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The space shuttle has released 
a parachute to reduce its 
speed quickly. The directions 
of the shuttle’s velocity and 
acceleration are shown by the 
green and gold arrows.

Motion is described using 
the concepts of velocity and 
acceleration. In the case 
shown here, the velocity is 
to the right, in the direction
of motion. The acceleration 
is in the opposite direction 
from the velocity which 
means the object is slowing 
down.

We examine in detail motion
with constant acceleration,
including the vertical motion 
of objects falling under gravity.
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CHAPTER-OPENING QUESTION—Guess now!
[Don’t worry about getting the right answer now—you will get another chance later in the
Chapter. See also p. 1 of Chapter 1 for more explanation.]

Two small heavy balls have the same diameter but one weighs twice as much as
the other. The balls are dropped from a second-story balcony at the exact same
time. The time to reach the ground below will be:

(a) twice as long for the lighter ball as for the heavier one.
(b) longer for the lighter ball, but not twice as long.
(c) twice as long for the heavier ball as for the lighter one.
(d) longer for the heavier ball, but not twice as long.
(e) nearly the same for both balls.

T he motion of objects—baseballs, automobiles, joggers, and even the Sun
and Moon—is an obvious part of everyday life. It was not until the
sixteenth and seventeenth centuries that our modern understanding of

motion was established. Many individuals contributed to this understanding,
particularly Galileo Galilei (1564–1642) and Isaac Newton (1642–1727).

The study of the motion of objects, and the related concepts of force and energy,
form the field called mechanics. Mechanics is customarily divided into two parts:
kinematics, which is the description of how objects move, and dynamics, which
deals with force and why objects move as they do. This Chapter and the next deal
with kinematics.
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FIGURE 2;2 A person walks toward the front of a train at 
The train is moving with respect to the ground, so the 
walking person’s speed, relative to the ground, is 85 km�h.

80 km�h
5 km�h.

For now we only discuss objects that move without rotating (Fig. 2–1a).
Such motion is called translational motion. In this Chapter we will be concerned
with describing an object that moves along a straight-line path, which is one-
dimensional translational motion. In Chapter 3 we will describe translational
motion in two (or three) dimensions along paths that are not straight. (Rotation,
shown in Fig. 2–1b, is discussed in Chapter 8.)

We will often use the concept, or model, of an idealized particle which is
considered to be a mathematical point with no spatial extent (no size). A point
particle can undergo only translational motion. The particle model is useful in
many real situations where we are interested only in translational motion and
the object’s size is not significant. For example, we might consider a billiard ball,
or even a spacecraft traveling toward the Moon, as a particle for many purposes.

2–1 Reference Frames and Displacement
Any measurement of position, distance, or speed must be made with respect to a
reference frame, or frame of reference. For example, while you are on a train
traveling at suppose a person walks past you toward the front of the
train at a speed of, say, (Fig. 2–2). This is the person’s speed 
with respect to the train as frame of reference. With respect to the ground,
that person is moving at a speed of It is always
important to specify the frame of reference when stating a speed. In everyday
life, we usually mean “with respect to the Earth” without even thinking about it,
but the reference frame must be specified whenever there might be confusion.

80 km�h + 5 km�h = 85 km�h.

5 km�h5 km�h
80 km�h,

(a) (b)

FIGURE 2;1 A falling pinecone
undergoes (a) pure translation;
(b) it is rotating as well as translating.

When specifying the motion of an object, it is important to specify not only
the speed but also the direction of motion. Often we can specify a direction by
using north, east, south, and west, and by “up” and “down.” In physics, we
often draw a set of coordinate axes, as shown in Fig. 2–3, to represent a frame
of reference. We can always place the origin 0, and the directions of the x and
y axes, as we like for convenience. The x and y axes are always perpendicular
to each other. The origin is where Objects positioned to the right
of the origin of coordinates (0) on the x axis have an x coordinate which we
almost always choose to be positive; then points to the left of 0 have a negative
x coordinate. The position along the y axis is usually considered positive when
above 0, and negative when below 0, although the reverse convention can be used
if convenient. Any point on the plane can be specified by giving its x and y coor-
dinates. In three dimensions, a z axis perpendicular to the x and y axes is added.

For one-dimensional motion, we often choose the x axis as the line along
which the motion takes place. Then the position of an object at any moment is
given by its x coordinate. If the motion is vertical, as for a dropped object, we
usually use the y axis.

y = 0.x = 0,

− y

+ y

+ x− x
0

FIGURE 2;3 Standard set of xy
coordinate axes, sometimes called
“rectangular coordinates.”
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C A U T I O N

The displacement may not equal the
total distance traveled

We need to make a distinction between the distance an object has traveled
and its displacement, which is defined as the change in position of the 
object. That is, displacement is how far the object is from its starting point.
To see the distinction between total distance and displacement, imagine a person
walking 70 m to the east and then turning around and walking back (west) a
distance of 30 m (see Fig. 2–4). The total distance traveled is 100 m, but the
displacement is only 40 m since the person is now only 40 m from the starting point.

Displacement is a quantity that has both magnitude and direction. Such
quantities are called vectors, and are represented by arrows in diagrams. For
example, in Fig. 2–4, the blue arrow represents the displacement whose magni-
tude is 40 m and whose direction is to the right (east).

We will deal with vectors more fully in Chapter 3. For now, we deal only with
motion in one dimension, along a line. In this case, vectors which point in one direc-
tion will be positive (typically to the right along the x axis). Vectors that point
in the opposite direction will have a negative sign in front of their magnitude.

Consider the motion of an object over a particular time interval. Suppose that
at some initial time, call it the object is on the x axis at the position in the
coordinate system shown in Fig. 2–5. At some later time, suppose the object 
has moved to position The displacement of our object is and is
represented by the arrow pointing to the right in Fig. 2–5. It is convenient to write

where the symbol (Greek letter delta) means “change in.” Then means
“the change in x,” or “change in position,” which is the displacement. The change in
any quantity means the final value of that quantity, minus the initial value.
Suppose and as in Fig. 2–5. Then

so the displacement is 20.0 m in the positive direction, Fig. 2–5.
Now consider an object moving to the left as shown in Fig. 2–6. Here the

object, a person, starts at and walks to the left to the point
In this case her displacement is

and the blue arrow representing the vector displacement points to the left. For
one-dimensional motion along the x axis, a vector pointing to the right is 
positive, whereas a vector pointing to the left has a negative sign.

EXERCISE A An ant starts at on a piece of graph paper and walks along
the x axis to It then turns around and walks back to
Determine (a) the ant’s displacement and (b) the total distance traveled.

2–2 Average Velocity
An important aspect of the motion of a moving object is how fast it is 
moving—its speed or velocity.

The term “speed” refers to how far an object travels in a given time interval,
regardless of direction. If a car travels 240 kilometers (km) in 3 hours (h), we say
its average speed was In general, the average speed of an object is
defined as the total distance traveled along its path divided by the time it takes to
travel this distance:

(2;1)

The terms “velocity” and “speed” are often used interchangeably in ordi-
nary language. But in physics we make a distinction between the two. Speed is
simply a positive number, with units. Velocity, on the other hand, is used to
signify both the magnitude (numerical value) of how fast an object is moving
and also the direction in which it is moving. Velocity is therefore a vector.

average speed =
distance traveled

time elapsed
.

80 km�h.

x = –10 cm.x = –20 cm.
x = 20 cm

¢x = x2 - x1 = 10.0 m - 30.0 m = –20.0 m,

x2 = 10.0 m.
x1 = 30.0 m

¢x = x2 - x1 = 30.0 m - 10.0 m = 20.0 m,

x2 = 30.0 m,x1 = 10.0 m

¢x¢
¢x = x2 - x1 ,

x2 - x1 ,x2 .
t2 ,

x1t1 ,

y

x

x2 x1

100 20 30 40
Distance (m)

�x

x
0

70 m

West East40 m

Displacement

30 m

y

FIGURE 2;4 A person walks 70 m 
east, then 30 m west. The total distance
traveled is 100 m (path is shown dashed
in black); but the displacement, shown 
as a solid blue arrow, is 40 m to the east.

x

y

x1 x2

100 20 30 40
Distance (m)

FIGURE 2;5 The arrow represents
the displacement
Distances are in meters.

x2 - x1 .

FIGURE 2;6 For the displacement

the displacement vector points left.
¢x = x2 - x1 = 10.0 m - 30.0 m,



There is a second difference between speed and velocity: namely, the average
velocity is defined in terms of displacement, rather than total distance traveled:

Average speed and average velocity have the same magnitude when the
motion is all in one direction. In other cases, they may differ: recall the walk we
described earlier, in Fig. 2–4, where a person walked 70 m east and then 30 m west.
The total distance traveled was but the displacement was
40 m. Suppose this walk took 70 s to complete. Then the average speed was:

The magnitude of the average velocity, on the other hand, was:

To discuss one-dimensional motion of an object in general, suppose that at
some moment in time, call it the object is on the x axis at position in a
coordinate system, and at some later time, suppose it is at position The
elapsed time ( in time) is during this time interval the
displacement of our object is Then the average velocity,
defined as the displacement divided by the elapsed time, can be written

[average velocity] (2;2)

where stands for velocity and the bar over the is a standard symbol
meaning “average.”

For one-dimensional motion in the usual case of the axis to the right,
note that if is less than the object is moving to the left, and then

is less than zero. The sign of the displacement, and thus of the
average velocity, indicates the direction: the average velocity is positive for an
object moving to the right along the axis and negative when the object 
moves to the left. The direction of the average velocity is always the same as 
the direction of the displacement.

It is always important to choose (and state) the elapsed time, or time interval,
the time that passes during our chosen period of observation.

Runner’s average velocity. The position of a runner as a
function of time is plotted as moving along the x axis of a coordinate system.
During a 3.00-s time interval, the runner’s position changes from
to as shown in Fig. 2–7. What is the runner’s average velocity?

APPROACH We want to find the average velocity, which is the displacement
divided by the elapsed time.

SOLUTION The displacement is

The elapsed time, or time interval, is given as The average velocity 
(Eq. 2–2) is

The displacement and average velocity are negative, which tells us that the
runner is moving to the left along the x axis, as indicated by the arrow in Fig. 2–7.
The runner’s average velocity is to the left.6.50 m�s

v =
¢x
¢t

=
–19.5 m

3.00 s
= –6.50 m�s.

¢t = 3.00 s.

= 30.5 m - 50.0 m = –19.5 m.
¢x = x2 - x1

x2 = 30.5 m,
x1 = 50.0 m

EXAMPLE 2;1

t2 - t1 ,

x

¢x = x2 - x1

x1 ,x2

±x

v(  )v

v =
x2 - x1

t2 - t1
=
¢x
¢t

,

¢x = x2 - x1 .
¢t = t2 - t1 ;= change

x2 .t2 ,
x1t1 ,

displacement
time elapsed

=
40 m
70 s

= 0.57 m�s.

distance
time elapsed

=
100 m
70 s

= 1.4 m�s.

70 m + 30 m = 100 m,

average velocity =
displacement
time elapsed

=
final position - initial position

time elapsed
.
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P R O B L E M  S O L V I N G

or sign can signify the direction
for linear motion

––++

C A U T I O N

Average speed is not necessarily 
equal to the magnitude of the 

average velocity

y

x
100 20 30 40 50 60

Distance (m)

Start
(x1)

Finish
(x2)

�x

FIGURE 2;7 Example 2–1.
A person runs from
to The displacement
is –19.5 m.

x2 = 30.5 m.
x1 = 50.0 m

C A U T I O N

Time interval elapsed time=
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Distance a cyclist travels. How far can a cyclist travel in 
2.5 h along a straight road if her average velocity is 

APPROACH We want to find the distance traveled, so we solve Eq. 2–2 for 

SOLUTION In Eq. 2–2, we multiply both sides by and obtain

¢x = v ¢t = (18 km�h)(2.5 h) = 45 km.

¢tv = ¢x�¢t,
¢x.

18 km�h?
EXAMPLE 2;2

FIGURE 2;8 Car speedometer
showing in white, and 
in orange.
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FIGURE 2;9 Velocity of a car as a 
function of time: (a) at constant velocity;
(b) with velocity varying in time.

Car changes speed. A car travels at a constant for
100 km. It then speeds up to and is driven another 100 km. What is
the car’s average speed for the 200-km trip?

APPROACH At the car takes 2.0 h to travel 100 km. At it
takes only 1.0 h to travel 100 km.We use the defintion of average velocity, Eq. 2–2.

