
Oscillations and Waves
CHAPTER-OPENING QUESTIONS—Guess now!
1. A simple pendulum consists of a mass m (the “bob”) hanging
on the end of a thin string of length and negligible mass. The bob
is pulled sideways so the string makes a 5.0° angle to the vertical;
when released, it oscillates back and forth at a frequency f. If
the pendulum is started at a 10.0° angle instead, its frequency
would be

(a) twice as great.
(b) half as great.
(c) the same, or very close to it.
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An object attached to a coil spring can exhibit oscillatory motion. Many kinds of oscillatory 
motion are sinusoidal in time, or nearly so, and are referred to as simple harmonic motion. Real
systems generally have at least some friction, causing the motion to be damped. The automobile 
spring shown here has a 
shock absorber (yellow) that 
purposefully dampens the 
oscillation to make for a 
smooth ride. When an 
external sinusoidal force is 
exerted on a system able to 
oscillate, resonance occurs if 
the driving force is at or near 
the natural frequency of 
oscillation.

Vibrations can give rise to 
waves—such as water waves 
or waves traveling along a 
cord—which travel outward 
from their source.

l 10.0°

m
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(d) not quite twice as great.
(e) a bit more than half as great.

2. You drop a rock into a pond, and water waves spread out in circles.
(a) The waves carry water outward, away from where the rock hit. That moving

water carries energy outward.
(b) The waves only make the water move up and down. No energy is carried

outward from where the rock hit.
(c) The waves only make the water move up and down, but the waves do carry

energy outward, away from where the rock hit.

M any objects vibrate or oscillate—an object on the end of a spring, a tuning
fork, the balance wheel of an old watch, a pendulum, a plastic ruler
held firmly over the edge of a table and gently struck, the strings of a

guitar or piano. Spiders detect prey by the vibrations of their webs; cars oscillate
up and down when they hit a bump; buildings and bridges vibrate when heavy
trucks pass or the wind is fierce. Indeed, because most solids are elastic (see 
Section 9–5), they vibrate (at least briefly) when given an impulse. Electrical oscilla-
tions occur in radio and television sets. At the atomic level, atoms oscillate within a
molecule, and the atoms of a solid oscillate about their relatively fixed positions.



Because it is so common in everyday life and occurs in so many areas of physics,
oscillatory (or vibrational) motion is of great importance. Mechanical oscillations
or vibrations are fully described on the basis of Newtonian mechanics.

Vibrations and wave motion are intimately related. Waves—whether ocean
waves, waves on a string, earthquake waves, or sound waves in air—have as their
source a vibration. In the case of sound, not only is the source a vibrating object,
but so is the detector—the eardrum or the membrane of a microphone. Indeed,
when a wave travels through a medium, the medium oscillates (such as air for
sound waves). In the second half of this Chapter, after we discuss oscillations, we
will discuss simple waves such as those on water or on a string. In Chapter 12 
we will study sound waves, and in later Chapters we will encounter other forms
of wave motion, including electromagnetic waves and light.

11–1 Simple Harmonic Motion—
Spring Oscillations

When an object vibrates or oscillates back and forth, over the same path, each
oscillation taking the same amount of time, the motion is periodic. The simplest
form of periodic motion is represented by an object oscillating on the end of a
uniform coil spring. Because many other types of oscillatory motion closely
resemble this system, we will look at it in detail. We assume that the mass of the
spring can be ignored, and that the spring is mounted horizontally, as shown in
Fig. 11–1a, so that the object of mass m slides without friction on the horizontal
surface. Any spring has a natural length at which it exerts no force on the mass m.
The position of the mass at this point is called the equilibrium position. If the mass
is moved either to the left, which compresses the spring, or to the right, which
stretches it, the spring exerts a force on the mass that acts in the direction of
returning the mass to the equilibrium position; hence it is called a restoring force.
We consider the common situation where we can assume the restoring force F
is directly proportional to the displacement x the spring has been stretched 
(Fig. 11–1b) or compressed (Fig. 11–1c) from the equilibrium position:

[force exerted by spring] (11;1)

Note that the equilibrium position has been chosen at and the minus sign
in Eq. 11–1 indicates that the restoring force is always in the direction opposite 
to the displacement x. For example, if we choose the positive direction to the
right in Fig. 11–1, x is positive when the spring is stretched (Fig. 11–1b), but the
direction of the restoring force is to the left (negative direction). If the spring 
is compressed, x is negative (to the left) but the force F acts toward the right
(Fig. 11–1c).

