paradox. The prediction of the Earth
twin that the traveling twin ages less is the correct one.

Global Positioning System (GPS)
Airplanes, cars, boats, and hikers use global positioning system (GPS) receivers
to tell them quite accurately where they are at a given moment (Fig. 26–7). There are
more than 30 global positioning system satellites that send out precise time signals
using atomic clocks. Your receiver compares the times received from at least four
satellites, all of whose times are carefully synchronized to within 1 part in 
By comparing the time differences with the known satellite positions and the
fixed speed of light, the receiver can determine how far it is from each satellite
and thus where it is on the Earth. It can do this to an accuracy of a few meters, if
it has been constructed to make corrections such as the one below due to relativity.

A relativity correction to GPS. GPS
satellites move at about Show that a good GPS receiver
needs to correct for time dilation if it is to produce results consistent with atomic
clocks accurate to 1 part in 

RESPONSE Let us calculate the magnitude of the time dilation effect by
inserting into Eq. 26–1a:

We use the binomial expansion: for (see Appendix A–5)
which here is That is

The time “error” divided by the time interval is

Time dilation, if not accounted for, would introduce an error of about 1 part 
in which is 1000 times greater than the precision of the atomic clocks. Not
correcting for time dilation means a receiver could give much poorer position
accuracy.

NOTE GPS devices must make other corrections as well, including effects
associated with general relativity.

1010,

L 1 * 10–10.= 9 * 10–11
A¢t - ¢t0B
¢t0

= 1 + 9 * 10–11 - 1

= A1 + 9 * 10–11B ¢t0 .¢t = A1 + 1
2 A1.8 * 10–10B B ¢t0

(1 - x)-
1
2 L 1 + 1

2 x.
x V 1(16x)n L 16nx

=
1

31 - 1.8 * 10–10
¢t0 .

=
1

C1 - ¢ 4 * 103 m�s

3 * 108 m�s
≤ 2
¢t0¢t =

1

C1 -
v2

c2

¢t0

v = 4000 m�s

1013.

4 km�s = 4000 m�s.
CONCEPTUAL EXAMPLE 26;4

1013.

* P H Y S I C S  A P P L I E D

Global positioning system
(GPS)



26–5 Length Contraction
Time intervals are not the only things different in different reference frames.
Space intervals—lengths and distances—are different as well, according to the 
special theory of relativity, and we illustrate this with a thought experiment.
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LENGTH CONTRACTION

C A U T I O N

Proper length is measured 
in reference frame where the

two positions are at rest

Earth at rest

Spacecraft at rest

v

Earth

(b)

Neptune

Neptune

(a)

Earth

vv

FIGURE 26–8 (a) A spaceship traveling
at very high speed from Earth to the
planet Neptune, as seen from Earth’s
frame of reference. (b) According to an
observer on the spaceship, Earth and
Neptune are moving at the very high
speed v: Earth leaves the spaceship, and
a time later Neptune arrives at the
spaceship.

¢t0

v

†We assume v is much greater than the relative speed of Neptune and Earth (which we thus ignore).

Observers on Earth watch a spacecraft traveling at speed v from Earth to,
say, Neptune, Fig. 26–8a. The distance between the planets, as measured by the
Earth observers, is The time required for the trip, measured from Earth, is

[Earth observer]

In Fig. 26–8b we see the point of view of observers on the spacecraft. In this
frame of reference, the spaceship is at rest; Earth and Neptune move† with speed v.
The time between departure of Earth and arrival of Neptune, as observed from the
spacecraft, is the “proper time” (page 753), because these two events occur 
at the same point in space (i.e., at the spacecraft). Therefore the time interval is
less for the spacecraft observers than for the Earth observers. That is, because of
time dilation (Eq. 26–1a), the time for the trip as viewed by the spacecraft is

[spacecraft observer]

Because the spacecraft observers measure the same speed but less time between
these two events, they also measure the distance as less. If we let be the distance
between the planets as viewed by the spacecraft observers, then 
which we can rewrite as Thus
we have the important result that

(26–3a)

or, using (Eq. 26–2),

(26–3b)

This is a general result of the special theory of relativity and applies to lengths of
objects as well as to distance between objects. The result can be stated most
simply in words as:

the length of an object moving relative to an observer is measured to be
shorter along its direction of motion than when it is at rest.

This is called length contraction. The length in Eqs. 26–3 is called the 
proper length. It is the length of the object (or distance between two points whose
positions are measured at the same time) as determined by observers at rest with
respect to the object. Equations 26–3 give the length that will be measured by
observers when the object travels past them at speed v.

l

l0

l =
l0

g
.

g

l = l031 - v2�c2

l = v ¢t0 = v ¢t31 - v2�c2 = l031 - v2�c2 .
l = v ¢t0 ,

l

= ¢t�g.

¢t0 = ¢t31 - v2�c2

¢t0

¢t =
l0

v
.

l0 .



SECTION 26–5 Length Contraction 757

?

1.00 m

1.50 m

1.00 m

(a)

(b)

FIGURE 26–9 Example 26–5.

It is important to note that length contraction occurs only along the direction
of motion. For example, the moving spaceship in Fig. 26–8a is shortened in
length, but its height is the same as when it is at rest.

Length contraction, like time dilation, is not noticeable in everyday life
because the factor in Eq. 26–3a differs significantly from 1.00 only
when v is very large.

Painting’s contraction. A rectangular painting measures
1.00 m tall and 1.50 m wide, Fig. 26–9a. It is hung on the side wall of a spaceship
which is moving past the Earth at a speed of 0.90c. (a) What are the dimen-
sions of the picture according to the captain of the spaceship? (b) What are the
dimensions as seen by an observer on the Earth?

APPROACH We apply the length contraction formula, Eq. 26–3a, to the dimen-
sion parallel to the motion; v is the speed of the painting relative to the Earth
observer.
SOLUTION (a) The painting is at rest on the spaceship so it (as well 
as everything else in the spaceship) looks perfectly normal to everyone on the
spaceship. The captain sees a 1.00-m by 1.50-m painting.
(b) Only the dimension in the direction of motion is shortened, so the height is
unchanged at 1.00 m, Fig. 26–9b. The length, however, is contracted to

So the picture has dimensions to an observer on Earth.

A fantasy supertrain. A very fast train with a “proper
length” of (measured by people at rest on the train) is passing through
a tunnel that is 200 m long according to observers on the ground. Let us imagine
the train’s speed to be so great that the train fits completely within the tunnel as
seen by observers on the ground. That is, the engine is just about to emerge from
one end of the tunnel at the time the last car disappears into the other end. What
is the train’s speed?

APPROACH Since the train just fits inside the tunnel, its length measured by
the person on the ground is The length contraction formula,
Eq. 26–3a or b, can thus be used to solve for v.

SOLUTION Substituting and into Eq. 26–3a gives

dividing both sides by 500 m and squaring, we get

or

and

NOTE No real train could go this fast. But it is fun to think about.

NOTE An observer on the train would not see the two ends of the train inside
the tunnel at the same time. Recall that observers moving relative to each other
do not agree about simultaneity. (See Example 26–7, next.)