SOLUTION Average velocity (Eq. 2–2) is

NOTE Averaging the two speeds, gives
a wrong answer. Can you see why? You must use the definition of Eq. 2–2.v,

75 km�h,(50 km�h + 100 km�h)�2 =

v =
¢x

¢t
=

100 km + 100 km
2.0 h + 1.0 h

= 67 km�h.

100 km�h50 km�h,

100 km�h
50 km�hEXAMPLE 2;3

2–3 Instantaneous Velocity
If you drive a car along a straight road for 150 km in 2.0 h, the magnitude of
your average velocity is It is unlikely, though, that you were moving
at precisely at every instant. To describe this situation we need the
concept of instantaneous velocity, which is the velocity at any instant of time.
(Its magnitude is the number, with units, indicated by a speedometer, Fig. 2–8.)
More precisely, the instantaneous velocity at any moment is defined as the
average velocity over an infinitesimally short time interval. That is, Eq. 2–2 is to be
evaluated in the limit of becoming extremely small, approaching zero. We can
write the definition of instantaneous velocity, for one-dimensional motion as

[instantaneous velocity] (2;3)

The notation means the ratio is to be evaluated in the limit of
approaching zero.†

For instantaneous velocity we use the symbol whereas for average
velocity we use with a bar above. In the rest of this book, when we use the
term “velocity” it will refer to instantaneous velocity. When we want to speak of
the average velocity, we will make this clear by including the word “average.”

Note that the instantaneous speed always equals the magnitude of the
instantaneous velocity. Why? Because distance traveled and the magnitude of
the displacement become the same when they become infinitesimally small.

If an object moves at a uniform (that is, constant) velocity during a partic-
ular time interval, then its instantaneous velocity at any instant is the same as its
average velocity (see Fig. 2–9a). But in many situations this is not the case. For
example, a car may start from rest, speed up to remain at that velocity
for a time, then slow down to in a traffic jam, and finally stop at its
destination after traveling a total of 15 km in 30 min. This trip is plotted on the
graph of Fig. 2–9b. Also shown on the graph is the average velocity (dashed
line), which is  

Graphs are often useful for analysis of motion; we discuss additional insights
graphs can provide as we go along, especially in Section 2–8.

v = ¢x�¢t = 15 km�0.50 h = 30 km�h.

20 km�h
50 km�h,

v,
v,

¢t
¢x�¢tlim¢tS 0

v = lim
¢tS 0

¢x
¢t

.

v,
¢t

75 km�h
75 km�h.

†We do not simply set in this definition, for then would also be zero, and we would have
an undetermined number. Rather, we consider the ratio as a whole. As we let approach
zero, approaches zero as well. But the ratio approaches some definite value, which is the
instantaneous velocity at a given instant.

¢x�¢t¢x
¢t¢x�¢t,

¢x¢t = 0

EXERCISE B What is your instantaneous speed at the instant you turn around to move
in the opposite direction? (a) Depends on how quickly you turn around; (b) always zero;
(c) always negative; (d) none of the above.
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2–4 Acceleration
An object whose velocity is changing is said to be accelerating. For instance, a car
whose velocity increases in magnitude from zero to is accelerating.
Acceleration specifies how rapidly the velocity of an object is changing.

Average acceleration is defined as the change in velocity divided by the 
time taken to make this change:

In symbols, the average acceleration, , over a time interval during
which the velocity changes by is defined as

[average acceleration] (2;4)

We saw that velocity is a vector (it has magnitude and direction), so acceleration
is a vector too. But for one dimensional motion, we need only use a plus or minus
sign to indicate acceleration direction relative to a chosen coordinate axis.
(Usually, right is left is .)

The instantaneous acceleration, a, can be defined in analogy to instantaneous
velocity as the average acceleration over an infinitesimally short time interval at
a given instant:

[instantaneous acceleration] (2;5)

Here is the very small change in velocity during the very short time interval ¢t.¢v

a = lim
¢tS 0

¢v

¢t
.

–± ,

a =
v2 - v1

t2 - t1
=
¢v

¢t
.

¢v = v2 - v1 ,
¢t = t2 - t1 ,a

average acceleration =
change of velocity

time elapsed
.

80 km�h

Acceleration

a =  15 km/h
s

v1 =  0
t1 =  0

at t =  2.0 s
    v =  30 km/h

at t =  1.0 s
    v =  15 km/h

at t = t2 =  5.0 s
    v = v2 =  75 km/h

FIGURE 2;10 Example 2–4. The car
is shown at the start with at

The car is shown three more
times, at and at
the end of our time interval,
The green arrows represent the
velocity vectors, whose length 
represents the magnitude of the
velocity at that moment. The 
acceleration vector is the orange
arrow, whose magnitude is constant
and equals or 
(see top of next page). Distances are
not to scale.

4.2 m�s215 km�h�s

t2 = 5.0 s.
t = 2.0 s,t = 1.0 s,

t1 = 0.
v1 = 0

Average acceleration. A car accelerates on a straight road from
rest to in 5.0 s, Fig. 2–10. What is the magnitude of its average acceleration?

APPROACH Average acceleration is the change in velocity divided by the elapsed
time, 5.0 s. The car starts from rest, so The final velocity is .

SOLUTION From Eq. 2–4, the average acceleration is

This is read as “fifteen kilometers per hour per second” and means that, on
average, the velocity changed by 15 km h during each second. That is, assuming
the acceleration was constant, during the first second the car’s velocity increased
from zero to 15 km h. During the next second its velocity increased by another
15 km h, reaching a velocity of 30 km h at and so on. See Fig. 2–10.t = 2.0 s,��

�

�

a =
v2 - v1

t2 - t1
=

75 km�h - 0 km�h
5.0 s

= 15
km�h

s
.

v2 = 75 km�hv1 = 0.

75 km�h
EXAMPLE 2;4
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Our result in Example 2–4 contains two different time units: hours and seconds.
We usually prefer to use only seconds. To do so we can change km h to m s
(see Section 1–6, and Example 1–5):

Then

We almost always write the units for acceleration as (meters per
second squared) instead of This is possible because:

Note that acceleration tells us how quickly the velocity changes, whereas
velocity tells us how quickly the position changes.

m�s
s =

m
s �s =

m
s2

.

m�s�s.
m�s2

a =
21 m�s - 0.0 m�s

5.0 s
= 4.2

m�s
s = 4.2

m
s2

.

75 km�h = a75
km
h
b a 1000 m

1 km
b a 1 h

3600 s
b = 21 m�s.

��

Velocity and acceleration. (a) If the velocity
of an object is zero, does it mean that the acceleration is zero? (b) If the
acceleration is zero, does it mean that the velocity is zero? Think of some examples.

RESPONSE A zero velocity does not necessarily mean that the acceleration
is zero, nor does a zero acceleration mean that the velocity is zero. (a) For
example, when you put your foot on the gas pedal of your car which is at rest,
the velocity starts from zero but the acceleration is not zero since the velocity
of the car changes. (How else could your car start forward if its velocity weren’t
changing—that is, accelerating?) (b) As you cruise along a straight highway at
a constant velocity of , your acceleration is zero: a = 0,  v Z 0.100 km�h

CONCEPTUAL EXAMPLE 2;5

C A U T I O N

Distinguish velocity from
acceleration

C A U T I O N

If v or a is zero, is the other zero too?

Acceleration

a = −2.0 m/s2
v1 =  15.0 m/s

at t1 =  0

v2 =  5.0 m/s
at t2 =  5.0 s

FIGURE 2;11 Example 2–6,
showing the position of the car at 
times and as well as the car’s 
velocity represented by the green 
arrows. The acceleration vector 
(orange) points to the left because the 
car slows down as it moves to the right.

t2 ,t1

v1 = −15.0 m/sv2 = −5.0 m/s

a

FIGURE 2;12 The car of 
Example 2–6, now moving to the left
and decelerating. The acceleration is

, or

= ±2.0 m�s2.= –5.0 m�s + 15.0 m�s
5.0 s

a =
(–5.0 m�s) - (–15.0 m�s)

5.0 s

a = (v2 - v1)�¢t

Car slowing down. An automobile is moving to the right
along a straight highway, which we choose to be the positive x axis (Fig. 2–11).
Then the driver steps on the brakes. If the initial velocity (when the driver hits 
the brakes) is and it takes 5.0 s to slow down to
what was the car’s average acceleration?

APPROACH We put the given initial and final velocities, and the elapsed
time, into Eq. 2–4 for 

SOLUTION In Eq. 2–4, we call the initial time and set

The negative sign appears because the final velocity is less than the initial velocity.
In this case the direction of the acceleration is to the left (in the negative x direc-
tion)—even though the velocity is always pointing to the right. We say that the
acceleration is to the left, and it is shown in Fig. 2–11 as an orange arrow.2.0 m�s2

a =
5.0 m�s - 15.0 m�s

5.0 s
= –2.0 m�s2.

t2 = 5.0 s:t1 = 0,

a.

v2 = 5.0 m�s,v1 = 15.0 m�s,

EXAMPLE 2;6

Deceleration
When an object is slowing down, we can say it is decelerating. But be careful:
deceleration does not mean that the acceleration is necessarily negative. The
velocity of an object moving to the right along the positive x axis is positive;
if the object is slowing down (as in Fig. 2–11), the acceleration is negative. But
the same car moving to the left (decreasing x), and slowing down, has positive
acceleration that points to the right, as shown in Fig. 2–12. We have a decelera-
tion whenever the magnitude of the velocity is decreasing; thus the velocity
and acceleration point in opposite directions when there is deceleration.

EXERCISE C A car moves along the x axis. What is the sign of the car’s acceleration if
it is moving in the positive x direction with (a) increasing speed or (b) decreasing
speed? What is the sign of the acceleration if the car moves in the negative x direction
with (c) increasing speed or (d) decreasing speed?



2–5 Motion at Constant Acceleration
We now examine motion in a straight line when the magnitude of the acceleration
is constant. In this case, the instantaneous and average accelerations are equal.
We use the definitions of average velocity and acceleration to derive a set of
valuable equations that relate x, a, and when a is constant, allowing us to
determine any one of these variables if we know the others. We can then solve
many interesting Problems.

Notation in physics varies from book to book; and different instructors use
different notation. We are now going to change our notation, to simplify it a bit
for our discussion here of motion at constant acceleration. First we choose the
initial time in any discussion to be zero, and we call it That is,
(This is effectively starting a stopwatch at ) We can then let be the
elapsed time. The initial position and the initial velocity of an object
will now be represented by and since they represent x and at At
time the position and velocity will be called x and (rather than and ).
The average velocity during the time interval will be (Eq. 2–2)

since we chose The acceleration, assumed constant in time, is
(Eq. 2–4), so

A common problem is to determine the velocity of an object after any elapsed
time when we are given the object’s constant acceleration. We can solve such
problems† by solving for in the last equation: first we multiply both sides by ,

Then, adding to both sides, we obtain

[constant acceleration] (2;6)

If an object, such as a motorcycle (Fig. 2–13), starts from rest and
accelerates at after an elapsed time its velocity will be

Next, let us see how to calculate the position x of an object after a time when
it undergoes constant acceleration. The definition of average velocity (Eq. 2–2)
is which we can rewrite by multiplying both sides by

(2;7)

Because the velocity increases at a uniform rate, the average velocity, will be
midway between the initial and final velocities:

[constant acceleration] (2;8)

(Careful: Equation 2–8 is not necessarily valid if the acceleration is not constant.)
We combine the last two Equations with Eq. 2–6 and find, starting with Eq. 2–7,

or
[constant acceleration] (2;9)

Equations 2–6, 2–8, and 2–9 are three of the four most useful equations for
motion at constant acceleration. We now derive the fourth equation, which is useful

x = x0 + v0 t + 1
2 at2.

= x0 + ¢ v0 + v0 + at
2

≤ t

= x0 + ¢ v0 + v

2
≤ t

x = x0 + vt

v =
v0 + v

2
.

v,

x = x0 + vt.
t:v = Ax - x0B�t,

t
v = 0 + at = A4.0 m�s2B(6.0 s) = 24 m�s.

t = 6.0 s4.0 m�s2,
Av0 = 0B

v = v0 + at.

v0

at = v - v0        or         v - v0 = at.

tv
t,

a =
v - v0

t
.

a = ¢v�¢tt0 = 0.

v =
¢x
¢t

=
x - x0

t - t0
=

x - x0

t

t - t0

v2x2vt
t = 0.vv0 ,x0

Av1BAx1B
t2 = tt0 .

t1 = t0 = 0.t0 .

tv,

28 CHAPTER 2

C A U T I O N

Average velocity, but only if
a = constant

FIGURE 2;13 An accelerating
motorcycle.