Equation 11–1 is often referred to as Hooke’s law (Sections 6–4 and 9–5), and
is accurate only if the spring is not compressed to where the coils are close to
touching, or stretched beyond the elastic region (see Fig. 9–19). Hooke’s law
works not only for springs but for other oscillating solids as well; it thus has wide
applicability, even though it is valid only over a certain range of F and x values.

The proportionality constant k in Eq. 11–1 is called the spring constant for
that particular spring, or its spring stiffness constant To stretch
the spring a distance x, an (external) force must be exerted on the free end of the
spring with a magnitude at least equal to

[external force on spring]

The greater the value of k, the greater the force needed to stretch a spring a given
distance. That is, the stiffer the spring, the greater the spring constant k.

Note that the force F in Eq. 11–1 is not a constant, but varies with position.
Therefore the acceleration of the mass m is not constant, so we cannot use the
equations for constant acceleration developed in Chapter 2.

Fext = ±kx.

(units = N�m).

x = 0

F = –kx.
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FIGURE 11–1 An object of mass m
oscillating at the end of a uniform 
spring. The force on the object at the 
different positions is shown above the
object.
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Eqs. 2–11 for constant acceleration
do not apply to a spring



Let us examine what happens when our uniform spring is initially compressed
a distance as shown in Fig. 11–2a, and then our object of mass m is
released on the frictionless surface. The spring exerts a force on the mass that accel-
erates it toward the equilibrium position. Because the mass has inertia, it passes
the equilibrium position with considerable speed. Indeed, as the mass reaches the
equilibrium position, the force on it decreases to zero, but its speed at this point is
a maximum, (Fig. 11–2b). As the mass moves farther to the right, the force 
on it acts to slow it down, and it stops for an instant at (Fig. 11–2c). It
then begins moving back in the opposite direction, accelerating until it passes the
equilibrium point (Fig. 11–2d), and then slows down until it reaches zero speed 
at the original starting point, (Fig. 11–2e). It then repeats the motion,
moving back and forth symmetrically between and

EXERCISE A A mass is oscillating on a frictionless surface at the end of a horizontal
spring. Where, if anywhere, is the acceleration of the mass zero (see Fig. 11–2)?
(a) At (b) at (c) at (d) at both and
(e) nowhere.

To discuss oscillatory motion, we need to define a few terms. The distance x
of the mass from the equilibrium point at any moment is the displacement

The maximum displacement—the greatest distance from
the equilibrium point—is called the amplitude, A. One cycle refers to the com-
plete to-and-fro motion from some initial point back to that same point—say,
from to and back to The period, T, is defined as
the time required to complete one cycle. Finally, the frequency, f, is the number
of complete cycles per second. Frequency is generally specified in hertz (Hz),
where cycle per second Given their definitions, frequency and
period are inversely related, as we saw earlier (Eqs. 5–2 and 8–8):

(11;2)

For example, if the frequency is 2 cycles per second, then each cycle takes

EXERCISE B If an oscillating mass has a frequency of 1.25 Hz, it makes 100 oscillations
in (a) 12.5 s, (b) 125 s, (c) 80 s, (d) 8.0 s.

The oscillation of a spring hung vertically is similar to that of a horizontal spring;
but because of gravity, the length of a vertical spring with a mass m on the end will
be longer at equilibrium than when that same spring is horizontal. See Fig. 11–3.
The spring is in equilibrium when so the spring stretches
an extra amount to be in equilibrium. If x is measured from this new
equilibrium position, Eq. 11–1 can be used directly with the same value of k.

x0 = mg�k
©F = 0 = mg - kx0 ,

1
2 s.

f =
1
T
  and  T =

1
f

.