EXERCISE C What is the length of the tunnel as measured by observers on the train in
Example 26–6?

v = 0.92c.

v
c

= 31 - (0.40)2

(0.40)2 = 1 -
v2

c2

200 m = 500 mC1 -
v2

c2
;

l0 = 500 ml = 200 m

l = 200 m.

l0 = 500 m
EXAMPLE 26;6

1.00 m * 0.65 m

= (1.50 m)31 - (0.90)2 = 0.65 m.

l = l0C1 -
v2

c2

(v = 0)

EXAMPLE 26;5

21 - v2�c2



758 CHAPTER 26 The Special Theory of Relativity

(a)

7

(b)

7

FIGURE 26–10 According to an
accurate clock on a fast-moving train,
a person (a) begins dinner at 7:00 and
(b) finishes at 7:15. At the beginning
of the meal, two observers on Earth
set their watches to correspond with
the clock on the train. These observers
measure the eating time as 20 minutes.

Resolving the train and tunnel length.

Observers at rest on the Earth see a very fast 200-m-long train pass through a
200-m-long tunnel (as in Example 26–6) so that the train momentarily disappears
from view inside the tunnel. Observers on the train measure the train’s length
to be 500 m and the tunnel’s length to be only 80 m (Exercise C, using Eq. 26–3a).
Clearly a 500-m-long train cannot fit inside an 80-m-long tunnel. How is this
apparent inconsistency explained?

RESPONSE Events simultaneous in one reference frame may not be simultane-
ous in another. Let the engine emerging from one end of the tunnel be “event A,”
and the last car disappearing into the other end of the tunnel “event B.” To
observers in the Earth frame, events A and B are simultaneous. To observers on
the train, however, the events are not simultaneous. In the train’s frame, event A
occurs before event B. As the engine emerges from the tunnel, observers on the
train observe the last car as still from the entrance to
the tunnel.

26–6 Four-Dimensional Space–Time
Let us imagine a person is on a train moving at a very high speed, say 0.65c,
Fig. 26–10. This person begins a meal at 7:00 and finishes at 7:15, according to
a clock on the train. The two events, beginning and ending the meal, take place at
the same point on the train, so the “proper time” between these two events is 
15 min. To observers on Earth, the plate is moving and the meal will take
longer—20 min according to Eqs. 26–1. Let us assume that the meal was served
on a 20-cm-diameter plate (its “proper length”). To observers on the Earth, the
plate is moving and is only 15 cm wide (length contraction). Thus, to observers on
the Earth, the meal looks smaller but lasts longer.

500 m - 80 m = 420 m

CONCEPTUAL EXAMPLE 26;7

In a sense the two effects, time dilation and length contraction, balance each
other. When viewed from the Earth, what an object seems to lose in size it gains
in length of time it lasts. Space, or length, is exchanged for time.

Considerations like this led to the idea of four-dimensional space–time:
space takes up three dimensions and time is a fourth dimension. Space and time
are intimately connected. Just as when we squeeze a balloon we make one
dimension larger and another smaller, so when we examine objects and events
from different reference frames, a certain amount of space is exchanged for time,
or vice versa.
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Although the idea of four dimensions may seem strange, it refers to the idea
that any object or event is specified by four quantities—three to describe where
in space, and one to describe when in time. The really unusual aspect of four-
dimensional space–time is that space and time can intermix: a little of one can be
exchanged for a little of the other when the reference frame is changed.

[In Galilean–Newtonian relativity, the time interval between two events,
and the distance between two events or points, are invariant quantities no
matter what inertial reference frame they are viewed from. Neither of these
quantities is invariant according to Einstein’s relativity. But there is an invariant
quantity in four-dimensional space–time, called the space–time interval, which is

]

26–7 Relativistic Momentum
So far in this Chapter, we have seen that two basic mechanical quantities, length
and time intervals, need modification because they are relative—their value
depends on the reference frame from which they are measured. We might expect
that other physical quantities might need some modification according to the
theory of relativity, such as momentum and energy.

The analysis of collisions between two particles shows that if we want to
preserve the law of conservation of momentum in relativity, we must redefine
momentum as

(26–4)

Here is shorthand for as before (Eq. 26–2). For speeds much
less than the speed of light, Eq. 26–4 gives the classical momentum,

Relativistic momentum has been tested many times on tiny elementary particles
(such as muons), and it has been found to behave in accord with Eq. 26–4.

Momentum of moving electron. Compare the momentum
of an electron to its classical value when it has a speed of (a) in
the CRT of an old TV set, and (b) 0.98c in an accelerator used for cancer therapy.

APPROACH We use Eq. 26–4 for the momentum of a moving electron.

SOLUTION (a) At the electron’s momentum is

The factor so the momentum is only about 1%
greater than the classical value. (If we put in the mass of an electron,

the momentum is 
compared to classically.)
(b) With the momentum is

An electron traveling at 98% the speed of light has and a momentum
5.0 times its classical value.

g = 5.0

p =
mv

C1 -
v2

c2

=
mv

C1 -
(0.98c)2

c2

=
mv

31 - (0.98)2
= 5.0mv.

v = 0.98c,
3.64 * 10–23 kg �m�s

p = 1.01mv = 3.68 * 10–23 kg �m�s,m = 9.11 * 10–31 kg,

g = 1�31 - v2�c2 L 1.01,

p =
mv

C1 -
v2

c2

=
mv

C1 -
A4.00 * 107 m�sB2
A3.00 * 108 m�sB2

= 1.01mv.

v = 4.00 * 107 m�s,

4.00 * 107 m�s
EXAMPLE 26;8

p = mv.
1�31 - v2�c2g

p =
mv

31 - v2�c2
= gmv.

(¢s)2 = (c ¢t)2 - (¢x)2.

¢x,
¢t,



Rest Mass and Relativistic Mass
The relativistic definition of momentum, Eq. 26–4, has sometimes been inter-
preted as an increase in the mass of an object. In this interpretation, a particle
can have a relativistic mass, which increases with speed according to

In this “mass-increase” formula, m is referred to as the rest mass of the object.
With this interpretation, the mass of an object appears to increase as its speed
increases. But there are problems with relativistic mass. If we plug it into formu-
las like or we obtain formulas that do not agree with
experiment. (If we write Newton’s second law in its more general form,
that would get a correct result.) Also, be careful not to think a mass acquires
more particles or more molecules as its speed becomes very large. It doesn’t.
Today, most physicists prefer not to use relativistic mass, so an object has only
one mass (its rest mass), and it is only the momentum that increases with speed.

Whenever we talk about the mass of an object, we will always mean its rest
mass (a fixed value). [But see Problem 46.]

26–8 The Ultimate Speed
A basic result of the special theory of relativity is that the speed of an object
cannot equal or exceed the speed of light. That the speed of light is a natural
speed limit in the universe can be seen from any of Eqs. 26–1, 26–3, or 26–4. It is
perhaps easiest to see from Eq. 26–4. As an object is accelerated to greater and
greater speeds, its momentum becomes larger and larger. Indeed, if v were to
equal c, the denominator in this equation would be zero, and the momentum
would be infinite. To accelerate an object up to would thus require infinite
energy, and so is not possible.

26–9 ; Mass and Energy
If momentum needs to be modified to fit with relativity as we just saw in Eq. 26–4,
then we might expect that energy would also need to be rethought. Indeed, Einstein
not only developed a new formula for kinetic energy, but also found a new rela-
tion between mass and energy, and the startling idea that mass is a form of energy.