†Appendix A–4 summarizes simple algebraic manipulations.
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in situations where the time is not known. We substitute Eq. 2–8 into Eq. 2–7:

Next we solve Eq. 2–6 for obtaining (see Appendix A–4 for a quick review)

and substituting this into the previous equation we have

We solve this for and obtain

[constant acceleration] (2;10)

which is the other useful equation we sought.
We now have four equations relating position, velocity, acceleration, and

time, when the acceleration a is constant. We collect these kinematic equations
for constant acceleration here in one place for future reference (the tan background
screen emphasizes their usefulness):

(2;11a)

(2;11b)

(2;11c)

(2;11d)

These useful equations are not valid unless a is a constant. In many cases we
can set and this simplifies the above equations a bit. Note that x repre-
sents position (not distance), also that is the displacement, and that is the
elapsed time. Equations 2–11 are useful also when a is approximately constant
to obtain reasonable estimates.

tx - x0

x0 = 0,

[a = constant]v =
v + v0

2
.

[a = constant]v2 = v0
2 + 2aAx - x0B

[a = constant]x = x0 + v0 t + 1
2 at2

[a = constant]v = v0 + at

v2 = v0
2 + 2aAx - x0B,

v2

x = x0 + ¢ v + v0

2
≤ ¢ v - v0

a
≤ = x0 +

v2 - v0
2

2a
.

t =
v - v0

a
,

t,

x = x0 + vt = x0 + ¢ v + v0

2
≤ t.

t

P R O B L E M  S O L V I N G

Equations 2–11 are valid only when
the acceleration is constant, which we
assume in this Example

P H Y S I C S  A P P L I E D

Airport design

Kinematic equations

for constant acceleration 

(we’ll use them a lot)

Known Wanted

a = 2.00 m�s2
x = 150 m

v0 = 0
vx0 = 0

SOLUTION (a) Of the above four equations, Eq. 2–11c will give us when
we know a, x, and

This runway length is not sufficient, because the minimum speed is not reached.
(b) Now we want to find the minimum runway length, for a plane to reach

given We again use Eq. 2–11c, but rewritten as

A 200-m runway is more appropriate for this plane.

NOTE We did this Example as if the plane were a particle, so we round off
our answer to 200 m.

Ax - x0B =
v2 - v0

2

2a
=

(27.8 m�s)2 - 0

2A2.00 m�s2B = 193 m.

a = 2.00 m�s2.v = 27.8 m�s,
x - x0 ,

v = 3600 m2�s2 = 24.5 m�s.

= 0 + 2A2.00 m�s2B(150 m) = 600 m2�s2

v2 = v0
2 + 2aAx - x0B

x0 :v0 ,
v

Runway design. You are designing an airport for small
planes. One kind of airplane that might use this airfield must reach a speed 
before takeoff of at least and can accelerate at 
(a) If the runway is 150 m long, can this airplane reach the required speed for
takeoff? (b) If not, what minimum length must the runway have?

APPROACH Assuming the plane’s acceleration is constant, we use the kinematic
equations for constant acceleration. In (a), we want to find and what we are
given is shown in the Table in the margin.

v,

2.00 m�s2.27.8 m�s (100 km�h),

EXAMPLE 2;7



EXERCISE D A car starts from rest and accelerates at a constant during a 
-mile ( ) race. How fast is the car going at the finish line? (a)

(b) (c) (d)

2–6 Solving Problems
Before doing more worked-out Examples, let us look at how to approach problem
solving. First, it is important to note that physics is not a collection of equations to
be memorized. Simply searching for an equation that might work can lead you
to a wrong result and will not help you understand physics (Fig. 2–14).
A better approach is to use the following (rough) procedure, which we present as
a special “Problem Solving Strategy.” (Other such Problem Solving Strategies
will be found throughout the book.)

804 m�s.81 m�s;90 m�s;
8040 m�s;402 m1

4

10 m�s2
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equation that involves only known quantities and
one desired unknown, solve the equation alge-
braically for the unknown. Sometimes several
sequential calculations, or a combination of equa-
tions, may be needed. It is often preferable to solve
algebraically for the desired unknown before
putting in numerical values.

7. Carry out the calculation if it is a numerical problem.
Keep one or two extra digits during the calculations,
but round off the final answer(s) to the correct number
of significant figures (Section 1–4).

8. Think carefully about the result you obtain: Is it
reasonable? Does it make sense according to your
own intuition and experience? A good check is to
do a rough estimate using only powers of 10, as
discussed in Section 1–7. Often it is preferable to
do a rough estimate at the start of a numerical
problem because it can help you focus your 
attention on finding a path toward a solution.

9. A very important aspect of doing problems is keep-
ing track of units. An equals sign implies the units on
each side must be the same, just as the numbers must.
If the units do not balance, a mistake has been
made. This can serve as a check on your solution
(but it only tells you if you’re wrong, not if you’re
right). Always use a consistent set of units.

P
R

O
B

L
E

M

S O LV I N G

1. Read and reread the whole problem carefully before
trying to solve it.

2. Decide what object (or objects) you are going to
study, and for what time interval. You can often
choose the initial time to be

3. Draw a diagram or picture of the situation, with
coordinate axes wherever applicable. [You can place
the origin of coordinates and the axes wherever you
like to make your calculations easier. You also choose
which direction is positive and which is negative.
Usually we choose the x axis to the right as positive.]

4. Write down what quantities are “known” or “given,”
and then what you want to know. Consider quan-
tities both at the beginning and at the end of the
chosen time interval. You may need to “translate”
language into physical terms, such as “starts from
rest” means

5. Think about which principles of physics apply in
this problem. Use common sense and your own
experiences. Then plan an approach.

6. Consider which equations (and/or definitions) relate
the quantities involved. Before using them, be sure
their range of validity includes your problem (for
example, Eqs. 2–11 are valid only when the accel-
eration is constant). If you find an applicable

v0 = 0.

t = 0.

FIGURE 2;14 Read the book, study
carefully, and work the Problems using
your reasoning abilities.
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Acceleration of a car. How long does it take a car to cross 
a 30.0-m-wide intersection after the light turns green, if the car accelerates from
rest at a constant 

APPROACH We follow the Problem Solving Strategy on the previous page,
step by step.

SOLUTION

1. Reread the problem. Be sure you understand what it asks for (here, a time
interval: “how long does it take”).

2. The object under study is the car. We need to choose the time interval
during which we look at the car’s motion: we choose the initial time,
to be the moment the car starts to accelerate from rest the time 
is the instant the car has traveled the full 30.0-m width of the intersection.

3. Draw a diagram: the situation is shown in Fig. 2–15, where the car is shown
moving along the positive x axis. We choose at the front bumper of
the car before it starts to move.

4. The “knowns” and the “wanted” information are shown in the Table in the
margin. Note that “starting from rest” means at that is,
The wanted time is how long it takes the car to travel 

5. The physics: the car, starting from rest at increases in speed as it
covers more distance. The acceleration is constant, so we can use the kine-
matic equations, Eqs. 2–11.

6. Equations: we want to find the time, given the distance and acceleration;
Eq. 2–11b is perfect since the only unknown quantity is Setting
and in Eq. 2–11b we have

We solve for by multiplying both sides by :

Taking the square root, we get :

7. The calculation:

This is our answer. Note that the units come out correctly.
8. We can check the reasonableness of the answer by doing an alternate calcu-

lation: we first find the final velocity

and then find the distance traveled 

which checks with our given distance.
9. We checked the units in step 7, and they came out correctly (seconds).

NOTE In steps 6 and 7, when we took the square root, we should have written
Mathematically there are two solutions. But the

second solution, is a time before our chosen time interval and
makes no sense physically. We say it is “unphysical” and ignore it.

We explicitly followed the steps of the Problem Solving Strategy in
Example 2–8. In upcoming Examples, we will use our usual “Approach” and
“Solution” to avoid being wordy.

t = –5.48 s,
t = &22x�a = &5.48 s.

x = x0 + vt = 0 + 1
2 (10.96 m�s + 0)(5.48 s) = 30.0 m,

v = at = A2.00 m�s2B(5.48 s) = 10.96 m�s,

t = B2x
a

= C2(30.0 m)

2.00 m�s2
= 5.48 s.

t = B2x
a

.

t

2x
a

= t2.

2
a

t

x = 1
2 at2.

Ax = x0 + v0 t + 1
2 at2B,x0 = 0

v0 = 0t.

t0 = 0B,A
30.0 m.t

v0 = 0.t = 0;v = 0

x0 = 0

tAv0 = 0B;t = 0,

2.00 m�s2?

EXAMPLE 2;8

P R O B L E M  S O L V I N G

Check your answer

P R O B L E M  S O L V I N G

“Starting from rest” means
at [i.e., ]v0 = 0t = 0v = 0

Known Wanted

v0 = 0
a = 2.00 m�s2
x = 30.0 m

tx0 = 0

0

a =  2.00 m/s2 a =  2.00 m/s2

x0 = 0
v

x =
30.0 m=  0

FIGURE 2;15 Example 2–8.

P R O B L E M  S O L V I N G

“Unphysical” solutions



Braking distances. Estimate the minimum
stopping distance for a car, which is important for traffic safety and traffic design.
The problem is best dealt with in two parts, two separate time intervals. (1) The
first time interval begins when the driver decides to hit the brakes, and ends 
when the foot touches the brake pedal. This is the “reaction time” during which
the speed is constant, so (2) The second time interval is the actual 
braking period when the vehicle slows down and comes to a stop. The
stopping distance depends on the reaction time of the driver, the initial speed of
the car (the final speed is zero), and the deceleration of the car. For a dry road 
and good tires, good brakes can decelerate a car at a rate of about to

Calculate the total stopping distance for an initial velocity of 
and assume the acceleration of the car is

(the minus sign appears because the velocity is taken to be in the positive 
x direction and its magnitude is decreasing). Reaction time for normal drivers
varies from perhaps 0.3 s to about 1.0 s; take it to be 0.50 s.

APPROACH During the “reaction time,” part (1), the car moves at constant
speed of so  Once the brakes are applied, part (2), the acceler-
ation is  and is constant over this time interval. For both parts
a is constant, so we can use Eqs. 2–11.

SOLUTION Part (1). We take  for the first time interval, when the driver
is reacting (0.50 s): the car travels at a constant speed of so
See Fig. 2–16 and the Table in the margin. To find x, the position of the car 
at (when the brakes are applied), we cannot use Eq. 2–11c because
x is multiplied by a, which is zero. But Eq. 2–11b works:

Thus the car travels 7.0 m during the driver’s reaction time, until the instant
the brakes are applied. We will use this result as input to part (2).
Part (2). During the second time interval, the brakes are applied and the car is
brought to rest. The initial position is (result of part (1)), and other
variables are shown in the second Table in the margin. Equation 2–11a doesn’t
contain x; Eq. 2–11b contains x but also the unknown Equation 2–11c,

is what we want; after setting we solve 
for x, the final position of the car (when it stops):

The car traveled 7.0 m while the driver was reacting and another 16 m during
the braking period before coming to a stop, for a total distance traveled of
23 m. Figure 2–17 shows a graph of vs. is constant from until

and after it decreases linearly to zero.

NOTE From the equation above for x, we see that the stopping distance after
the driver hit the brakes  increases with the square of the initial
speed, not just linearly with speed. If you are traveling twice as fast, it takes
four times the distance to stop.

A= x - x0B
t = 0.50 st = 0.50 s,

t = 0vt:v

   = 7.0 m + 16 m = 23 m.

= 7.0 m +
0 - (14 m�s)2

2A–6.0 m�s2B = 7.0 m +
–196 m2�s2

–12 m�s2

v2 - v0
2

2a
+x = x0

x0 = 7.0 m,v2 - v0
2 = 2aAx - x0B,

t.

x0 = 7.0 m

x = v0 t + 0 = (14 m�s)(0.50 s) = 7.0 m.

t = 0.50 s

a = 0.14 m�s
x0 = 0

a = –6.0 m�s2
a = 0.14 m�s,

–6.0 m�s2(= 14 m�s L 31 mi�h)
50 km�h8 m�s2.

5 m�s2

(a Z 0)
a = 0.