As–1B.1 Hz = 1

x = –A.x = ±Ax = –A

(with a + or - sign).

x = ±A;x = –Ax = ±A;x = 0;x = –A;

x = –A.x = A
x = –A

x = A
vmax

x = –A,
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F
B

F
B

F
B

F
B

(d)

(c)

(a)

(b)

x = Ax = 0

x = 0

x = 0

   = 0

   = 0

x = 0x = −A

v = 0

v = −vmax

v = +vmax

v = 0

(e) x = 0x = −A

v = 0

(max. in negative
direction)

F
B

(max. in positive
direction)

FIGURE 11–2 An object oscillating
on a frictionless surface, indicating
the force on the object and its
velocity at different positions of its
oscillation cycle.
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FIGURE 11–3

(a) Free spring, hung vertically.
(b) Mass m attached to spring in new 
equilibrium position, which occurs when
©F = 0 = mg - kx0 .



Car springs. When a family of four with a total mass of
200 kg step into their 1200-kg car, the car’s springs compress 3.0 cm. (a) What is
the spring constant of the car’s springs (Fig. 11–4), assuming they act as a single
spring? (b) How far will the car lower if loaded with 300 kg rather than 200 kg?

APPROACH We use Hooke’s law: the weight of the people, mg, causes a 3.0-cm
displacement.

SOLUTION (a) The added force of causes the
springs to compress Therefore (Eq. 11–1), the spring constant is

(b) If the car is loaded with 300 kg, Hooke’s law gives

or 4.5 cm.

NOTE In (b), we could have obtained x without solving for k: since x is propor-
tional to F, if 200 kg compresses the spring 3.0 cm, then 1.5 times the force will
compress the spring 1.5 times as much, or 4.5 cm.

x =
F

k
=

(300 kg)A9.8 m�s2B
A6.5 * 104 N�mB = 4.5 * 10–2 m,

k =
F
x

=
1960 N

3.0 * 10–2 m
= 6.5 * 104 N�m.

3.0 * 10–2 m.
(200 kg)A9.8 m�s2B = 1960 N

EXAMPLE 11;1
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†The word “harmonic” refers to the motion being sinusoidal, which we discuss in Section 11–3. It is
“simple” when the motion is sinusoidal of a single frequency. This can happen only if friction or other
forces are not acting.

P H Y S I C S  A P P L I E D

Car springs

FIGURE 11–4 Photo of a car’s spring.
(Also visible is the shock absorber, in
blue—see Section 11–5.)

Any oscillating system for which the net restoring force is directly propor-
tional to the negative of the displacement (as in Eq. 11–1, ) is said to
exhibit simple harmonic motion (SHM).† Such a system is often called a simple
harmonic oscillator (SHO). We saw in Section 9–5 that most solid materials
stretch or compress according to Eq. 11–1 as long as the displacement is not too
great. Because of this, many natural oscillations are simple harmonic, or suffi-
ciently close to it that they can be treated using this SHM model.

F = –kx

Is the motion simple harmonic? Which
of the following forces would cause an object to move in simple harmonic motion?
(a) (b) (c) (d)

RESPONSE Both (b) and (d) will give simple harmonic motion because they
give the force as minus a constant times a displacement. The displacement need
not be x, but the minus sign is required to restore the system to equilibrium,
which is why (c) does not produce SHM.

F = –4u?F = 8.6x,F = –2.3y,F = –0.5x2,

CONCEPTUAL EXAMPLE 11;2

11–2 Energy in Simple Harmonic Motion
With forces that are not constant, such as here with simple harmonic motion, it is
often convenient and useful to use the energy approach, as we saw in Chapter 6.

To stretch or compress a spring, work has to be done. Hence potential
energy is stored in a stretched or compressed spring. We have already seen in
Section 6–4 that elastic potential energy is given by

The total mechanical energy E is the sum of the kinetic and potential energies,

(11;3)

where v is the speed of the mass m at a distance x from the equilibrium position.

E = 1
2 mv2 + 1

2 kx2,

pe = 1
2 kx2.