We start with the work-energy principle (Chapter 6), hoping it is still valid in
relativity and will give verifiable results. That is, we assume the net work done on
a particle is equal to its change in kinetic energy (ke). Using this principle, Einstein
showed that at high speeds the formula is not correct. Instead,
Einstein showed that the kinetic energy of a particle of mass m traveling at speed v
is given by

(26–5a)

In terms of we can rewrite Eq. 26–5a as

(26–5b)

Equation 26–5a requires some interpretation. The first term increases with the
speed v of the particle. The second term, is constant; it is called the rest energy
of the particle, and represents a form of energy that a particle has even when at rest.
Note that if a particle is at rest the first term in Eq. 26–5a becomes 
so as it should.ke = 0

mc2,(v = 0)

mc2,

ke = gmc2 - mc2 = (g - 1)mc2.

g = 1�31 - v2�c2

ke =
mc2

31 - v2�c2
- mc2.

ke = 1
2 mv2

E � mc2

v = c

F
B

= ¢pB�¢t,
ke = 1

2 mv2,F = ma

mrel =
m

31 - v2�c2
.

mrel ,

*
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C A U T I O N

Most physicists prefer
to consider the mass
of a particle as fixed
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We can rearrange Eq. 26–5b to get

We call the total energy E of the particle (assuming no potential energy),
because it equals the rest energy plus the kinetic energy:

(26–6a)

The total energy† can also be written, using Eqs. 26–5, as

(26–6b)

For a particle at rest in a given reference frame, ke is zero in Eq. 26–6a, so
the total energy is its rest energy:

(26–7)

Here we have Einstein’s famous formula, This formula mathematically
relates the concepts of energy and mass. But if this idea is to have any physical
meaning, then mass ought to be convertible to other forms of energy and vice
versa. Einstein suggested that this might be possible, and indeed changes of mass
to other forms of energy, and vice versa, have been experimentally confirmed
countless times in nuclear and elementary particle physics. For example, an elec-
tron and a positron ( a positive electron, see Section 32–3) have often been
observed to collide and disappear, producing pure electromagnetic radiation. The
amount of electromagnetic energy produced is found to be exactly equal to that
predicted by Einstein’s formula, The reverse process is also commonly
observed in the laboratory: electromagnetic radiation under certain conditions can
be converted into material particles such as electrons (see Section 27–6 on pair
production). On a larger scale, the energy produced in nuclear power plants is
a result of the loss in mass of the uranium fuel as it undergoes the process called
fission (Chapter 31). Even the radiant energy we receive from the Sun is an
example of the Sun’s mass is continually decreasing as it radiates
electromagnetic energy outward.

The relation is now believed to apply to all processes, although the
changes are often too small to measure. That is, when the energy of a system
changes by an amount the mass of the system changes by an amount 
given by

(26–8)

In a nuclear reaction where an energy E is required or released, the masses of the
reactants and the products will be different by 

Pion’s kinetic energy. A meson
travels at a speed What is its kinetic energy?
Compare to a classical calculation.

APPROACH We use Eq. 26–5 and compare to 

SOLUTION We substitute values into Eq. 26–5a

Notice that the units of are which is the joule.

NOTE Classically
about half as much, but this is not a correct result. Note that also does
not work.

1
2
gmv2

6.9 * 10–12 J,A2.4 * 108 m�sB2 =1
2 A2.4 * 10–28 kgBke = 1

2 mv2 =
kg �m2�s2,mc2

= 1.4 * 10–11 J.

= A2.4 * 10–28 kgB A3.0 * 108 m�sB2 ¢ 1

(1 - 0.64)
1
2
- 1 ≤

¢ 1

31 - v2�c2
- 1 ≤ke = mc2

1
2 mv2.

v = 0.80c = 2.4 * 108 m�s.
Am = 2.4 * 10–28 kgBp0EXAMPLE 26;9

¢m = ¢E�c2.

¢E = (¢m)Ac2B.
¢m¢E,

E = mc2

E = mc2;

E = mc2.

= 

E = mc2.

E = mc2.

E = gmc2 =
mc2

31 - v2�c2
.

E = ke + mc2.

gmc2

gmc2 = mc2 + ke.

P R O B L E M  S O L V I N G

Relativistic kinetic energy

†This is for a “free particle,” without forces and potential energy. Potential energy terms can be added.

MASS RELATED
TO ENERGY



Energy from nuclear decay. The energy required or
released in nuclear reactions and decays comes from a change in mass between
the initial and final particles. In one type of radioactive decay (Chapter 30),
an atom of uranium decays to an atom of thorium

plus an atom of helium where the masses
given are in atomic mass units Calculate the energy
released in this decay.

APPROACH The initial mass minus the total final mass gives the mass loss in
atomic mass units (u); we convert that to kg, and multiply by to find the
energy released,

SOLUTION The initial mass is 232.03716 u, and after the decay the mass is
so there is a loss of mass of 0.00582 u.

This mass, which equals is
changed into energy. By we have

Since (Section 17–4), the energy released is 5.4 MeV.

In the tiny world of atoms and nuclei, it is common to quote energies in eV
(electron volts) or multiples such as MeV Momentum (see Eq. 26–4)
can be quoted in units of (or ). And mass can be quoted (from

) in units of (or ). Note the use of c to keep the units
correct. The masses of the electron and the proton can be shown to be 

and respectively. For example, for the electron,

See also the Table inside the front cover.

A 1-TeV proton. The Tevatron accelerator at Fermilab in
Illinois can accelerate protons to a kinetic energy of 1.0 TeV What is the
speed of such a proton?

APPROACH We solve the kinetic energy formula, Eq. 26–5a, for v.

SOLUTION The rest energy of a proton is or
Compared to the kinetic energy of the rest energy can be neglected, so
we simplify Eq. 26–5a to

We solve this for v in the following steps:

So the proton is traveling at a speed very nearly equal to c.

= 0.99999956 c.

v = 31 - A9.38 * 10–4B2 c

v2

c2
= 1 - ¢mc2

ke
≤ 2

= 1 - ¢ 9.38 * 108 eV

1.0 * 1012 eV
≤ 2

;

 1 -
v2

c2
= ¢mc2

ke
≤ 2

;

C1 -
v2

c2
=

mc2

ke
;

ke L
mc2

31 - v2�c2
.

1012 eV,
9.38 * 108 eV.mc2 = 938 MeV

A1012 eVB.EXAMPLE 26;11

0.511 MeV.mc2 = A9.11 * 10–31 kgB A2.998 * 108 m�sB2�A1.602 * 10–13 J�MeVB =938 MeV�c2,0.511 MeV�c2

MeV�c2eV�c2E = mc2
MeV�ceV�c

A106 eVB.

1 MeV = 1.60 * 10–13 J

= 8.70 * 10–13 J.