EXAMPLE 2;9 ESTIMATE
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P H Y S I C S  A P P L I E D

Car stopping distances

Travel during
reaction time

Travel during
braking

    = constant = 14 m/s
 t = 0.50 s
a = 0

a = − 6.0 m/s2

x

decreases from 14 m/s to zerovv

FIGURE 2;16 Example 2–9:
stopping distance for a
braking car.

Part 1: Reaction time

Known Wanted

x

x0 = 0
a = 0
v = 14 m�s

v0 = 14 m�s
t = 0.50 s

Part 2: Braking

Known Wanted

x

a = –6.0 m�s2
v = 0

v0 = 14 m�s
x0 = 7.0 m

10
8
6

2
4

14
12

t (s)

v
(m

/s
)

t = 0.5 s

0 2.00.5 1.0 1.5 2.5

FIGURE 2;17 Example 2–9.
Graph of vs. t.v
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2–7 Freely Falling Objects
One of the most common examples of uniformly accelerated motion is that of
an object allowed to fall freely near the Earth’s surface. That a falling object is
accelerating may not be obvious at first. And beware of thinking, as was widely
believed before the time of Galileo (Fig. 2–18), that heavier objects fall faster
than lighter objects and that the speed of fall is proportional to how heavy the
object is. The speed of a falling object is not proportional to its mass.

Galileo made use of his new technique of imagining what would happen in
idealized (simplified) cases. For free fall, he postulated that all objects would
fall with the same constant acceleration in the absence of air or other resistance.
He showed that this postulate predicts that for an object falling from rest, the
distance traveled will be proportional to the square of the time (Fig. 2–19); that
is, We can see this from Eq. 2–11b for constant acceleration; but Galileo
was the first to derive this mathematical relation.

To support his claim that falling objects increase in speed as they fall,
Galileo made use of a clever argument: a heavy stone dropped from a height of
2 m will drive a stake into the ground much further than will the same stone
dropped from a height of only 0.2 m. Clearly, the stone must be moving faster
in the former case.

Galileo claimed that all objects, light or heavy, fall with the same accel-
eration, at least in the absence of air. If you hold a piece of paper flat and
horizontal in one hand, and a heavier object like a baseball in the other, and
release them at the same time as in Fig. 2–20a, the heavier object will reach the
ground first. But if you repeat the experiment, this time crumpling the paper 
into a small wad, you will find (see Fig. 2–20b) that the two objects reach the floor
at nearly the same time.

Galileo was sure that air acts as a resistance to very light objects that have
a large surface area. But in many ordinary circumstances this air resistance is
negligible. In a chamber from which the air has been removed, even light
objects like a feather or a horizontally held piece of paper will fall with the
same acceleration as any other object (see Fig. 2–21). Such a demonstration in
vacuum was not possible in Galileo’s time, which makes Galileo’s achievement
all the greater. Galileo is often called the “father of modern science,” not only
for the content of his science (astronomical discoveries, inertia, free fall) but
also for his new methods of doing science (idealization and simplification, mathe-
matization of theory, theories that have testable consequences, experiments to test
theoretical predictions).

d r t2.

FIGURE 2;18 Painting of Galileo demonstrating to the Grand Duke of Tuscany
his argument for the action of gravity being uniform acceleration. He used an inclined
plane to slow down the action. A ball rolling down the plane still accelerates.
Tiny bells placed at equal distances along the inclined plane would ring at shorter
time intervals as the ball “fell,” indicating that the speed was increasing.

FIGURE 2;19 Multiflash photograph
of a falling apple, at equal time 
intervals. The apple falls farther 
during each successive interval,
which means it is accelerating.

(a) (b)

FIGURE 2;20 (a) A ball and a light 
piece of paper are dropped at the 
same time. (b) Repeated, with the 
paper wadded up.

Air-filled tube

(a)

Evacuated tube

(b)

FIGURE 2;21 A rock and a feather
are dropped simultaneously 
(a) in air, (b) in a vacuum.



Galileo’s specific contribution to our understanding of the motion of falling
objects can be summarized as follows:

at a given location on the Earth and in the absence of air resistance, all
objects fall with the same constant acceleration.

We call this acceleration the acceleration due to gravity at the surface of the
Earth, and we give it the symbol g. Its magnitude is approximately

In British units g is about Actually, g varies slightly according to lati-
tude and elevation on the Earth’s surface, but these variations are so small that
we will ignore them for most purposes. (Acceleration of gravity in space beyond
the Earth’s surface is treated in Chapter 5.) The effects of air resistance are
often small, and we will neglect them for the most part. However, air resistance
will be noticeable even on a reasonably heavy object if the velocity becomes
large.† Acceleration due to gravity is a vector, as is any acceleration, and its
direction is downward toward the center of the Earth.

When dealing with freely falling objects we can make use of Eqs. 2–11,
where for a we use the value of g given above. Also, since the motion is vertical
we will substitute y in place of x, and in place of We take unless
otherwise specified. It is arbitrary whether we choose y to be positive in the
upward direction or in the downward direction; but we must be consistent about
it throughout a problem’s solution.

EXERCISE E Return to the Chapter-Opening Question, page 21, and answer it again
now, assuming minimal air resistance. Try to explain why you may have answered
differently the first time.

Falling from a tower. Suppose that a ball is dropped
from a tower. How far will it have fallen after a time  

and  Ignore air resistance.

APPROACH Let us take y as positive downward, so the acceleration is
We set  and  We want to find the posi-

tion y of the ball after three different time intervals. Equation 2–11b, with 
x replaced by y, relates the given quantities ( a, and ) to the unknown y.

SOLUTION We set  in Eq. 2–11b:

The ball has fallen a distance of 4.90 m during the time interval  to
Similarly, after 2.00 s the ball’s position is

Finally, after 3.00 s the ball’s position is (see Fig. 2–22)

NOTE Whenever we say “dropped,” it means  Note also the graph of
y vs. (Fig. 2–22b): the curve is not straight but bends upward because y is
proportional to t2.

t
v0 = 0.

y3 = 1
2 at3

2 = 1
2 A9.80 m�s2B(3.00 s)2 = 44.1 m.

A= t3B,
y2 = 1

2 at2
2 = 1

2 A9.80 m�s2B(2.00 s)2 = 19.6 m.

A= t2B,t1 = 1.00 s.
t = 0

= 0 + 1
2 at2

1 = 1
2 A9.80 m�s2B(1.00 s)2 = 4.90 m.

y1 = v0 t1 + 1
2 at2

1

t = t1 = 1.00 s

v0t,

y0 = 0.v0 = 0a = g = ±9.80 m�s2.

t3 = 3.00 s?t2 = 2.00 s,
t1 = 1.00 s,(v0 = 0)

EXAMPLE 2;10

y0 = 0x0 .y0

32 ft�s2.

cacceleration due to gravity
at surface of Earth

dg = 9.80 m�s2.

P R O B L E M  S O L V I N G

You can choose y to be positive
either up or down

†The speed of an object falling in air (or other fluid) does not increase indefinitely. If the object falls
far enough, it will reach a maximum velocity called the terminal velocity due to air resistance.
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(a)

(b)

40
30
20
10

y 
(m

)

20 1 3
t (s)

y = 0

y3 = 44.1 m
(After 3.00 s)

y2 = 19.6 m
(After 2.00 s)

y1 = 4.90 m
(After 1.00 s)

+y

Acceleration
due to
gravity

+y

FIGURE 2;22 Example 2–10. (a) An
object dropped from a tower falls
with progressively greater speed 
and covers greater distance with
each successive second. (See also
Fig. 2–19.) (b) Graph of y vs. t.
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Thrown down from a tower. Suppose the ball in 
Example 2–10 is thrown downward with an initial velocity of instead of
being dropped. (a) What then would be its position after 1.00 s and 2.00 s?
(b) What would its speed be after 1.00 s and 2.00 s? Compare with the speeds 
of a dropped ball.

APPROACH Again we use Eq. 2–11b, but now is not zero, it is

SOLUTION (a) At the position of the ball as given by Eq. 2–11b is

At (time interval to ), the position is

As expected, the ball falls farther each second than if it were dropped with

(b) The velocity is obtained from Eq. 2–11a:

[at ]

[at ]

In Example 2–10, when the ball was dropped  the first term in
these equations was zero, so

[at ]
[at ]

NOTE For both Examples 2–10 and 2–11, the speed increases linearly in time by
during each second. But the speed of the downwardly thrown ball at

any instant is always (its initial speed) higher than that of a dropped ball.

Ball thrown upward. A person throws a ball upward
into the air with an initial velocity of Calculate how high it goes. Ignore
air resistance.

APPROACH We are not concerned here with the throwing action, but only
with the motion of the ball after it leaves the thrower’s hand (Fig. 2–23) and
until it comes back to the hand again. Let us choose y to be positive in the
upward direction and negative in the downward direction. (This is a different
convention from that used in Examples 2–10 and 2–11, and so illustrates our
options.) The acceleration due to gravity is downward and so will have a nega-
tive sign, As the ball rises, its speed decreases until it
reaches the highest point (B in Fig. 2–23), where its speed is zero for an
instant; then it descends, with increasing speed.

SOLUTION We consider the time interval from when the ball leaves the
thrower’s hand until the ball reaches the highest point. To determine the
maximum height, we calculate the position of the ball when its velocity equals
zero ( at the highest point). At  (point A in Fig. 2–23) we have

and At time (maximum height),
and we wish to find y. We use Eq. 2–11c, replacing x

with y: We solve this equation for y:

The ball reaches a height of 11.5 m above the hand.

y =
v2 - v0

2

2a
=

0 - (15.0 m�s)2

2A–9.80 m�s2B = 11.5 m.

v2 = v0
2 + 2ay.

a = –9.80 m�s2,v = 0,
ta = –9.80 m�s2.v0 = 15.0 m�s,y0 = 0,

t = 0v = 0

a = –g = –9.80 m�s2.

15.0 m�s.
EXAMPLE 2;12

3.00 m�s
9.80 m�s

t2 = 2.00 s= A9.80 m�s2B(2.00 s) = 19.6 m�s.
t1 = 1.00 s= A9.80 m�s2B(1.00 s) = 9.80 m�s

v = 0 + at

Av0BAv0 = 0B,
t2 = 2.00 s= 3.00 m�s + A9.80 m�s2B(2.00 s) = 22.6 m�s.

t1 = 1.00 s= 3.00 m�s + A9.80 m�s2B(1.00 s) = 12.8 m�s

v = v0 + at

v0 = 0.

y = v0 t + 1
2 at2 = (3.00 m�s)(2.00 s) + 1

2 A9.80 m�s2B(2.00 s)2 = 25.6 m.

t = 2.00 st = 0t2 = 2.00 s

y = v0 t + 1
2 at2 = (3.00 m�s)(1.00 s) + 1

2 A9.80 m�s2B(1.00 s)2 = 7.90 m.

t1 = 1.00 s,

v0 = 3.00 m�s.
v0

3.00 m�s,
EXAMPLE 2;11

A C

(v = 0)B

v v

g g

FIGURE 2;23 An object thrown 
into the air leaves the thrower’s 
hand at A, reaches its maximum 
height at B, and returns to the 
original position at C.
Examples 2–12, 2–13, 2–14, and 2–15.



Ball thrown upward, II. In Fig. 2–23, Example 2–12, how
long is the ball in the air before it comes back to the hand?

APPROACH We need to choose a time interval to calculate how long the 
ball is in the air before it returns to the hand. We could do this calculation 
in two parts by first determining the time required for the ball to reach its
highest point, and then determining the time it takes to fall back down.
However, it is simpler to consider the time interval for the entire motion from
A to B to C (Fig. 2–23) in one step and use Eq. 2–11b. We can do this because
y is position or displacement, and not the total distance traveled. Thus, at both
points A and C,

SOLUTION We use Eq. 2–11b with  and find

This equation can be factored (we factor out one ):

There are two solutions:

The first solution corresponds to the initial point (A) in Fig. 2–23,
when the ball was first thrown from  The second solution,
corresponds to point C, when the ball has returned to  Thus the ball is
in the air 3.06 s.

NOTE We have ignored air resistance in these last two Examples, which could
be significant, so our result is only an approximation to a real, practical situation.

y = 0.
t = 3.06 s,y = 0.

(t = 0)

t = 0 and t =
15.0 m�s

4.90 m�s2
= 3.06 s.

A15.0 m�s - 4.90 m�s2 tB t = 0.

t

 0 = 0 + (15.0 m�s)t + 1
2 A–9.80 m�s2B t2.

y = y0 + v0 t + 1
2 at2

a = –9.80 m�s2

y = 0.