SHM can occur only if friction is negligible so that the total mechanical energy E
remains constant. As the mass oscillates back and forth, the energy continuously
changes from potential energy to kinetic energy, and back again (Fig. 11–5). At
the extreme points, and (Fig. 11–5a, c), all the energy is stored
in the spring as potential energy (and is the same whether the spring is com-
pressed or stretched to the full amplitude). At these extreme points, the mass stops
for an instant as it changes direction, so and

(11;4a)

Thus, the total mechanical energy of a simple harmonic oscillator is proportional
to the square of the amplitude. At the equilibrium point, (Fig. 11–5b), all
the energy is kinetic:

(11;4b)

where is the maximum speed during the motion (which occurs at ). At
intermediate points (Fig. 11–5d), the energy is part kinetic and part potential;
because energy is conserved (we use Eqs. 11–3 and 11–4a),

(11;4c)

From this conservation of energy equation, we can obtain the velocity as a
function of position. Solving for we have

From Eqs. 11–4a and 11–4b, we have so or 

(11;5a)

Inserting this equation into the equation just above it and taking the square root,
we have

(11;5b)

This gives the velocity of the object at any position x. The object moves back and
forth, so its velocity can be either in the or direction, but its magnitude
depends only on its position x.

Doubling the amplitude. Suppose the
spring in Fig. 11–5 is stretched twice as far (to ). What happens to 
(a) the energy of the system, (b) the maximum velocity of the oscillating mass,
(c) the maximum acceleration of the mass?

RESPONSE (a) From Eq. 11–4a, the total energy is proportional to the square
of the amplitude A, so stretching it twice as far quadruples the energy
You may protest, “I did work stretching the spring from to 
Don’t I do the same work stretching it from A to 2A?” No. The force you exert
is proportional to the displacement x, so for the second displacement, from

to 2A, you do more work than for the first displacement ( to A).
(b) From Eq. 11–5a, we can see that when the amplitude is doubled, the maxi-
mum velocity must be doubled.
(c) Since the force is twice as great when we stretch the spring twice as far 
the acceleration is also twice as great:

EXERCISE C Suppose the spring in Fig. 11–5 is compressed to but is given 
a push to the right so that the initial speed of the mass m is What effect does this 
push have on (a) the energy of the system, (b) the maximum velocity, (c) the maximum
acceleration?

v0 .
x = –A,

a r F r x.
(F = kx),

x = 0x = A

x = A.x = 0
(22 = 4).

x = 2A
CONCEPTUAL EXAMPLE 11;3

–±

v = &vmaxB1 -
x2

A2
.

vmax = B k
m

A.

vmax
2 = (k�m)A21

2 mvmax
2 = 1

2 kA2,

v2 =
k
m
AA2 - x2B =

k
m

A2 a1 -
x2

A2
b .

v2,

1
2 mv2 + 1

2 kx2 = 1
2 kA2.

x = 0vmax

E = 1
2 mvmax

2 + 1
2 k(0)2 = 1

2 mvmax
2 ,

x = 0

E = 1
2 m(0)2 + 1

2 kA2 = 1
2 kA2.

v = 0

x = Ax = –A
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FIGURE 11–5 Energy changes from
potential energy to kinetic energy and
back again as the spring oscillates.
Energy bar graphs (on the right)
were used in Section 6–7.



Spring calculations. A spring stretches 0.150 m when a
0.300-kg mass is gently suspended from it as in Fig. 11–3b. The spring is then set
up horizontally with the 0.300-kg mass resting on a frictionless table as in Fig. 11–5.
The mass is pulled so that the spring is stretched 0.100 m from the equilibrium
point, and released from rest. Determine: (a) the spring stiffness constant k;
(b) the amplitude of the horizontal oscillation A; (c) the magnitude of the
maximum velocity (d) the magnitude of the velocity v when the mass is
0.050 m from equilibrium; and (e) the magnitude of the maximum accelera-
tion of the mass.