¢E = A9.66 * 10–30 kgB A3.0 * 108 m�sB2
¢E = ¢m c2,

(0.00582 u)A1.66 * 10–27 kgB = 9.66 * 10–30 kg,
228.02874 u + 4.00260 u = 232.03134 u,

¢E = ¢m c2.
c2

A1 u = 1.6605 * 10–27 kgB.(m = 4.00260 u)(m = 228.02874 u)
(m = 232.03716 u)

EXAMPLE 26;10
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At low speeds, the relativistic formula for kinetic energy reduces to
the classical one, as we now show by using the binomial expansion (Appendix A):

keeping only two terms because is very 
much less than 1. With we expand the square root in Eq. 26–5a

so that

The dots in the first expression represent very small terms in the expansion which
we neglect since we assumed that Thus at low speeds, the relativistic
form for kinetic energy reduces to the classical form, This makes
relativity a viable theory in that it can predict accurate results at low speed as well
as at high. Indeed, the other equations of special relativity also reduce to their
classical equivalents at ordinary speeds: length contraction, time dilation, and
modifications to momentum as well as kinetic energy, all disappear for
since

A useful relation between the total energy E of a particle and its momentum p
can also be derived. The momentum of a particle of mass m and speed v is given
by Eq. 26–4

The total energy is

or

We square this equation (and we insert “ ” which is zero, but will help us):

or
(26–9)

Thus, the total energy can be written in terms of the momentum p, or in terms of
the kinetic energy (Eq. 26–6a), where we have assumed there is no potential energy.

Invariant Energy–Momentum
We can rewrite Eq. 26–9 as Since the mass m of a given
particle is the same in any reference frame, we see that the quantity
must also be the same in any reference frame. Thus, at any given moment the
total energy E and momentum p of a particle will be different in different
reference frames, but the quantity will have the same value in all
inertial reference frames. We say that the quantity is invariant.

When Do We Use Relativistic Formulas?
From a practical point of view, we do not have much opportunity in our daily lives
to use the mathematics of relativity. For example, the factor, ,
has a value of 1.005 when Thus, for speeds even as high as

the factor in relativistic formulas gives
a numerical correction of less than 1%. For speeds less than 0.10c, or unless 
mass and energy are interchanged, we don’t usually need the more complicated
relativistic formulas, and can use the simpler classical formulas.

21 - v2�c20.10c = 3.0 * 107 m�s,
v = 0.10c.

21 - v2�c2g = 1�g

E2 - p2c2
E2 - p2c2

E2 - p2c2
E2 - p2c2 = m2c4.

*

E2 = p2c2 + m2c4.

= p2c2 +
m2c4A1 - v2�c2B

1 - v2�c2

E2 =
m2c2c2

1 - v2�c2
=

m2c2Ac2 - v2 + v2B
1 - v2�c2

=
m2c2v2

1 - v2�c2
+

m2c2Ac2 - v2B
1 - v2�c2

v2 - v2

E = gmc2 =
mc2

31 - v2�c2
.

E = ke + mc2

p = gmv =
mv

31 - v2�c2
.

31 - v2�c2 L 1.
v V c

ke = 1
2 mv2.

v V c.

L 1
2 mv2.ke L mc2 ¢1 +

1
2

v2

c2
+ p - 1 ≤

ke = mc2 ¢ 1

31 - v2�c2
- 1 ≤

n = – 1
2

x = v�c(16x)n = 16nx + p,

v V c,



If you are given a particle’s mass m and its kinetic energy ke, you can do a
quick calculation to determine if you need to use relativistic formulas or if classical
ones are good enough. You simply compute the ratio because (Eq. 26–5b)

If this ratio comes out to be less than, say, 0.01, then and relativistic
equations will correct the classical ones by about 1%. If your expected precision
is no better than 1%, classical formulas are good enough. But if your precision is
1 part in 1000 (0.1%) then you would want to use relativistic formulas. If your
expected precision is only 10%, you need relativity if

EXERCISE D For 1% accuracy, does an electron with need to be treated
relativistically? [Hint: The mass of an electron is 0.511 MeV.]

26–10 Relativistic Addition of Velocities
Consider a rocket ship that travels away from the Earth with speed v, and assume
that this rocket has fired off a second rocket that travels at speed with 
respect to the first (Fig. 26–11). We might expect that the speed u of rocket 2 
with respect to Earth is which in the case shown in Fig. 26–11 is

But, as discussed in Section 26–8, no object can travel
faster than the speed of light in any reference frame. Indeed, Einstein showed
that since length and time are different in different reference frames, the classical
addition-of-velocities formula is no longer valid. Instead, the correct formula is

(26–10)

for motion along a straight line. We derive this formula in Appendix E. If is in
the opposite direction from v, then must have a minus sign in the above equation
so

Relative velocity, relativistically. Calculate the speed of
rocket 2 in Fig. 26–11 with respect to Earth.

APPROACH We combine the speed of rocket 2 relative to rocket 1 with the
speed of rocket 1 relative to Earth, using the relativistic Eq. 26–10 because the
speeds are high and they are along the same line.

SOLUTION Rocket 2 moves with speed with respect to rocket 1.
Rocket 1 has speed with respect to Earth. The speed of rocket 2 with
respect to Earth is (Eq. 26–10)

NOTE The speed of rocket 2 relative to Earth is less than c, as it must be.

We can see that Eq. 26–10 reduces to the classical form for velocities small
compared to the speed of light since for v and Thus,

as in classical physics (Chapter 3).
Let us test our formula at the other extreme, that of the speed of light.

Suppose that rocket 1 in Fig. 26–11 sends out a beam of light so that 
Equation 26–10 tells us that the speed of this light relative to Earth is

which is fully consistent with the second postulate of relativity.

EXERCISE E Use Eq. 26–10 to calculate the speed of rocket 2 in Fig. 26–11 relative to
Earth if it was shot from rocket 1 at a speed Assume rocket 1
had a speed

EXERCISE F Return to the Chapter-Opening Question, page 744, and answer it again
now. Try to explain why you may have answered differently the first time.

v = 6000 km�s = 0.020c.
u¿ = 3000 km�s = 0.010c.

u =
0.60c + c

1 +
(0.60c)(c)

c2

=
1.60c

1.60
= c,

u¿ = c.

u L v + u¿,
u¿ V c.1 + vu¿�c2 L 1

u =
0.60c + 0.60c

1 +
(0.60c)(0.60c)

c2

=
1.20c

1.36
= 0.88c.

v = 0.60c
u¿ = 0.60c

EXAMPLE 26;12

u = (v - u¿)�A1 - vu¿�c2B. u¿
u¿

cu
B and vB along
the same direction

du =
v + u¿

1 + vu¿�c2

u = 0.60c + 0.60c = 1.20c.
u = v + u¿,

u¿

ke = 100 eV

Ake�mc2B g 0.1.

g � 1.01

ke
mc2

= g - 1 =
1

31 - v2�c2
- 1.

ke�mc2
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Relative velocities do 
not add simply, as 

in classical mechanics (v V c)

Relativistic addition of velocities
formula ( and along same line)vBuB

FIGURE 26–11 Rocket 1 leaves Earth
at Rocket 2 is fired from
rocket 1 with speed What
is the speed of rocket 2 with respect to
the Earth? Example 26–12.

u¿ = 0.60c.
v = 0.60c.

0.60c with
respect to Earth

u' = 0.60c with
respect to
rocket 1

v =

1

2

Earth



Summary 765

26–11 The Impact of Special Relativity
A great many experiments have been performed to test the predictions of the special
theory of relativity. Within experimental error, no contradictions have been found.
Scientists have therefore accepted relativity as an accurate description of nature.

At speeds much less than the speed of light, the relativistic formulas reduce to
the old classical ones, as we have discussed. We would, of course, hope—or rather,
insist—that this be true since Newtonian mechanics works so well for objects
moving with speeds This insistence that a more general theory (such as
relativity) give the same results as a more restricted theory (such as classical
mechanics which works for ) is called the correspondence principle. The 
two theories must correspond where their realms of validity overlap. Relativity
thus does not contradict classical mechanics. Rather, it is a more general theory,
of which classical mechanics is now considered to be a limiting case.