EXAMPLE 2;13
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C A U T I O N

Quadratic equations have two
solutions. Sometimes only one

corresponds to reality,
sometimes both

C A U T I O N

(1) Velocity and acceleration are 
not always in the same direction;

the acceleration (of gravity) always
points down

(2) even at the highest point 
of a trajectory

a Z 0

Two possible misconceptions. Give
examples to show the error in these two common misconceptions: (1) that
acceleration and velocity are always in the same direction, and (2) that 
an object thrown upward has zero acceleration at the highest point (B in 
Fig. 2–23).

RESPONSE Both are wrong. (1) Velocity and acceleration are not necessarily
in the same direction. When the ball in Fig. 2–23 is moving upward, its
velocity is positive (upward), whereas the acceleration is negative (down-
ward). (2) At the highest point (B in Fig. 2–23), the ball has zero velocity for
an instant. Is the acceleration also zero at this point? No. The velocity near
the top of the arc points upward, then becomes zero for an instant (zero time) at
the highest point, and then points downward. Gravity does not stop acting, so

even there. Thinking that at point B would lead
to the conclusion that upon reaching point B, the ball would stay there: if the
acceleration ( of change of velocity) were zero, the velocity would stay
zero at the highest point, and the ball would stay up there without falling.
Remember: the acceleration of gravity always points down toward the Earth, even
when the object is moving up.

= rate

a = 0a = –g = –9.80 m�s2

CONCEPTUAL EXAMPLE 2;14

We did not consider the throwing action in these Examples. Why? Because during
the throw, the thrower’s hand is touching the ball and accelerating the ball at a
rate unknown to us—the acceleration is not g. We consider only the time when
the ball is in the air and the acceleration is equal to g.

Every quadratic equation (where the variable is squared) mathematically
produces two solutions. In physics, sometimes only one solution corresponds to
the real situation, as in Example 2–8, in which case we ignore the “unphysical”
solution. But in Example 2–13, both solutions to our equation in are physi-
cally meaningful: and t = 3.06 s.t = 0

t2

A C

(v = 0)B

v v

g g

FIGURE 2;23 (Repeated.)
An object thrown into the air leaves
the thrower’s hand at A, reaches its
maximum height at B, and returns 
to the original position at C.
Examples 2–12, 2–13, 2–14, and 2–15.
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Ball thrown upward, III. Let us consider again the ball
thrown upward of Examples 2–12 and 2–13, and make more calculations. Calculate
(a) how much time it takes for the ball to reach the maximum height (point B in
Fig. 2–23), and (b) the velocity of the ball when it returns to the thrower’s hand
(point C).

APPROACH Again we assume the acceleration is constant, so we can use 
Eqs. 2–11. We have the maximum height of 11.5 m and initial speed of 
from Example 2–12. Again we take y as positive upward.

SOLUTION (a) We consider the time interval between the throw
and the top of the path  and we want

to find The acceleration is constant at Both 
Eqs. 2–11a and 2–11b contain the time with other quantities known. Let us
use Eq. 2–11a with  and  

setting gives , which we rearrange to solve for :
or

This is just half the time it takes the ball to go up and fall back to its original
position [3.06 s, calculated in Example 2–13]. Thus it takes the same time to
reach the maximum height as to fall back to the starting point.
(b) Now we consider the time interval from the throw  
until the ball’s return to the hand, which occurs at  (as calculated in
Example 2–13), and we want to find when  

NOTE The ball has the same speed (magnitude of velocity) when it returns to
the starting point as it did initially, but in the opposite direction (this is the
meaning of the negative sign). And, as we saw in part (a), the time is the same
up as down. Thus the motion is symmetrical about the maximum height.

= 15.0 m�s - A9.80 m�s2B(3.06 s) = –15.0 m�s.

v = v0 + at

t = 3.06 s:v
t = 3.06 s
At = 0, v0 = 15.0 m�sB

= –
15.0 m�s

–9.80 m�s2
= 1.53 s.

t = –
v0

a

at = –v0t0 = v0 + atv = 0

v = v0 + at;

v = 0:a = –9.80 m�s2, v0 = 15.0 m�s,
t

a = –g = –9.80 m�s2.t.
(y = ±11.5 m,  v = 0),v0 = 15.0 m�sB At = 0,

15.0 m�s

EXAMPLE 2;15

The acceleration of objects such as rockets and fast airplanes is often given as
a multiple of  For example, a plane pulling out of a dive 
(see Fig. 2–24) and undergoing 3.00 g’s would have an acceleration of

.(3.00)A9.80 m�s2B = 29.4 m�s2

g = 9.80 m�s2.
P R O B L E M  S O L V I N G

Acceleration in g’s

FIGURE 2;24 Several planes, in
formation, are just coming out of a
downward dive.
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Ball thrown upward at edge of cliff. Suppose that the 
person of Examples 2–12, 2–13, and 2–15 throws the ball upward at 

while standing on the edge of a cliff, so that the ball can fall to the 
base of the cliff 50.0 m below, as shown in Fig. 2–25a. (a) How long does it 
take the ball to reach the base of the cliff? (b) What is the total distance trav-
eled by the ball? Ignore air resistance (likely to be significant, so our result is an
approximation).

APPROACH We again use Eq. 2–11b, with y as upward, but this time we set
the bottom of the cliff, which is 50.0 m below the initial position

hence the minus sign.

SOLUTION (a) We use Eq. 2–11b with
and

To solve any quadratic equation of the form 

where a, b, and c are constants (a is not acceleration here), we use the quadratic
formula (see Appendix A–4):

We rewrite our y equation just above in standard form,

Using the quadratic formula, we find as solutions  

and

The first solution, is the answer we are seeking: the time it takes
the ball to rise to its highest point and then fall to the base of the cliff. To rise
and fall back to the top of the cliff took 3.06 s (Example 2–13); so it took 
an additional 2.01 s to fall to the base. But what is the meaning of the other
solution, This is a time before the throw, when our calculation
begins, so it isn’t relevant here. It is outside our chosen time interval, and so is
an unphysical solution (also in Example 2–8).
(b) From Example 2–12, the ball moves up 11.5 m, falls 11.5 m back down to
the top of the cliff, and then down another 50.0 m to the base of the cliff, for a
total distance traveled of 73.0 m. [Note that the displacement, however, was

] Figure 2–25b shows the y vs. graph for this situation.t–50.0 m.

t = –2.01 s?

t = 5.07 s,

t = –2.01 s.

t = 5.07 s

A4.90 m�s2B t2 - (15.0 m�s)t - (50.0 m) = 0.

at2 + bt + c = 0:

t =
–b63b2 - 4ac

2a
.

at2 + bt + c = 0,

–50.0 m = 0 + (15.0 m�s)t - 1
2 A9.80 m�s2B t2.

y = y0 + v0 t + 1
2 at2

y = –50.0 m:y0 = 0,
v0 = 15.0 m�s,a = –9.80 m�s2,

Ay0 = 0B;y = –50.0 m,
+

15.0 m�s

EXAMPLE 2;16
y

y = 0

y = �50 m

(a)

(b)

10 2 4 53 6

−40

−50

−30

−20

−10

0

10

t (s)

y 
(m

)

Base
of cliff

Hand

t =
5.07 s

FIGURE 2;25 Example 2–16.
(a) A person stands on the edge 
of a cliff. A ball is thrown upward,
then falls back down past the
thrower to the base of the cliff,
50.0 m below. (b) The y vs. graph.t

Additional Example—Using the Quadratic Formula

EXERCISE F Two balls are thrown from a cliff. One is thrown directly up, the other
directly down. Both balls have the same initial speed, and both hit the ground below the
cliff but at different times. Which ball hits the ground at the greater speed: (a) the ball
thrown upward, (b) the ball thrown downward, or (c) both the same? Ignore air resistance.

C A U T I O N

Sometimes a solution to a
quadratic equation does not
apply to the actual physical
conditions of the Problem
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2–8 Graphical Analysis of Linear Motion
Velocity as Slope
Analysis of motion using graphs can give us additional insight into kinematics.
Let us draw a graph of x vs. making the choice that at  the position of an
object is  and the object is moving at a constant velocity,

Our graph starts at  (the origin). The graph of the
position increases linearly in time because, by Eq. 2–2, and is a
constant. So the graph of x vs. is a straight line, as shown in Fig. 2–26. The
small (shaded) triangle on the graph indicates the slope of the straight line:

We see, using the definition of average velocity (Eq. 2–2), that the slope of the
x vs. graph is equal to the velocity. And, as can be seen from the small triangle
on the graph, which is the given velocity.

If the object’s velocity changes in time, we might have an x vs. graph like 
that shown in Fig. 2–27. (Note that this graph is different from showing the
“path” of an object on an x vs. y plot.) Suppose the object is at position 
at time and at position at time and represent these two points on 
the graph. A straight line drawn from point to point 
forms the hypotenuse of a right triangle whose sides are and The 
ratio is the slope of the straight line But is also the 
average velocity of the object during the time interval Therefore,
we conclude that the average velocity of an object during any time interval

is equal to the slope of the straight line (or chord) connecting the two
points and on an x vs. graph.

Consider now a time intermediate between and call it at which moment
the object is at (Fig. 2–28). The slope of the straight line is less than the slope
of . Thus the average velocity during the time interval is less than
during the time interval t2 - t1 .

t3 - t1P1 P2

P1 P3x3

t3 ,t2 ,t1

tt2BAx2 ,t1BAx1 ,
¢t = t2 - t1

¢t = t2 - t1 .
¢x�¢tP1 P2 .¢x�¢t

¢t.¢x
t2BP2 Ax2 ,t1BP1 Ax1 ,

P2P1t2 .x2t1 ,
x1

t
¢x�¢t = (11 m)�(1.0 s) = 11 m�s,

t

slope =
¢x
¢t

.

t
v¢x = v ¢t

t = 0x = 0,(40 km�h).
v = v = 11 m�sx = 0,

t = 0,t,

†The tangent is a straight line that touches the curve only at the one chosen point, without passing
across or through the curve at that point.

Δ t =
1.0 s

Δ x = 
11 m

50

40

30

20

10

0
1.0 2.0 3.0 4.0 5.00
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tio
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x 
(m

)

Time, t (s)

FIGURE 2;26 Graph of position vs.
time for an object moving at a
constant velocity of 11 m�s.

P1

P2

Δx = x2 − x1

Δt = t2 − t1

t2t1

x1

x2

0

x

t

FIGURE 2;27 Graph of an object’s 
position x vs. time . The slope of 
the straight line represents the
average velocity of the object during
the time interval ¢t = t2 - t1 .

P1 P2

t

P1

P2

t3

tangent at P1

0 t2t1

x1

x2

x

t

P3
x3

x2 FIGURE 2;28 Same position vs. time curve 
as in Fig. 2–27. Note that the average 
velocity over the time interval 
(which is the slope of ) is less than the 
average velocity over the time interval 

The slope of the line tangent 
to the curve at point equals the 
instantaneous velocity at time t1 .

P1

t2 - t1 .

P1 P3

t3 - t1

Next let us take point in Fig. 2–28 to be closer and closer to point 
That is, we let the interval which we now call to become smaller and
smaller. The slope of the line connecting the two points becomes closer and
closer to the slope of a line tangent† to the curve at point The average
velocity (equal to the slope of the chord) thus approaches the slope of 
the tangent at point The definition of the instantaneous velocity (Eq. 2–3) is
the limiting value of the average velocity as approaches zero. Thus the
instantaneous velocity equals the slope of the tangent to the curve of x vs. at any
chosen point (which we can simply call “the slope of the curve” at that point).

t
¢t

P1 .

P1 .

¢t,t3 - t1 ,
P1 .P3

P R O B L E M  S O L V I N G

Velocity equals slope of 
x vs. graph at any instantt
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[The Summary that appears at the end of each Chapter in this book
gives a brief overview of the main ideas of the Chapter. The Summary
cannot serve to give an understanding of the material, which can be
accomplished only by a detailed reading of the Chapter.]

Kinematics deals with the description of how objects
move. The description of the motion of any object must
always be given relative to some particular reference frame.

The displacement of an object is the change in position of
the object.

Summary
Average speed is the distance traveled divided by the elapsed

time or time interval, (the time period over which we choose
to make our observations). An object’s average velocity over
a particular time interval is

(2;2)

where is the displacement during the time interval 
The instantaneous velocity, whose magnitude is the same

as the instantaneous speed, is defined as the average velocity
taken over an infinitesimally short time interval.