APPROACH Wow, a lot of questions, but we can take them one by one. When the
0.300-kg mass hangs at rest from the spring as in Fig. 11–3b, we apply Newton’s
second law for the vertical forces: so For
the horizontal oscillations, the amplitude is given, the velocities are found using
conservation of energy, and the acceleration is found from

SOLUTION (a) The spring stretches 0.150 m due to the 0.300-kg load, so

(b) The spring is now horizontal (on a table). It is stretched 0.100 m from
equilibrium and is given no initial speed, so
(c) The maximum velocity is attained as the mass passes through the 
equilibrium point where all the energy is kinetic. By comparing the total energy
(see Eq. 11–3) at equilibrium with that at full extension, conservation of energy
tells us that

where Solving for (or using Eq. 11–5a), we have

(d) We use conservation of energy, or Eq. 11–5b derived from it, and find that

(e) By Newton’s second law, So the maximum acceleration occurs
where the force is greatest—that is, when Thus

NOTE We cannot use the kinematic equations, Eqs. 2–11, because the accelera-
tion is not constant in SHM.

Energy calculations. For the simple harmonic oscillator 
of Example 11–4, determine (a) the total energy, and (b) the kinetic and poten-
tial energies at half amplitude

APPROACH We use conservation of energy for a mass–spring system, Eqs. 11–3
and 11–4.

SOLUTION (a) With and the total energy E from
Eq. 11–4a is

(b) At we have

By conservation of energy, the kinetic energy must be

ke = E - pe = 7.35 * 10–2 J.

pe = 1
2 kx2 = 1

2 (19.6 N�m)(0.050 m)2 = 2.45 * 10–2 J.

x = A�2 = 0.050 m,

E = 1
2 kA2 = 1

2 (19.6 N�m)(0.100 m)2 = 9.80 * 10–2 J.

A = 0.100 m,k = 19.6 N�m

(x = &A�2).

EXAMPLE 11;5

amax =
Fmax

m
=

kA
m

=
(19.6 N�m)(0.100 m)

0.300 kg
= 6.53 m�s2.

x = A = 0.100 m.
F = ma.

v = vmaxB1 -
x2

A2
= (0.808 m�s)C1 -

(0.050 m)2

(0.100 m)2
= 0.700 m�s.

vmax = AB k
m

= (0.100 m)B19.6 N�m
0.300 kg

= 0.808 m�s.

vmaxA = 0.100 m.

1
2 mvmax

2 + 0 = 0 + 1
2 kA2,

vmax

A = 0.100 m.

k =
F
x0

=
mg
x0

=
(0.300 kg)A9.80 m�s2B

0.150 m
= 19.6 N�m.

F = ma.

k = mg�x0 .mg - kx0 ,©F = 0 =

amax

vmax ;

EXAMPLE 11;4
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11–3 The Period and 
Sinusoidal Nature of SHM

The period of a simple harmonic oscillator is found to depend on the stiffness of
the spring and also on the mass m that is oscillating. But—strange as it may
seem—the period does not depend on the amplitude. You can find this out for
yourself by using a watch and timing 10 or 20 cycles of an oscillating spring for a
small amplitude and then for a large amplitude.

The period T is given by (see derivation on next page):

(11;6a)

We see that the larger the mass, the longer the period; and the stiffer the spring
(larger k), the shorter the period. This makes sense since a larger mass means
more inertia and therefore slower response (smaller acceleration). And larger k
means greater force and therefore quicker response (larger acceleration). Notice
that Eq. 11–6a is not a direct proportion: the period varies as the square root
of m/k. For example, the mass must be quadrupled to double the period.
Equation 11–6a is fully in accord with experiment and is valid not only for a
spring, but for all kinds of simple harmonic motion—that is, for motion subject
to a restoring force proportional to displacement, Eq. 11–1.

We can write the frequency using (Eq. 11–2):

(11;6b)f =
1
T

=
1

2p B k
m

.

f = 1�T

T = 2pAm

k
.
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FIGURE 11–6 Example 11–6.
A spider waits for its prey (on the left).

EXERCISE D By how much should the mass on the end of a spring be changed to halve
the frequency of its oscillations? (a) No change; (b) doubled; (c) quadrupled; (d) halved;
(e) quartered.

Spider web. A spider of mass 0.30 g waits in
its web of negligible mass (Fig. 11–6). A slight movement causes the web to
vibrate with a frequency of about 15 Hz. (a) Estimate the value of the spring
stiffness constant k for the web. (b) At what frequency would you expect the web
to vibrate if an insect of mass 0.10 g were trapped in addition to the spider?