The importance of relativity is not simply that it gives more accurate results,
especially at very high speeds. Much more than that, it has changed the way we
view the world. The concepts of space and time are now seen to be relative, and
intertwined with one another, whereas before they were considered absolute and
separate. Even our concepts of matter and energy have changed: either can be
converted to the other. The impact of relativity extends far beyond physics. It has
influenced the other sciences, and even the world of art and literature; it has,
indeed, entered the general culture.

The special theory of relativity we have studied in this Chapter deals with
inertial (nonaccelerating) reference frames. In Chapter 33 we will discuss briefly
the more complicated “general theory of relativity” which can deal with non-
inertial reference frames.

v V c

v V c.

An inertial reference frame is one in which Newton’s law of
inertia holds. Inertial reference frames move at constant veloc-
ity relative to one another. Accelerating reference frames are
noninertial.

The special theory of relativity is based on two principles:
the relativity principle, which states that the laws of physics 
are the same in all inertial reference frames, and the principle
of the constancy of the speed of light, which states that the
speed of light in empty space has the same value in all inertial
reference frames.

One consequence of relativity theory is that two events
that are simultaneous in one reference frame may not be simul-
taneous in another. Other effects are time dilation: moving
clocks are measured to run slow; and length contraction:
the length of a moving object is measured to be shorter (in its
direction of motion) than when it is at rest. Quantitatively,

(26–1)

(26–3)

where and are the length and time interval of objects (or
events) observed as they move by at the speed v; and are
the proper length and proper time—that is, the same quantities
as measured in the rest frame of the objects or events. The
quantity is shorthand for

(26–2)

The theory of relativity has changed our notions of space
and time, and of momentum, energy, and mass. Space and time

g =
1

31 - v2�c2
.

g

¢t0l0

¢tl

l = l031 - v2�c2 =
l0

g

¢t =
¢t0

31 - v2�c2
= g ¢t0

are seen to be intimately connected, with time being the fourth
dimension in addition to the three dimensions of space.

The momentum of an object is given by

(26–4)

Mass and energy are interconvertible. The equation

(26–7)

tells how much energy E is needed to create a mass or vice
versa. Said another way, is the amount of energy an
object has because of its mass m. The law of conservation of
energy must include mass as a form of energy.

The kinetic energy ke of an object moving at speed v is
given by

(26–5)

where m is the mass of the object. The total energy E, if there
is no potential energy, is

(26–6)

The momentum p of an object is related to its total 
energy E (assuming no potential energy) by

(26–9)

Velocity addition also must be done in a special way. All
these relativistic effects are significant only at high speeds,
close to the speed of light, which itself is the ultimate speed in
the universe.

E2 = p2c2 + m2c4.

= gmc2.
E = ke + mc2

ke =
mc2

31 - v2�c2
- mc2 = (g - 1)mc2

E = mc2
m,

E = mc2

p = gmv =
mv

31 - v2�c2
.

Summary
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15. An electron is limited to travel at speeds less than c. Does
this put an upper limit on the momentum of an electron?
If so, what is this upper limit? If not, explain.

16. Can a particle of nonzero mass attain the speed of light?
Explain.

17. Does the equation conflict with the conservation
of energy principle? Explain.

18. If mass is a form of energy, does this mean that a spring has
more mass when compressed than when relaxed? Explain.

19. It is not correct to say that “matter can neither be created
nor destroyed.” What must we say instead?

20. Is our intuitive notion that velocities simply add, as in
Section 3–8, completely wrong?

E = mc2

FIGURE 26–12

Question 14.
Mr Tompkins as
seen by people on
the sidewalk. See
also Chapter-
Opening Figure on
page 744.

1. The fictional rocket ship Adventure is measured to be 50 m
long by the ship’s captain inside the rocket. When the rocket
moves past a space dock at 0.5c, space-dock personnel
measure the rocket ship to be 43.3 m long. What is its
proper length?
(a) 50 m. (b) 43.3 m. (c) 93.3 m. (d) 13.3 m.

2. As rocket ship Adventure (MisConceptual Question 1)
passes by the space dock, the ship’s captain flashes a flash-
light at 1.00-s intervals as measured by space-dock personnel.
How often does the flashlight flash relative to the captain?
(a) Every 1.15 s. (b) Every 1.00 s. (c) Every 0.87 s.
(d) We need to know the distance between the ship and

the space dock.

3. For the flashing of the flashlight in MisConceptual Ques-
tion 2, what time interval is the proper time interval?
(a) 1.15 s. (b) 1.00 s. (c) 0.87 s. (d) 0.13 s.

4. The rocket ship of MisConceptual Question 1 travels to a star
many light-years away, then turns around and returns at the
same speed. When it returns to the space dock, who would
have aged less: the space-dock personnel or ship’s captain?
(a) The space-dock personnel.
(b) The ship’s captain.
(c) Both the same amount, because both sets of people

were moving relative to each other.
(d) We need to know how far away the star is.

5. An Earth observer notes that clocks on a passing space-
craft run slowly. The person on the spacecraft
(a) agrees her clocks move slower than those on Earth.
(b) feels normal, and her heartbeat and eating habits are

normal.
(c) observes that Earth clocks are moving slowly.
(d) The real time is in between the times measured by the

two observers.
(e) Both (a) and (b).
(f) Both (b) and (c).

MisConceptual Questions

1. You are in a windowless car in an exceptionally smooth
train moving at constant velocity. Is there any physical experi-
ment you can do in the train car to determine whether 
you are moving? Explain.

2. You might have had the experience of being at a red light
when, out of the corner of your eye, you see the car beside
you creep forward. Instinctively you stomp on the brake
pedal, thinking that you are rolling backward. What does
this say about absolute and relative motion?

3. A worker stands on top of a railroad car moving at constant
velocity and throws a heavy ball straight up (from his point
of view). Ignoring air resistance, explain whether the ball 
will land back in his hand or behind him.

4. Does the Earth really go around the Sun? Or is it also valid
to say that the Sun goes around the Earth? Discuss in view
of the relativity principle (that there is no best reference
frame). Explain. See Section 5–8.

5. If you were on a spaceship traveling at 0.6c away from a
star, at what speed would the starlight pass you?

6. The time dilation effect is sometimes expressed as “moving
clocks run slowly.” Actually, this effect has nothing to do
with motion affecting the functioning of clocks. What then
does it deal with?

7. Does time dilation mean that time actually passes more
slowly in moving reference frames or that it only seems to
pass more slowly?

8. A young-looking woman astronaut has just arrived home
from a long trip. She rushes up to an old gray-haired man
and in the ensuing conversation refers to him as her son.
How might this be possible?

9. If you were traveling away from Earth at speed 0.6c, would
you notice a change in your heartbeat? Would your mass,
height, or waistline change? What would observers on
Earth using telescopes say about you?

10. Do time dilation and length contraction occur at ordinary
speeds, say 

11. Suppose the speed of light were infinite. What would
happen to the relativistic predictions of length contraction
and time dilation?

90 km�h?

12. Explain how the length contraction and time dilation for-
mulas might be used to indicate that c is the limiting speed
in the universe.