¢t.¢x

v =
¢x
¢t

,

¢t

We can obtain the velocity of an object at any instant from its graph of x vs. .
For example, in Fig. 2–29 (which shows the same graph as in Figs. 2–27 and 2–28), as
our object moves from to the slope continually increases, so the velocity is
increasing. For times after the slope begins to decrease and reaches zero ( )
where x has its maximum value, at point in Fig. 2–29. Beyond point the
slope is negative, as for point The velocity is therefore negative, which
makes sense since x is now decreasing—the particle is moving toward decreasing
values of x, to the left on a standard xy plot.

P5 .
P4 ,P4

v = 0t2 ,
x2 ,x1

t

P4

P5

0

P1

P2

t2t1

x1

x2

x

t
t4

FIGURE 2;29 Same x vs. curve as in 
Figs. 2–27 and 2–28, but here showing the slope 
at four different points: At the slope is zero,
so At the slope is negative, so v 6 0.P5v = 0.

P4 ,

t

Analyzing with graphs. Figure 2–31
shows the velocity as a function of time for two cars accelerating from 0 to

in a time of 10.0 s. Compare (a) the average acceleration; (b) the 
instantaneous acceleration; and (c) the total distance traveled for the two cars.

RESPONSE (a) Average acceleration is Both cars have the same 
over the same time interval 10.0 s, so the average acceleration

is the same for both cars. (b) Instantaneous acceleration is the slope of the tangent
to the vs. curve. For the first 4 s or so, the top curve (car A) is steeper than the
bottom curve, so car A has a greater acceleration during this interval. The
bottom curve is steeper during the last 6 s, so car B has the larger acceleration
for this period. (c) Except at and car A is always going 
faster than car B. Since it is going faster, it will go farther in the same time.

t = 10.0 s,t = 0

tv

¢t =(100 km�h)¢v
¢v�¢t.

100 km�h

CONCEPTUAL EXAMPLE 2;17

P1

P2

Slope of P1P2 is average
acceleration during Δt = t2 − t1

Slope of tangent
is instantaneous
acceleration at t1

Δ =

t20 t1

v2 v1

v1

v2

v

v

t

−

Δt = t2 − t1

108642
0

100

t (s)

v 
(k

m
/h

)

Car A

Car B

FIGURE 2;31 (below) Example 2–17.

Slope and Acceleration
We can also draw a graph of the velocity, vs. time, , as shown in Fig. 2–30. Then the
average acceleration over a time interval is represented by the slope
of the straight line connecting the two points and as shown. [Compare this to
the position vs. time graph of Fig. 2–27 for which the slope of the straight line
represents the average velocity.] The instantaneous acceleration at any time, say 
is the slope of the tangent to the vs. curve at that time, which is also shown in
Fig. 2–30. Using this fact for the situation graphed in Fig. 2–30, as we go from
time to time the velocity continually increases, but the acceleration (the rate at
which the velocity changes) is decreasing since the slope of the curve is decreasing.

t2t1

tv
t1 ,

P2P1

¢t = t2 - t1

tv,

FIGURE 2;30 A graph of velocity 
vs. time . The average acceleration
over a time interval is
the slope of the straight line 

The instantaneous
acceleration at time is the slope of
the vs. curve at that instant.tv

t1

a = ¢v�¢t.
P1 P2 :

¢t = t2 - t1

t
v
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Acceleration is the change of velocity per unit time. An
object’s average acceleration over a time interval is

(2;4)

where is the change of velocity during the time interval 
Instantaneous acceleration is the average acceleration taken
over an infinitesimally short time interval.

If an object has position and velocity at time and
moves in a straight line with constant acceleration, the velocity 
and position x at a later time are related to the acceleration a,
the initial position and the initial velocity by Eqs. 2–11:

(2;11)

v =
v + v0

2
.

v2 = v0
2 + 2aAx - x0B,

x = x0 + v0 t + 1
2 at2,

v = v0 + at,

v0x0 ,
t

v
t = 0v0x0

¢t.¢v

a =
¢v

¢t
,

¢t

1. Does a car speedometer measure speed, velocity, or both?
Explain.

2. When an object moves with constant velocity, does its
average velocity during any time interval differ from its
instantaneous velocity at any instant? Explain.

3. If one object has a greater speed than a second object,
does the first necessarily have a greater acceleration?
Explain, using examples.

4. Compare the acceleration of a motorcycle that accelerates
from to with the acceleration of a bicycle
that accelerates from rest to in the same time.

5. Can an object have a northward velocity and a southward
acceleration? Explain.

6. Can the velocity of an object be negative when its accel-
eration is positive? What about vice versa? If yes, give
examples in each case.

7. Give an example where both the velocity and acceleration
are negative.

8. Can an object be increasing in speed as its acceleration
decreases? If so, give an example. If not, explain.

9. Two cars emerge side by side from a tunnel. Car A is trav-
eling with a speed of and has an acceleration of

Car B has a speed of and has an
acceleration of Which car is passing the other
as they come out of the tunnel? Explain your reasoning.

10. A baseball player hits a ball straight up into the air. It
leaves the bat with a speed of In the absence of
air resistance, how fast would the ball be traveling when it is
caught at the same height above the ground as it left the
bat? Explain.

11. As a freely falling object speeds up, what is happening to
its acceleration—does it increase, decrease, or stay the
same? (a) Ignore air resistance. (b) Consider air resistance.

12. You travel from point A to point B in a car moving at a
constant speed of Then you travel the same
distance from point B to another point C, moving at a
constant speed of Is your average speed for the
entire trip from A to C equal to Explain why or
why not.

80 km�h?
90 km�h.

70 km�h.

120 km�h.

60 km�h�min.
40 km�h40 km�h�min.

60 km�h

10 km�h
90 km�h80 km�h

13. Can an object have zero velocity and nonzero accelera-
tion at the same time? Give examples.

14. Can an object have zero acceleration and nonzero
velocity at the same time? Give examples.

15. Which of these motions is not at constant acceleration:
a rock falling from a cliff, an elevator moving from the
second floor to the fifth floor making stops along the way,
a dish resting on a table? Explain your answers.

16. Describe in words the motion plotted in Fig. 2–32 in
terms of velocity, acceleration, etc. [Hint: First try to dupli-
cate the motion plotted by walking or moving your hand.]

Questions

Objects that move vertically near the surface of the Earth,
either falling or having been projected vertically up or down,
move with the constant downward acceleration due to gravity,
whose magnitude is if air resistance can be
ignored. We can apply Eqs. 2–11 for constant acceleration to
objects that move up or down freely near the Earth’s surface.

The slope of a curve at any point on a graph is the slope
of the tangent to the curve at that point. On a graph of posi-
tion vs. time, the slope is equal to the instantaneous velocity.
On a graph of velocity vs. time, the slope is the acceleration.

g = 9.80 m�s2
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FIGURE 2;32 Question 16.
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FIGURE 2;33 Question 17.

17. Describe in words the motion of the object graphed in
Fig. 2–33.
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1. Which of the following should be part of solving any prob-
lem in physics? Select all that apply:
(a) Read the problem carefully.
(b) Draw a picture of the situation.
(c) Write down the variables that are given.
(d) Think about which physics principles to apply.
(e) Determine which equations can be used to apply the

correct physics principles.
(f) Check the units when you have completed your

calculation.
(g) Consider whether your answer is reasonable.

2. In which of the following cases does a car have a negative
velocity and a positive acceleration? A car that is traveling
in the
(a) direction at a constant 
(b) direction increasing in speed.
(c) direction increasing in speed.
(d) direction decreasing in speed.
(e) direction decreasing in speed.

3. At time an object is traveling to the right along the
axis at a speed of with acceleration 

Which statement is true?
(a) The object will slow down, eventually coming to a

complete stop.
(b) The object cannot have a negative acceleration and

be moving to the right.
(c) The object will continue to move to the right, slowing

down but never coming to a complete stop.
(d) The object will slow down, momentarily stopping,

then pick up speed moving to the left.

4. A ball is thrown straight up. What are the velocity and
acceleration of the ball at the highest point in its path?
(a)
(b)
(c)
(d)
(e)

5. You drop a rock off a bridge. When the rock has fallen 4 m,
you drop a second rock. As the two rocks continue to fall,
what happens to their velocities?
(a) Both increase at the same rate.
(b) The velocity of the first rock increases faster than the

velocity of the second.
(c) The velocity of the second rock increases faster than

the velocity of the first.
(d) Both velocities stay constant.

6. You drive 4 km at and then another 4 km at
What is your average speed for the whole 8-km

trip?
(a) More than 
(b) Equal to 
(c) Less than 
(d) Not enough information.

40 km�h.
40 km�h.

40 km�h.

50 km�h.
30 km�h

v = 9.8 m�s down,  a = 0.
v = 9.8 m�s up,  a = 0.

a = 9.8 m�s2 down.v = 0,
a = 9.8 m�s2 up.v = 0,
a = 0.v = 0,

–2.0 m�s2.10.0 m�s±x
t = 0

±x
–x
±x
–x

20 m�s.–x

7. A ball is dropped from the top of a tall building. At the
same instant, a second ball is thrown upward from the
ground level. When the two balls pass one another, one on
the way up, the other on the way down, compare the magni-
tudes of their acceleration:
(a) The acceleration of the dropped ball is greater.
(b) The acceleration of the ball thrown upward is greater.
(c) The acceleration of both balls is the same.
(d) The acceleration changes during the motion, so you

cannot predict the exact value when the two balls
pass each other.

(e) The accelerations are in opposite directions.

8. A ball is thrown downward at a speed of Choosing
the y axis pointing up and neglecting air resistance, which
equation(s) could be used to solve for other variables? The
acceleration due to gravity is downward.
(a)
(b)
(c)
(d)
(e) All of the above.

9. A car travels along the x axis with increasing speed. We
don’t know if to the left or the right. Which of the graphs
in Fig. 2–34 most closely represents the motion of the
car?

(20 m�s) = (v + v0)�2.
v2 = (20 m�s)2 - 2g(y - y0).
y = y0 + (–20 m�s) t - (1�2)gt2.
v = (20 m�s) - gt.

g = 9.8 m�s2

±
20 m�s.

MisConceptual Questions
[List all answers that are valid.]
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FIGURE 2;34

MisConceptual
Question 9.
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[The Problems at the end of each Chapter are ranked I, II, or III
according to estimated difficulty, with level I Problems being easiest.
Level III are meant as challenges for the best students. The Prob-
lems are arranged by Section, meaning that the reader should 
have read up to and including that Section, but not only that
Section—Problems often depend on earlier material. Next is 
a set of “General Problems” not arranged by Section and not
ranked. Finally, there are “Search and Learn” Problems that require
rereading parts of the Chapter and sometimes earlier Chapters.]

(Note: In Problems, assume a number like 6.4 is accurate to
and 950 is unless 950 is said to be “precisely” or “very

nearly” 950, in which case assume . See Section 1–4.)

2;1 to 2;3 Speed and Velocity

1. (I) If you are driving along a straight road and
you look to the side for 2.0 s, how far do you travel during
this inattentive period?

2. (I) What must your car’s average speed be in order to
travel 235 km in 2.75 h?

3. (I) A particle at is at and at
is at What is its average velocity

over this time interval? Can you calculate its average speed
from these data?Why or why not?

4. (I) A rolling ball moves from to
during the time from  to What is its
average velocity over this time interval?

5. (I) A bird can fly How long does it take to fly
3.5 km?

6. (II) According to a rule-of-thumb, each five seconds
between a lightning flash and the following thunder gives
the distance to the flash in miles. (a) Assuming that the
flash of light arrives in essentially no time at all, estimate
the speed of sound in from this rule. (b) What would
be the rule for kilometers?

7. (II) You are driving home from school steadily at
for 180 km. It then begins to rain and you slow

to You arrive home after driving 4.5 h. (a) How
far is your hometown from school? (b) What was your
average speed?

8. (II) A horse trots away from its trainer in a straight 
line, moving 38 m away in 9.0 s. It then turns abruptly 
and gallops halfway back in 1.8 s. Calculate (a) its average
speed and (b) its average velocity for the entire trip, using
“away from the trainer” as the positive direction.

9. (II) A person jogs eight complete laps around a 400-m
track in a total time of 14.5 min. Calculate (a) the average
speed and (b) the average velocity, in 

10. (II) Every year the Earth travels about as it orbits the
Sun. What is Earth’s average speed in 

11. (II) A car traveling is 210 m behind a truck trav-
eling How long will it take the car to reach the
truck?

12. (II) Calculate the average speed and average velocity of a
complete round trip in which the outgoing 250 km is
covered at followed by a 1.0-h lunch break, and
the return 250 km is covered at 55 km�h.