APPROACH We can only make a rough estimate because a spider’s web is
fairly complicated and may vibrate with a mixture of frequencies. We use SHM
as an approximate model.

SOLUTION (a) The frequency of SHM is given by Eq. 11–6b,

We solve for k:

(b) The total mass is now We could substi-
tute into Eq. 11–6b. Instead, we notice that the frequency
decreases with the square root of the mass. Since the new mass is 4/3 times 
the first mass, the frequency changes by a factor of Thus

NOTE Check this result by direct substitution of k, found in part (a), and the
new mass m into Eq. 11–6b.

f = (15 Hz)A23�4B = 13 Hz.
1�24�3 = 23�4.

m = 4.0 * 10–4 kg
0.10 g + 0.30 g = 4.0 * 10–4 kg.

= (2p)2 (15 s–1B 2 A3.0 * 10–4 kgB = 2.7 N�m.

k = (2pf)2m

f =
1

2p B k
m

.

EXAMPLE 11;6 ESTIMATE



A vibrating floor. A large motor in a factory
causes the floor to vibrate up and down at a frequency of 10 Hz. The amplitude
of the floor’s motion near the motor is about 3.0 mm. Estimate the maximum
acceleration of the floor near the motor.

APPROACH Assuming the motion of the floor is roughly SHM, we can make
an estimate for the maximum acceleration using and Eq. 11–6b.

SOLUTION The maximum acceleration occurs when the force is
largest, which is when Thus, From
Eq. 11–6b, so

NOTE The maximum acceleration is a little over g, so when the floor acceler-
ates down, objects sitting on the floor will actually lose contact with the floor
momentarily, which will cause noise and serious wear.

= 12 m�s2.amax =
Fmax

m
= a k

m
bA = (2pf)2A = (2p)2 A10 s–1B 2 A3.0 * 10–3 mB

(k�m) = (2pf)2,
amax = Fmax�m = kA�m = (k�m)A.x = A.

(F = kx)

F = ma

EXAMPLE 11;7 ESTIMATE
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FIGURE 11–7 (a) Circular motion
of a small (red) object. (b) Side view
of circular motion (x component) is
simple harmonic motion.
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Unwanted floor vibrations

Period and Frequency—Derivation
We can derive a formula for the period of simple harmonic motion (SHM) by
comparing SHM to an object rotating uniformly in a circle. From this same
“reference circle” we can obtain a second useful result—a formula for the posi-
tion of an oscillating mass as a function of time. There is nothing actually rotating
in a circle when a spring oscillates linearly, but it is the mathematical similarity
that we find useful.

Consider a small object of mass m revolving counterclockwise in a circle of
radius A, with constant speed on top of a table as shown in Fig. 11–7. As
viewed from above, the motion is a circle in the xy plane. But a person who looks
at the motion from the edge of the table sees an oscillatory motion back and
forth, and this one-dimensional motion corresponds precisely to simple harmonic
motion, as we shall now see.

What the person sees, and what we are interested in, is the projection of the cir-
cular motion onto the x axis (Fig. 11–7b). To see that this x motion is analogous to
SHM, let us calculate the magnitude of the x component of the velocity which
is labeled v in Fig. 11–7. The two triangles involving in Fig. 11–7a are similar, so

or

This is exactly the equation for the speed of a mass oscillating with SHM, as we
saw in Eq. 11–5b. Thus the projection on the x axis of an object revolving in a
circle has the same motion as a mass undergoing SHM.

We can now determine the period of SHM because it is equal to the time for
our object revolving in a circle to make one complete revolution. First we note that
the velocity is equal to the circumference of the circle (distance) divided by 
the period T:

(11;7)

We solve for the period T in terms of A:

From Eq. 11–5a, Thus

which is Eq. 11–6a, the formula we were looking for. The period depends on the
mass m and the spring stiffness constant k, but not on the amplitude A.

T = 2pAm

k
,

A�vmax = 2m�k .