13. Discuss how our everyday lives would be different if the
speed of light were only 

14. The drawing at the start of this Chapter shows the street as
seen by Mr Tompkins, for whom the speed of light is

What does Mr Tompkins look like to the
people standing on the street (Fig. 26–12)? Explain.
c = 20 mi�h.

25 m�s.

Questions
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26–4 and 26–5 Time Dilation, Length Contraction

1. (I) A spaceship passes you at a speed of 0.850c. You measure
its length to be 44.2 m. How long would it be when at rest?

2. (I) A certain type of elementary particle travels at a speed
of At this speed, the average lifetime is
measured to be What is the particle’s lifetime
at rest?

3. (II) You travel to a star 135 light-years from Earth at a speed
of What do you measure this distance to be?

4. (II) What is the speed of a pion if its average lifetime is
measured to be At rest, its average lifetime
is

5. (II) In an Earth reference frame, a star is 49 light-years
away. How fast would you have to travel so that to you the
distance would be only 35 light-years?

6. (II) At what speed v will the length of a 1.00-m stick look
10.0% shorter (90.0 cm)?

7. (II) At what speed do the relativistic formulas for (a) length
and (b) time intervals differ from classical values by 1.00%?
(This is a reasonable way to estimate when to use relativistic
calculations rather than classical.)

8. (II) You decide to travel to a star 62 light-years from Earth
at a speed that tells you the distance is only 25 light-
years. How many years would it take you to make the trip?

2.60 * 10–8 s.
4.40 * 10–8 s?

2.90 * 108 m�s.

4.76 * 10–6 s.
2.70 * 108 m�s.

9. (II) A friend speeds by you in her spacecraft at a speed of
0.720c. It is measured in your frame to be 4.80 m long and
1.35 m high. (a) What will be its length and height at rest?
(b) How many seconds elapsed on your friend’s watch when
20.0 s passed on yours? (c) How fast did you appear to be
traveling according to your friend? (d) How many seconds
elapsed on your watch when she saw 20.0 s pass on hers?

10. (II) A star is 21.6 light-years from Earth. How long would
it take a spacecraft traveling 0.950c to reach that star as
measured by observers: (a) on Earth, (b) on the spacecraft?
(c) What is the distance traveled according to observers 
on the spacecraft? (d) What will the spacecraft occupants
compute their speed to be from the results of (b) and (c)?

11. (II) A fictional news report stated that starship Enterprise
had just returned from a 5-year voyage while traveling at
0.70c. (a) If the report meant 5.0 years of Earth time, how
much time elapsed on the ship? (b) If the report meant
5.0 years of ship time, how much time passed on Earth?

12. (II) A box at rest has the shape of a cube 2.6 m on a side.
This box is loaded onto the flat floor of a spaceship and 
the spaceship then flies past us with a horizontal speed of
0.80c. What is the volume of the box as we observe it?

13. (III) Escape velocity from the Earth is What
would be the percent decrease in length of a 68.2-m-long
spacecraft traveling at that speed as seen from Earth?

11.2 km�s.

Problems

6. Spaceships A and B are traveling directly toward each
other at a speed 0.5c relative to the Earth, and each has
a headlight aimed toward the other ship. What value do
technicians on ship B get by measuring the speed of the
light emitted by ship A’s headlight?
(a) 0.5c. (b) 0.75c. (c) 1.0c. (d) 1.5c.

7. Relativistic formulas for time dilation, length contraction,
and mass are valid
(a) only for speeds less than 0.10c.
(b) only for speeds greater than 0.10c.
(c) only for speeds very close to c.
(d) for all speeds.

8. Which of the following will two observers in inertial refer-
ence frames always agree on? (Choose all that apply.)
(a) The time an event occurred.
(b) The distance between two events.
(c) The time interval between the occurence of two events.
(d) The speed of light.
(e) The validity of the laws of physics.
(f) The simultaneity of two events.

9. Two observers in different inertial reference frames moving
relative to each other at nearly the speed of light see 
the same two events but, using precise equipment, record
different time intervals between the two events. Which of
the following is true of their measurements?
(a) One observer is incorrect, but it is impossible to tell

which one.
(b) One observer is incorrect, and it is possible to tell

which one.
(c) Both observers are incorrect.
(d) Both observers are correct.

10. You are in a rocket ship going faster and faster. As your
speed increases and your velocity gets closer to the speed of
light, which of the following do you observe in your frame
of reference?
(a) Your mass increases.
(b) Your length shortens in the direction of motion.
(c) Your wristwatch slows down.
(d) All of the above.
(e) None of the above.

11. You are in a spaceship with no windows, radios, or other
means to check outside. How could you determine whether
your spaceship is at rest or moving at constant velocity?
(a) By determining the apparent velocity of light in the

spaceship.
(b) By checking your precision watch. If it’s running slow,

then the ship is moving.
(c) By measuring the lengths of objects in the spaceship. If

they are shortened, then the ship is moving.
(d) Give up, because you can’t tell.

12. The period of a pendulum attached in a spaceship is 2 s
while the spaceship is parked on Earth. What is the period
to an observer on Earth when the spaceship moves at 0.6c
with respect to the Earth?
(a) Less than 2 s.
(b) More than 2 s.
(c) 2 s.

13. Two spaceships, each moving at a speed 0.75c relative to
the Earth, are headed directly toward each other. What do
occupants of one ship measure the speed of other ship to be?
(a) 0.96c. (b) 1.0c. (c) 1.5c. (d) 1.75c. (e) 0.75c.

For assigned homework and other learning materials, go to the MasteringPhysics website.
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14. (III) An unstable particle produced in an accelerator
experiment travels at constant velocity, covering 1.00 m in
3.40 ns in the lab frame before changing (“decaying”) into
other particles. In the rest frame of the particle, determine
(a) how long it lived before decaying, (b) how far it moved
before decaying.

15. (III) How fast must a pion be moving on average to travel
32 m before it decays? The average lifetime, at rest, is

26–7 Relativistic Momentum

16. (I) What is the momentum of a proton traveling at

17. (II) (a) A particle travels at By what percentage
will a calculation of its momentum be wrong if you use the
classical formula? (b) Repeat for 

18. (II) A particle of mass m travels at a speed At
what speed will its momentum be doubled?

19. (II) An unstable particle is at rest and suddenly decays into
two fragments. No external forces act on the particle or its
fragments. One of the fragments has a speed of 0.60c and
a mass of while the other has a mass of

What is the speed of the less massive
fragment?

20. (II) What is the percent change in momentum of a proton
that accelerates from (a) 0.45c to 0.85c, (b) 0.85c to 0.98c?

26–9 E=mc2; Mass and Energy

21. (I) Calculate the rest energy of an electron in joules and in
MeV

22. (I) When a uranium nucleus at rest breaks apart in the
process known as fission in a nuclear reactor, the resulting
fragments have a total kinetic energy of about 200 MeV.
How much mass was lost in the process?

23. (I) The total annual energy consumption in the United
States is about How much mass would have to
be converted to energy to fuel this need?

24. (I) Calculate the mass of a proton in

25. (I) A certain chemical reaction requires of
energy input for it to go. What is the increase in mass of
the products over the reactants?

26. (II) Calculate the kinetic energy and momentum of a
proton traveling 

27. (II) What is the momentum of a 950-MeV proton (that is,
its kinetic energy is 950 MeV)?

28. (II) What is the speed of an electron whose kinetic energy
is 1.12 MeV?