95 km�h,

75 km�h.
95 km�h

km�h?
109 km

m�s.

65 km�h.
95 km�h

m�s

25 km�h.

t2 = 6.1 s.t1 = 3.0 s
x2 = –4.2 cmx1 = 8.4 cm

x2 = 8.5 cm.t2 = 4.5 s
x1 = 4.8 cmt1 = –2.0 s

95 km�h

95061
&10&0.1;

Problems

8.5 km

v =
155 km/h

v =
155 km/h

FIGURE 2;35 Problem 13.

14. (II) Digital bits on a 12.0-cm diameter audio CD are encoded
along an outward spiraling path that starts at radius

and finishes at radius The 
distance between the centers of neighboring spiral-
windings is (a) Determine the
total length of the spiraling path. [Hint: Imagine “unwinding”
the spiral into a straight path of width and note
that the original spiral and the straight path both occupy
the same area.] (b) To read information, a CD player
adjusts the rotation of the CD so that the player’s readout
laser moves along the spiral path at a constant speed of
about Estimate the maximum playing time of such 
a CD.

15. (III) A bowling ball traveling with constant speed hits the
pins at the end of a bowling lane 16.5 m long. The bowler
hears the sound of the ball hitting the pins 2.80 s after the
ball is released from his hands. What is the speed of the
ball, assuming the speed of sound is 

16. (III) An automobile traveling overtakes a 1.30-km-
long train traveling in the same direction on a track parallel
to the road. If the train’s speed is how long does
it take the car to pass it, and how far will the car have
traveled in this time? See Fig. 2–36. What are the results
if the car and train are traveling in opposite directions?

75 km�h,

95 km�h
340 m�s?

1.2 m�s.

1.6 mm,

A= 1.6 * 10–6 mB.1.6 mm

R2 = 5.8 cm.R1 = 2.5 cm

13. (II) Two locomotives approach each other on parallel
tracks. Each has a speed of with respect to the
ground. If they are initially 8.5 km apart, how long will it
be before they reach each other? (See Fig. 2–35.)

155 km�h

� 95 km/h

� 75 km/h

1.30 km

v

v

FIGURE 2;36 Problem 16.

2;4 Acceleration

17. (I) A sports car accelerates from rest to in 4.3 s.
What is its average acceleration in 

18. (I) A sprinter accelerates from rest to in 1.38 s.
What is her acceleration in (a) (b)

19. (II) A sports car moving at constant velocity travels 120 m
in 5.0 s. If it then brakes and comes to a stop in 4.0 s, what
is the magnitude of its acceleration (assumed constant) in

and in g’s Ag = 9.80 m�s2B?m�s2,

km�h2?m�s2;
9.00 m�s

m�s2?
95 km�h

For assigned homework and other learning materials, go to the MasteringPhysics website.
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26. (II) A world-class sprinter can reach a top speed (of about
) in the first 18.0 m of a race. What is the average

acceleration of this sprinter and how long does it take her
to reach that speed?

27. (II) A car slows down uniformly from a speed of 
to rest in 8.00 s. How far did it travel in that time?

28. (II) In coming to a stop, a car leaves skid marks 65 m long
on the highway. Assuming a deceleration of 
estimate the speed of the car just before braking.

29. (II) A car traveling at strikes a tree. The front end
of the car compresses and the driver comes to rest after
traveling 0.80 m. What was the magnitude of the average
acceleration of the driver during the collision? Express the
answer in terms of “g’s,” where

30. (II) A car traveling slows down at a constant
just by “letting up on the gas.” Calculate (a) the

distance the car coasts before it stops, (b) the time it
takes to stop, and (c) the distance it travels during the
first and fifth seconds.

31. (II) Determine the stopping distances for an automobile
going a constant initial speed of and human reac-
tion time of 0.40 s: (a) for an acceleration  
(b) for

32. (II) A driver is traveling when she sees a red
light ahead. Her car is capable of decelerating at a rate of

If it takes her 0.350 s to get the brakes on and
she is 20.0 m from the intersection when she sees the light,
will she be able to stop in time? How far from the beginning
of the intersection will she be, and in what direction?

3.65 m�s2.

18.0 m�s

a = –6.0 m�s2.
a = –3.0 m�s2;

95 km�h

0.50 m�s2
75 km�h

1.00 g = 9.80 m�s2.

95 km�h

4.00 m�s2,

28.0 m�s

11.5 m�s

75 m

v  =  18 m/s

FIGURE 2;38 Problem 33.

Finish

5.0 m

22 m

Mary Sally
4.0 m/s 5.0 m/s

FIGURE 2;39 Problem 37.

20. (II) At highway speeds, a particular automobile is capable
of an acceleration of about At this rate, how long
does it take to accelerate from to 

21. (II) A car moving in a straight line starts at at
It passes the point with a speed of 
at It passes the point with a speed
of at Find (a) the average velocity,
and (b) the average acceleration, between and

2;5 and 2;6 Motion at Constant Acceleration

22. (I) A car slows down from to rest in a distance of
88 m. What was its acceleration, assumed constant?

23. (I) A car accelerates from to in 6.0 s. What
was its acceleration? How far did it travel in this time?
Assume constant acceleration.

24. (I) A light plane must reach a speed of for takeoff.
How long a runway is needed if the (constant) accelera-
tion is 

25. (II) A baseball pitcher throws a baseball with a speed of
Estimate the average acceleration of the ball

during the throwing
motion. In throwing
the baseball, the pitcher
accelerates it through
a displacement of about
3.5 m, from behind
the body to the point
where it is released
(Fig. 2–37).

43 m�s.

3.0 m�s2?

35 m�s

21 m�s14 m�s

28 m�s

t = 20.0 s.
t = 3.00 s

t = 20.0 s.45.0 m�s
x = 385 mt = 3.00 s.

11.0 m�sx = 25.0 m
t = 0.x = 0

120 km�h?65 km�h
1.8 m�s2.

3.5 m

FIGURE 2;37 Problem 25.

33. (II) A 75-m-long train begins uniform acceleration from
rest. The front of the train has a speed of when it
passes a railway worker who is standing 180 m from where
the front of the train started. What will be the speed of the
last car as it passes the worker? (See Fig. 2–38.)

18 m�s

34. (II) A space vehicle accelerates uniformly from 
at to at How far did it move
between and

35. (II) A runner hopes to complete the 10,000-m run in less
than 30.0 min. After running at constant speed for exactly
27.0 min, there are still 1200 m to go. The runner must then
accelerate at for how many seconds in order to
achieve the desired time?

36. (III) A fugitive tries to hop on a freight train traveling at a
constant speed of Just as an empty box car passes
him, the fugitive starts from rest and accelerates at

to his maximum speed of which he
then maintains. (a) How long does it take him to catch up
to the empty box car? (b) What is the distance traveled to
reach the box car?

37. (III) Mary and Sally are in a foot race (Fig. 2–39). When
Mary is 22 m from the finish line, she has a speed of 
and is 5.0 m behind Sally, who has a speed of Sally
thinks she has an easy win and so, during the remaining
portion of the race, decelerates at a constant rate of

to the finish line. What constant acceleration does
Mary now need during the remaining portion of the race, if
she wishes to cross the finish line side-by-side with Sally?

0.40 m�s2

5.0 m�s.
4.0 m�s

6.0 m�s,a = 1.4 m�s2

5.0 m�s.

0.20 m�s2

t = 6.0 s?t = 2.0 s
t = 10.0 s.162 m�st = 0

85 m�s

38. (III) An unmarked police car traveling a constant 
is passed by a speeder traveling Precisely 1.00 s
after the speeder passes, the police officer steps on the
accelerator; if the police car’s acceleration is 
how much time passes before the police car overtakes the
speeder (assumed moving at constant speed)?

2;7 Freely Falling Objects (neglect air resistance)

39. (I) A stone is dropped from the top of a cliff. It is seen to
hit the ground below after 3.55 s. How high is the cliff?

40. (I) Estimate (a) how long it took King Kong to fall
straight down from the top of the Empire State Building
(380 m high), and (b) his velocity just before “landing.”

2.60 m�s2,

135 km�h.
95 km�h



41. (II) A ball player catches a ball 3.4 s after throwing it
vertically upward. With what speed did he throw it, and
what height did it reach?

42. (II) A baseball is hit almost straight up into the air with a
speed of Estimate (a) how high it goes, (b) how
long it is in the air. (c) What factors make this an estimate?

43. (II) A kangaroo jumps straight up to a vertical height of
1.45 m. How long was it in the air before returning to Earth?

44. (II) The best rebounders in basketball have a vertical leap
(that is, the vertical movement of a fixed point on their
body) of about 120 cm. (a) What is their initial “launch”
speed off the ground? (b) How long are they in the air?

45. (II) An object starts from rest and falls under the influ-
ence of gravity. Draw graphs of (a) its speed and (b) the
distance it has fallen, as a function of time from  to

Ignore air resistance.

46. (II) A stone is thrown vertically upward with a speed of
(a) How fast is it moving when it is at a 

height of 13.0 m? (b) How much time is required to reach
this height? (c) Why are there two answers to (b)?

47. (II) For an object falling freely from rest, show that the
distance traveled during each successive second increases
in the ratio of successive odd integers (1, 3, 5, etc.). (This
was first shown by Galileo.) See Figs. 2–19 and 2–22.

48. (II) A rocket rises vertically, from rest, with an accelera-
tion of until it runs out of fuel at an altitude of
775 m. After this point, its acceleration is that of gravity,
downward. (a) What is the velocity of the rocket when it
runs out of fuel? (b) How long does it take to reach this
point? (c) What maximum altitude does the rocket reach?
(d) How much time (total) does it take to reach
maximum altitude? (e) With what velocity does it strike
the Earth? (f) How long (total) is it in the air?

49. (II) A helicopter is ascending vertically with a speed of
At a height of 105 m above the Earth, a package

is dropped from the helicopter. How much time does it take
for the package to reach the ground? [Hint: What is for
the package?]

50. (II) Roger sees water balloons fall past his window. He
notices that each balloon strikes the sidewalk 0.83 s after
passing his window. Roger’s room is on the third floor, 15 m
above the sidewalk. (a) How fast are the balloons trav-
eling when they pass Roger’s window? (b) Assuming the
balloons are being released from rest, from what floor are
they being released? Each floor of the dorm is 5.0 m high.

51. (II) Suppose you adjust your garden hose nozzle for a fast
stream of water. You point
the nozzle vertically upward at
a height of 1.8 m above the
ground (Fig. 2–40). When you
quickly turn off the nozzle, you
hear the water striking the
ground next to you for another
2.5 s. What is the water speed
as it leaves the nozzle?

v0

5.40 m�s.

3.2 m�s2

24.0 m�s.

t = 5.00 s.
t = 0

25 m�s.

Problems 45

To travel
this
distance
took
0.31 s

2.2 m

FIGURE 2;41

Problem 53.

56. (II) A sports car accelerates approximately as shown in the
velocity–time graph of Fig. 2–43. (The short flat spots in the
curve represent manual shifting of the gears.) Estimate the car’s
average acceleration in (a) second gear and (b) fourth gear.

52. (III) A baseball is seen to pass upward by a window with
a vertical speed of If the ball was thrown by a person
18 m below on the street, (a) what was its initial speed,
(b) what altitude does it reach, (c) when was it thrown,
and (d) when does it reach the street again?

53. (III) A falling stone takes 0.31 s to travel past a window
2.2 m tall (Fig. 2–41). From what height above the top of
the window did the
stone fall?

14 m�s.

54. (III) A rock is dropped from a sea cliff, and the sound of
it striking the ocean is heard 3.4 s later. If the speed of
sound is how high is the cliff?

2;8 Graphical Analysis

55. (II) Figure 2–42 shows the velocity of a train as a function of
time. (a) At what time was its velocity greatest? (b) During
what periods, if any, was the velocity constant? (c) During
what periods, if any, was the acceleration constant?
(d) When was the magnitude of the acceleration greatest?

340 m�s,
 (

m
/s

)
v

t (s)

40

30

20

10

0
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FIGURE 2;42 Problem 55.
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FIGURE 2;43 Problem 56. The velocity of a car
as a function of time, starting from a dead stop.
The flat spots in the curve represent gear shifts.