T =
2pA
vmax

.

vmax =
2pA

T
= 2pAf.

vmax

v = vmaxB1 -
x2

A2
.

v
vmax

= 3A2 - x2

A

u

vmax ,

vmax ,



Position as a Function of Time
We now use the reference circle to find the position of a mass undergoing simple
harmonic motion as a function of time. From Fig. 11–7, we see that 
so the projection of the object’s position on the x axis is

The mass in the reference circle (Fig. 11–7) is rotating with uniform angular
velocity We then can write where is in radians (Section 8–1). Thus

(11;8a)

Furthermore, since the angular velocity (specified in radians per second) can be
written as where f is the frequency (Eq. 8–7), we then write

(11;8b)

or in terms of the period T,

(11;8c)

Notice in Eq. 11–8c that when (that is, after a time equal to one period),
we have the cosine of (or 360 ), which is the same as the cosine of zero. This makes
sense since the motion repeats itself after a time

Because the cosine function varies between 1 and Eqs. 11–8 tell us that 
x varies between A and as it must. If a pen is attached to a vibrating mass as
a sheet of paper is moved at a steady rate beneath it (Fig. 11–8), a sinusoidal
curve will be drawn that accurately follows Eqs. 11–8.

–A,
–1,

t = T.
°2p

t = T

x = A cos(2pt�T).

x = A cos(2pft),

v = 2pf,
v

x = A cos vt.

uu = vt,v.

x = A cos u.

cos u = x�A,
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is a variable (time);
T is a constant for a given situation

t

x
A

Paper motion

0

−A
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4
3
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1
2

3
2T T T

t

FIGURE 11–8 Position as a function
of time for a simple harmonic
oscillator, x = A cos(2pt�T).

Starting with t. The displacement of an object
is described by the following equation, where x is in meters and is in seconds:

Determine the oscillating object’s (a) amplitude, (b) frequency, (c) period,
(d) maximum speed, and (e) maximum acceleration.

APPROACH We start by comparing the given equation for x with Eq. 11–8b,

SOLUTION From we see by inspection that (a) the amplitude
and (b) so (c) Then

(d) The maximum speed (see Eq. 11–7) is

(e) The maximum acceleration, by Newton’s second law, is 
because is greatest when x is greatest. From Eq. 11–6b we

see that Hence

= (2p)2(1.27 s–1)2(0.30 m) = 19 m�s2.

amax =
k
m

A = (2pf)2A

k�m = (2pf)2.
F (= kx)kA�m,

amax = Fmax�m =

= (2p)(0.30 m)(1.27 s–1) = 2.4 m�s.

vmax = 2pAf

T = 1�f = 0.79 s.
f = (8.0 s–1�2p) = 1.27 Hz.2pf = 8.0 s–1;A = 0.30 m,

x = A cos(2pft),

x = A cos(2pft).

x = (0.30 m) cos(8.0 t).

t
x � A cosVEXAMPLE 11;8

Sinusoidal Motion
Equation 11–8a, assumes that the oscillating object starts from rest

at its maximum displacement at Other equations for SHM
are also possible, depending on the initial conditions (when you choose to be zero).t

t = 0.(x = A)(v = 0)
x = A cos vt,



For example, if at the object is at the equilibrium position and the oscilla-
tions are begun by giving the object a push to the right the equation would be

This curve, shown in Fig. 11–9, has the same shape as the cosine curve shown in
Fig. 11–8, except it is shifted to the right by a quarter cycle. Hence at it
starts out at instead of at

Both sine and cosine curves are referred to as being sinusoidal (having the
shape of a sine function). Thus simple harmonic motion† is said to be sinusoidal
because the position varies as a sinusoidal function of time.

Velocity and Acceleration as Functions of Time
Figure 11–10a, like Fig. 11–8, shows a graph of displacement x vs. time , as 
given by Eqs. 11–8. We can also find the velocity v as a function of time from 
Fig. 11–7a. For the position shown (red dot in Fig. 11–7a), the magnitude of v
is but points to the left, so Again setting

we have

(11;9)

Just after the velocity is negative (points to the left) and remains so until
(corresponding to radians). After until the

velocity is positive. The velocity as a function of time (Eq. 11–9) is plotted in 
Fig. 11–10b. From Eqs. 11–6b and 11–7,

For a given spring–mass system, the maximum speed is higher if the ampli-
tude is larger, and always occurs as the mass passes the equilibrium point.