29. (II) (a) How much work is required to accelerate a proton
from rest up to a speed of 0.985c? (b) What would be the
momentum of this proton?

30. (II) At what speed will an object’s kinetic energy be 33% of
its rest energy?

31. (II) Determine the speed and the momentum of an electron
whose equals its rest energy.

32. (II) A proton is traveling in an accelerator with a speed of
By what factor does the proton’s kinetic

energy increase if its speed is doubled?
1.0 * 108 m�s.

keAm = 9.11 * 10–31 kgB

2.90 * 108 m�s.

4.82 * 104 J

MeV�c2.
(1.67 * 10–27 kg)

1 * 1020 J.

A1 MeV = 1.60 * 10–13 JB.

1.67 * 10–27 kg.
6.68 * 10–27 kg,

v = 0.22c.

v = 0.75c.

v = 0.15c.

v = 0.68c?

2.6 * 10–8 s.

33. (II) How much energy can be obtained from conversion of
1.0 gram of mass? How much mass could this energy raise
to a height of 1.0 km above the Earth’s surface?

34. (II) To accelerate a particle of mass m from rest to speed
0.90c requires work To accelerate the particle from
speed 0.90c to 0.99c requires work Determine the
ratio

35. (II) Suppose there was a process by which two photons,
each with momentum could collide and make
a single particle. What is the maximum mass that the parti-
cle could possess?

36. (II) What is the speed of a proton accelerated by a poten-
tial difference of 165 MV?

37. (II) What is the speed of an electron after being accelerated
from rest by 31,000 V?

38. (II) The kinetic energy of a particle is 45 MeV. If the
momentum is what is the particle’s mass?

39. (II) Calculate the speed of a proton 
whose kinetic energy is exactly half (a) its total energy,
(b) its rest energy.

40. (II) Calculate the kinetic energy and momentum of a
proton traveling 
By what percentages would your calculations have been in
error if you had used classical formulas?

41. (II) Suppose a spacecraft of mass 17,000 kg is accelerated
to 0.15c. (a) How much kinetic energy would it have?
(b) If you used the classical formula for kinetic energy, by
what percentage would you be in error?

42. (II) A negative muon traveling at 53% the speed of light
collides head on with a positive muon traveling at 65% the
speed of light. The two muons (each of mass )
annihilate, and produce how much electromagnetic energy?

43. (II) Two identical particles of mass m approach each other
at equal and opposite speeds, v. The collision is completely
inelastic and results in a single particle at rest. What is the
mass of the new particle? How much energy was lost in the
collision? How much kinetic energy was lost in this collision?

44. (III) The americium nucleus, decays to a neptunium
nucleus, by emitting an alpha particle of mass
4.00260 u and kinetic energy 5.5 MeV. Estimate the mass
of the neptunium nucleus, ignoring its recoil, given that the
americium mass is 241.05682 u.

45. (III) Show that the kinetic energy ke of a particle of mass m
is related to its momentum p by the equation

*46. (III) What magnetic field B is needed to keep 998-GeV
protons revolving in a circle of radius 1.0 km? Use the
relativistic mass. The proton’s “rest mass” is 

[Hint: In relativity, is
still valid in a magnetic field, where ]

26–10 Relativistic Addition of Velocities

47. (I) A person on a rocket traveling at 0.40c (with respect to
the Earth) observes a meteor come from behind and pass
her at a speed she measures as 0.40c. How fast is the
meteor moving with respect to the Earth?

48. (II) Two spaceships leave Earth in opposite directions, each
with a speed of 0.60c with respect to Earth. (a) What is the
velocity of spaceship 1 relative to spaceship 2? (b) What 
is the velocity of spaceship 2 relative to spaceship 1?

mrel = gm.
mrelv

2�r = qvBA1 GeV = 109 eV.B
0.938 GeV�c2.

p = 3ke2 + 2ke mc2�c.

 93
237Np,

 95
241Am,

105.7 MeV�c2

8.65 * 107 m�s.Am = 1.67 * 10–27 kgB

Am = 1.67 * 10–27 kgB
121 MeV�c,

0.65 MeV�c,

W2�W1 .
W2 .

W1 .



=  0.90c

=  0.60c

Enterprise

FIGURE 26–13 Problem 50.
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49. (II) A spaceship leaves Earth traveling at 0.65c. A second
spaceship leaves the first at a speed of 0.82c with respect to
the first. Calculate the speed of the second ship with
respect to Earth if it is fired (a) in the same direction the
first spaceship is already moving, (b) directly backward
toward Earth.

50. (II) An observer on Earth sees an alien vessel approach 
at a speed of 0.60c. The fictional starship Enterprise comes
to the rescue (Fig. 26–13), overtaking the aliens while
moving directly toward Earth at a speed of 0.90c relative
to Earth. What is the relative speed of one vessel as seen
by the other?

51. (II) A spaceship in distress sends out two escape pods in
opposite directions. One travels at a speed
in one direction, and the other travels at a speed

in the other direction, as observed from the
spaceship. What speed does the first escape pod measure
for the second escape pod?

52. (II) Rocket A passes Earth at a speed of 0.65c. At the
same time, rocket B passes Earth moving 0.95c relative to
Earth in the same direction as A. How fast is B moving
relative to A when it passes A?

53. (II) Your spaceship, traveling at 0.90c, needs to launch a
probe out the forward hatch so that its speed relative to
the planet that you are approaching is 0.95c. With what
speed must it leave your ship?

v2 = –0.80c

v1 = ±0.70c

54. What is the speed of a particle when its kinetic energy
equals its rest energy? Does the mass of the particle affect
the result?

55. The nearest star to Earth is Proxima Centauri, 4.3 light-
years away. (a) At what constant velocity must a spacecraft
travel from Earth if it is to reach the star in 4.9 years, as
measured by travelers on the spacecraft? (b) How long does
the trip take according to Earth observers?

56. According to the special theory of relativity, the factor 
that determines the length contraction and the time
dilation is given by Determine the
numerical values of for an object moving at speed

0.05c, 0.10c, 0.20c, 0.30c, 0.40c, 0.50c, 0.60c,
0.70c, 0.80c, 0.90c, 0.95c, and 0.99c. Make a graph of

versus v.
57. A healthy astronaut’s heart rate is Flight

doctors on Earth can monitor an astronaut’s vital signs
remotely while in flight. How fast would an astronaut be
flying away from Earth if the doctor measured her having
a heart rate of 

58. (a) What is the speed v of an electron whose kinetic energy
is 14,000 times its rest energy? You can state the answer as
the difference Such speeds are reached in the Stan-
ford Linear Accelerator, SLAC. (b) If the electrons travel
in the lab through a tube 3.0 km long (as at SLAC), how
long is this tube in the electrons’ reference frame? [Hint:
Use the binomial expansion.]

59. What minimum amount of electromagnetic energy is
needed to produce an electron and a positron together?
A positron is a particle with the same mass as an electron,
but has the opposite charge. (Note that electric charge is
conserved in this process. See Section 27–6.)

60. How many grams of matter would have to be totally
destroyed to run a 75-W lightbulb for 1.0 year?

61. A free neutron can decay into a proton, an electron, and a
neutrino. Assume the neutrino’s mass is zero; the other
masses can be found in the Table inside the front cover.
Determine the total kinetic energy shared among the three
particles when a neutron decays at rest.

c - v.