1.8 m

FIGURE 2;40

Problem 51.
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65. Consider the street pattern shown in Fig. 2–46. Each inter-
section has a traffic signal, and the speed limit is 
Suppose you are driving from the west at the speed limit.
When you are 10.0 m from the first intersection, all the lights
turn green. The lights are green for 13.0 s each. (a) Calculate
the time needed to reach the third stoplight. Can you make
it through all three lights without stopping? (b) Another car
was stopped at the first light when all the lights turned green.
It can accelerate at the rate of to the speed limit.
Can the second car make it through all three lights without
stopping? By how many seconds would it make it, or not
make it?

2.00 m�s2

40 km�h.

EastWest

Speed limit
40 km/h

50 m
15 m

Your
car

15 m
70 m

15 m

10 m

FIGURE 2;46 Problem 65.

63. Pelicans tuck their wings and free-fall straight down when
diving for fish. Suppose a pelican starts its dive from a
height of 14.0 m and cannot change its path once com-
mitted. If it takes a fish 0.20 s to perform evasive action,
at what minimum height must it spot the pelican to escape?
Assume the fish is at the surface of the water.

64. A bicyclist in the Tour de France crests a mountain pass
as he moves at At the bottom, 4.0 km farther,
his speed is Estimate his average acceleration
(in ) while riding down the mountain.m�s2

65 km�h.
15 km�h.

60. The acceleration due to gravity on the Moon is about one-
sixth what it is on Earth. If an object is thrown vertically
upward on the Moon, how many times higher will it go
than it would on Earth, assuming the same initial velocity?

61. A person who is properly restrained by an over-the-shoulder
seat belt has a good chance of surviving a car collision if the
deceleration does not exceed 30 “g’s”
Assuming uniform deceleration at 30 g’s, calculate the dis-
tance over which the front end of the car must be designed
to collapse if a crash brings the car to rest from 

62. A person jumps out a fourth-story window 18.0 m above
a firefighter’s safety net. The survivor stretches the net
1.0 m before coming
to rest, Fig. 2–45.
(a) What was the
average deceleration
experienced by the
survivor when she was
slowed to rest by the
net? (b) What would
you do to make it
“safer” (that is, to
generate a smaller
deceleration): would
you stiffen or loosen
the net? Explain.

95 km�h.

A1.00 g = 9.80 m�s2B.

General Problems

18.0 m

1.0 m

FIGURE 2;45

Problem 62.
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FIGURE 2;44 Problems 57, 58, and 59.

57. (II) The position of a rabbit along a straight tunnel as a
function of time is plotted in Fig. 2–44. What is its instan-
taneous velocity (a) at and (b) at
What is its average velocity (c) between and

(d) between and and 
(e) between and t = 50.0 s?t = 40.0 s

t = 30.0 s,t = 25.0 st = 5.0 s,
t = 0
t = 30.0 s?t = 10.0 s

58. (II) In Fig. 2–44, (a) during what time periods, if any, is
the velocity constant? (b) At what time is the velocity
greatest? (c) At what time, if any, is the velocity zero?
(d) Does the object move in one direction or in both
directions during the time shown?

59. (III) Sketch the v vs. graph for the object whose displace-
ment as a function of time is given by Fig. 2–44.

t

66. An airplane travels 2100 km at a speed of and
then encounters a tailwind that boosts its speed to 
for the next 2800 km. What was the total time for the trip?
What was the average speed of the plane for this trip?
[Hint: Does Eq. 2–11d apply?]

67. Suppose a car manufacturer tested its cars for front-end
collisions by hauling them up on a crane and dropping
them from a certain height. (a) Show that the speed just
before a car hits the ground, after falling from rest a
vertical distance H, is given by What height
corresponds to a collision at (b) (c)

68. A stone is dropped from the roof of a high building. A second
stone is dropped 1.30 s later. How far apart are the stones
when the second one has reached a speed of 

69. A person jumps off a diving board 4.0 m above the water’s
surface into a deep pool. The person’s downward motion
stops 2.0 m below the surface of the water. Estimate the
average deceleration of the person while under the water.

12.0 m�s?

95 km�h?35 km�h?
22gH .

990 km�h
720 km�h,
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99

7.0 m

7.0 mDownhill
lie

Uphill
lie

FIGURE 2;47 Problem 70.

71. A stone is thrown vertically upward with a speed of
from the edge of a cliff 75.0 m high (Fig. 2–48).

(a) How much later
does it reach the
bottom of the cliff?
(b) What is its speed
just before hitting?
(c) What total distance
did it travel?

15.5 m�s

y

y = 0

y = �75 mFIGURE 2;48

Problem 71.

74. A car is behind a truck going on the highway. The
car’s driver looks for an opportunity to pass, guessing that
his car can accelerate at and that he has to
cover the 20-m length of the truck, plus 10-m extra space at
the rear of the truck and 10 m more at the front of it. In the
oncoming lane, he sees a car approaching, probably at the
speed limit, (55 mph). He estimates that the car is
about 500 m away. Should he attempt the pass? Give details.

75. Agent Bond is standing on a bridge, 15 m above the road
below, and his pursuers are getting too close for comfort.
He spots a flatbed truck approaching at which he
measures by knowing that the telephone poles the truck is
passing are 25 m apart in this region. The roof of the truck
is 3.5 m above the road, and Bond quickly calculates how
many poles away the truck should be when he drops down
from the bridge onto the truck, making his getaway. How
many poles is it?

76. A conveyor belt is used to send burgers through a grill-
ing machine. If the grilling machine is 1.2 m long and 
the burgers require 2.8 min to cook, how fast must 
the conveyor belt travel? If the burgers are spaced 25 cm
apart, what is the rate of burger production (in burgers/min)?

77. Two students are asked to find the height of a particular
building using a barometer. Instead of using the barometer
as an altitude measuring device, they take it to the roof of the
building and drop it off, timing its fall. One student reports a
fall time of 2.0 s, and the other, 2.3 s. What % difference does
the 0.3 s make for the estimates of the building’s height?

78. Figure 2–50 shows the position vs. time graph for two bicy-
cles, A and B. (a) Identify any instant at which the two
bicycles have the same velocity. (b) Which bicycle has the
larger acceleration? (c) At which instant(s) are the bicycles
passing each other? Which bicycle is passing the other?
(d) Which bicycle has
the larger instan-
taneous velocity?
(e) Which bicycle has
the larger average
velocity?

25 m�s,

25 m�s

0.60 m�s2

18 m�s

72. In the design of a rapid transit system, it is necessary to
balance the average speed of a train against the distance
between station stops. The more stops there are, the slower
the train’s average speed. To get an idea of this problem,
calculate the time it takes a train to make a 15.0-km trip
in two situations: (a) the stations at which the trains must
stop are 3.0 km apart (a total of 6 stations, including those
at the ends); and (b) the stations are 5.0 km apart (4 stations
total). Assume that at each station the train accelerates at
a rate of until it reaches then stays at
this speed until its brakes are applied for arrival at the next
station, at which time it decelerates at Assume
it stops at each intermediate station for 22 s.

–2.0 m�s2.

95 km�h,1.1 m�s2

15 m28 m
+x

FIGURE 2;49 Problem 73.

FIGURE 2;50

Problem 78.

73. A person driving her car at approaches an inter-
section just as the traffic light turns yellow. She knows that
the yellow light lasts only 2.0 s before turning to red, and
she is 28 m away from the near side of the intersection
(Fig. 2–49). Should she try to stop, or should she speed up
to cross the intersection before the light turns red? The
intersection is 15 m wide. Her car’s maximum deceleration
is whereas it can accelerate from to

in 6.0 s. Ignore the length of her car and her
reaction time.
65 km�h

45 km�h–5.8 m�s2,

35 km�h

A

0

Bx

t

70. In putting, the force with which a golfer strikes a ball is
planned so that the ball will stop within some small distance
of the cup, say 1.0 m long or short, in case the putt is missed.
Accomplishing this from an uphill lie (that is, putting the
ball downhill, see Fig. 2–47) is more difficult than from a
downhill lie. To see why, assume that on a particular green
the ball decelerates constantly at going downhill,
and constantly at going uphill. Suppose we have an
uphill lie 7.0 m from the cup. Calculate the allowable range
of initial velocities we may impart to the ball so that it stops
in the range 1.0 m short to 1.0 m long of the cup. Do the
same for a downhill lie 7.0 m from the cup. What in your
results suggests that the downhill putt is more difficult?

2.6 m�s2
1.8 m�s2



48 CHAPTER 2 Describing Motion: Kinematics in One Dimension

1. Discuss two conditions given in Section 2–7 for being able
to use a constant acceleration of magnitude .
Give an example in which one of these conditions would
not be met and would not even be a reasonable approxima-
tion of motion.

2. In a lecture demonstration, a 3.0-m-long vertical string
with ten bolts tied to it at equal intervals is dropped from
the ceiling of the lecture hall. The string falls on a tin
plate, and the class hears the clink of each bolt as it hits
the plate. (a) The sounds will not occur at equal time inter-
vals. Why? (b) Will the time between clinks increase or
decrease as the string falls? (c) How could the bolts be tied
so that the clinks occur at equal intervals? (Assume the
string is vertical with the bottom bolt touching the tin plate
when the string is released.)

3. A police car at rest is passed by a speeder traveling at a
constant . The police officer takes off in hot pursuit
and catches up to the speeder in 850 m, maintaining a
constant acceleration. (a) Qualitatively plot the position
vs. time graph for both cars from the police car’s start to
the catch-up point. Calculate (b) how long it took the
police officer to overtake the speeder, (c) the required
police car acceleration, and (d) the speed of the police car
at the overtaking point.

140 km�h

g = 9.8 m�s2
4. Figure 2–51 is a position versus time graph for the motion of

an object along the x axis. Consider the time interval from
A to B. (a) Is the object moving in the positive or negative
x direction? (b) Is the object speeding up or slowing down?
(c) Is the acceleration of the object positive or negative? Now
consider the time interval from D to E. (d) Is the object moving
in the positive or negative x direction? (e) Is the object speed-
ing up or slowing down? (f) Is the acceleration of the object
positive or negative? (g) Finally, answer these same three
questions for the time interval from C to D.

Search and Learn 

A: (a) displacement (b) total distance 50 cm.
B: (b).
C: (a) (b) (c) (d) ± .– ;– ;± ;

== –30 cm; D: (b).
E: (e).
F: (c).

A N S W E R S  TO  E X E R C I S E S
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Search and Learn 4.

79. A race car driver must average over the
course of a time trial lasting ten laps. If the first nine laps
were done at an average speed of what average
speed must be maintained for the last lap?

80. Two children are playing on two trampolines. The first
child bounces up one-and-a-half times higher than the
second child. The initial speed up of the second child is

(a) Find the maximum height the second child
reaches. (b) What is the initial speed of the first child?
(c) How long was the first child in the air?

81. If there were no air resistance, how long would it take a
free-falling skydiver to fall from a plane at 3200 m to an
altitude of 450 m, where she will open her parachute? What
would her speed be at 450 m? (In reality, the air resis-
tance will restrict her speed to perhaps )

82. You stand at the top of a cliff while your friend stands on
the ground below you. You drop a ball from rest and see
that she catches it 1.4 s later. Your friend then throws the
ball up to you, such that it just comes to rest in your hand.
What is the speed with which your friend threw the ball?

150 km�h.

4.0 m�s.

196.0 km�h,

200.0 km�h 83. On an audio compact disc (CD), digital bits of infor-
mation are encoded sequentially along a spiral path. Each
bit occupies about A CD player’s readout laser
scans along the spiral’s sequence of bits at a constant
speed of about as the CD spins. (a) Determine
the number N of digital bits that a CD player reads every
second. (b) The audio information is sent to each of the
two loudspeakers 44,100 times per second. Each of these
samplings requires 16 bits, and so you might expect the
required bit rate for a CD player to be

where the 2 is for the 2 loudspeakers (the 2 stereo channels).
Note that is less than the number N of bits actually
read per second by a CD player. The excess number of
bits is needed for encoding and error-
correction. What percentage of the bits on a CD are
dedicated to encoding and error-correction?

A= N - N0B
N0

= 1.4 * 106 bits
s

,N0 = 2 a44,100
samplings

s b a16
bits

sampling
b

1.2 m�s

0.28 mm.

5. The position of a ball rolling in a straight line is given by
where x is in meters and in seconds.

(a) What do the numbers 2.0, 3.6, and 1.7 refer to? (b) What
are the units of each of these numbers? (c) Determine the
position of the ball at 2.0 s, and 3.0 s. (d) What is
the average velocity over the interval to t = 3.0 s?t = 1.0 s

t = 1.0 s,

tx = 2.0 - 3.6t + 1.7t2,