25 beats�min?

60 beats�min.

g

v = 0.01c,
g

g = 1�31 - v2�c2 .

g

62. An electron is accelerated from
rest to speed v by a conservative force. In this process, its
potential energy decreases by Determine
the electron’s speed, v.

63. The Sun radiates energy at a rate of about 
(a) At what rate is the Sun’s mass decreasing? (b) How
long does it take for the Sun to lose a mass equal to that 
of Earth? (c) Estimate how long the Sun could last if it
radiated constantly at this rate.

64. How much energy would be required to break a helium
nucleus into its constituents, two protons and two
neutrons? The masses of a proton (including an electron),
a neutron, and neutral helium are, respectively, 1.00783 u,
1.00867 u, and 4.00260 u. (This energy difference is called
the total binding energy of the nucleus.)

65. Show analytically that a particle with momentum p and
energy E has a speed given by

66. Two protons, each having a speed of 0.990c in the labora-
tory, are moving toward each other. Determine (a) the
momentum of each proton in the laboratory, (b) the total
momentum of the two protons in the laboratory, and 
(c) the momentum of one proton as seen by the other proton.

67. When two moles of hydrogen molecules and one mole
of oxygen molecules react to form two moles of water

the energy released is 484 kJ. How much does the
mass decrease in this reaction? What % of the total original
mass is this?

68. The fictional starship Enterprise obtains its power by
combining matter and antimatter, achieving complete
conversion of mass into energy. If the mass of the
Enterprise is approximately how much mass
must be converted into kinetic energy to accelerate it from
rest to one-tenth the speed of light?

69. Make a graph of the kinetic energy versus momentum for
(a) a particle of nonzero mass, and (b) a particle with zero
mass.

6 * 109 kg,

(H2O),
(O2)

(H2)

v =
pc2

E
=

pc

3m2c2 + p2
.

2
4He

4 * 1026 W.

6.20 * 10–14 J.

Am = 9.11 * 10–31 kgB
General Problems
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70. A spaceship and its occupants have a total mass of
160,000 kg. The occupants would like to travel to a star
that is 35 light-years away at a speed of 0.70c. To accelerate,
the engine of the spaceship changes mass directly to energy.
(a) Estimate how much mass will be converted to energy
to accelerate the spaceship to this speed. (b) Assuming the
acceleration is rapid, so the speed for the entire trip can be
taken to be 0.70c, determine how long the trip will take
according to the astronauts on board.

71. In a nuclear reaction two identical particles are created,
traveling in opposite directions. If the speed of each particle
is 0.82c, relative to the laboratory frame of reference, what
is one particle’s speed relative to the other particle?

72. A 36,000-kg spaceship is to travel to the vicinity of a star
6.6 light-years from Earth. Passengers on the ship want the
(one-way) trip to take no more than 1.0 year. How much
work must be done on the spaceship to bring it to the
speed necessary for this trip?

73. Suppose a 14,500-kg spaceship left Earth at a speed of 0.90c.
What is the spaceship’s kinetic energy? Compare with the
total U.S. annual energy consumption (about ).

74. A pi meson of mass decays at rest into a muon (mass )
and a neutrino of negligible or zero mass. Show that the
kinetic energy of the muon is

75. An astronaut on a spaceship traveling at 0.75c relative to
Earth measures his ship to be 23 m long. On the ship, he
eats his lunch in 28 min. (a) What length is the spaceship
according to observers on Earth? (b) How long does the
astronaut’s lunch take to eat according to observers on Earth?

kem = Amp - mmB2c2�A2mpB .
mmmp

1020 J

76. Astronomers measure the distance to a particular star to
be 6.0 light-years ( light travels in 1 year).
A spaceship travels from Earth to the vicinity of this star at
steady speed, arriving in 3.50 years as measured by clocks
on the spaceship. (a) How long does the trip take as
measured by clocks in Earth’s reference frame? (b) What
distance does the spaceship travel as measured in its own
reference frame?

77. An electron is accelerated so that its kinetic energy is
greater than its rest energy by a factor of (a) 5.00,
(b) 999. What is the speed of the electron in each case?

78. You are traveling in a spaceship at a speed of 0.70c away
from Earth. You send a laser beam toward the Earth
traveling at velocity c relative to you. What do observers
on the Earth measure for the speed of the laser beam?

79. A farm boy studying physics believes that he can fit a
13.0-m-long pole into a 10.0-m-long barn if he runs fast
enough, carrying the pole. Can he do it? Explain in detail.
How does this fit with the idea that when he is running the
barn looks even shorter than 10.0 m?

80. An atomic clock is taken to the North Pole, while another
stays at the Equator. How far will they be out of synchroni-
zation after 2.0 years has elapsed? [Hint: Use the binomial
expansion, Appendix A.]

81. An airplane travels around the Earth in a circle
of radius essentially equal to that of the Earth, returning 
to the same place. Using special relativity, estimate the
difference in time to make the trip as seen by Earth and 
by airplane observers. [Hint: Use the binomial expansion,
Appendix A.]

1300 km�h

mc2

1 ly = distance

1. Determine about how fast Mr Tompkins is traveling in the
Chapter-Opening Photograph. Do you agree with the
picture in terms of the way Mr Tompkins would see the
world? Explain. [Hint: Assume the bank clock and Stop 
sign facing us are round according to the people on the
sidewalk.]

2. Examine the experiment of Fig. 26–5 from reference
frame. In this case, will be at rest and will see the light-
ning bolt at and before the lightning bolt at 
and Will recognize that who is moving with
speed v to the left, will see the two events as simultaneous?
Explain in detail, drawing diagrams equivalent to Fig. 26–5.
[Hint: Include length contraction.]

3. Using Example 26–2 as a guide, show that for objects that
move slowly in comparison to c, the length contraction
formula is roughly Use this approxi-
mation to find the “length shortening” of the
train in Example 26–6 if the train travels at 
(rather than 0.92c).

100 km�h
¢l = l0 - l

l L l0A1 - 1
2 v2�c2B.

O2 ,O1A2 .
A1B2 ,B1

O1

O1’s

4. In Example 26–5, the spaceship is moving at 0.90c in the
horizontal direction relative to an observer on the Earth.
If instead the spaceship moved at 0.90c directed at 
above the horizontal, what would be the painting’s
dimensions as seen by the observer on Earth?

5. Protons from outer space crash into the Earth’s atmosphere
at a high rate. These protons create particles that eventually
decay into other particles called muons. This cosmic debris
travels through the atmosphere. Every second, dozens of
muons pass through your body. If a muon is created 30 km
above the Earth’s surface, what minimum speed and kinetic
energy must the muon have in order to hit Earth’s surface?
A muon’s mean lifetime (at rest) is and its mass is

6. As a rough rule, anything traveling faster than about 0.1c
is called relativistic—that is, special relativity is a significant
effect. Determine the speed of an electron in a hydrogen
atom (radius ) and state whether or not it 
is relativistic. (Treat the electron as though it were in a
circular orbit around the proton. See hint for Problem 46.)

0.53 * 10–10 m

105.7 MeV�c2.
2.20 ms

30°

Search and Learn

A: (c).
B: (a) No; (b) yes.
C: 80 m.
D: No: ke�mc2 L 2 * 10–4.

E: 0.030c, same as classical, to an accuracy of better than
0.1%.

F: (d).
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