Newton’s second law and Eqs.11–8 give us the acceleration as a function of time:

(11;10)

where the maximum acceleration is

Equation 11–10 is plotted in Fig. 11–10c. Because the acceleration of a SHO is not
constant, the equations for uniformly accelerated motion do not apply to SHM.

11–4 The Simple Pendulum
A simple pendulum consists of a small object (the pendulum bob) suspended
from the end of a lightweight cord, Fig. 11–11. We assume that the cord does not
stretch and that its mass can be ignored relative to that of the bob. The motion of
a simple pendulum moving back and forth with negligible friction resembles sim-
ple harmonic motion: the pendulum bob oscillates along the arc of a circle with
equal amplitude on either side of its equilibrium point, and as it passes through
the equilibrium point (where it would hang vertically) it has its maximum speed.
But is it really undergoing SHM? That is, is the restoring force proportional to its
displacement? Let us find out.

amax = kA�m.

a =
F
m

=
–kx
m

= – a kA
m
b cosvt = –amax cos(2pt�T)

vmax

vmax = 2pAf = AB k
m

.

t = Tt = 1
2 Tu = 180° = pt = 1

2 T
t = 0,

v = –vmax sin vt = –vmax sin(2pft) = –vmax sin(2pt�T).

u = vt = 2pft = 2pt�T,
v = –vmax sin u.vBvmax sin u,

t
*

x = A.x = 0
t = 0

x = A sin vt = A sin(2pt�T).

(±x),
t = 0
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†Simple harmonic motion can be defined as motion that is sinusoidal. This definition is fully consistent
with our earlier definition in Section 11–1.
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FIGURE 11–10 Graphs showing 
(a) displacement x as a function of
time
(b) velocity as a function of time:

where
(c) acceleration 

as a function of time:
where

amax = Ak�m.
a = –amax cos(2pt�T),

vmax = A1k�m;
v = –vmax sin(2pt�T),

x = A cos(2pt�T);t:
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FIGURE 11–9 Sinusoidal nature of SHM,
position as a function of time. In this case,

because at the
mass is at the equilibrium position
and has (or is given) an initial speed at

that carries it to at t = 1
4 T.x = At = 0

x = 0
t = 0x = A sin(2pt�T)

FIGURE 11–11 Strobe-light photo
of an oscillating pendulum, at 
equal time intervals.



EXERCISE F If a simple pendulum is taken from sea level to the top of a high moun-
tain and started at the same angle of 5°, it would oscillate at the top of the mountain 
(a) slightly slower; (b) slightly faster; (c) at exactly the same frequency; (d) not at all—it
would stop; (e) none of these.

The displacement s of the pendulum along the arc is given by where
is the angle (in radians) that the cord makes with the vertical and is the length

of the cord (Fig. 11–12). If the restoring force is proportional to s or to the
motion will be simple harmonic. The restoring force is the net force on the bob,
which equals the component of the weight (mg) tangent to the arc:

where g is the acceleration due to gravity. The minus sign here, as in Eq. 11–1,
means the force is in the direction opposite to the angular displacement Since
F is proportional to the sine of and not to itself, the motion is not SHM.
However, if is small, then is very nearly equal to when the angle is speci-
fied in radians. This can be seen by noting in Fig. 11–12 that the arc length 
is nearly the same length as the chord indicated by the horizontal
straight dashed line, if is small. For angles less than 15°, the difference between

(in radians) and is less than 1%—see Table 11–1. Thus, to a very good
approximation for small angles,

Substituting or we have

Thus, for small displacements, the motion can be modeled as being approximately
simple harmonic, because this approximate equation fits Hooke’s law, where
in place of x we have arc length s. The effective force constant is If we
substitute into Eq. 11–6a, we obtain the period of a simple pendulum:

or

(11;11a)

The frequency is so

(11;11b)

The mass m of the pendulum bob does not appear in these formulas for T and f.
Thus we have the surprising result that the period and frequency of a simple pen-
dulum do not depend on the mass of the pendulum bob. You may have noticed
this if you pushed a small child and then a large one on the same swing.

We also see from Eq. 11–11a that the period of a pendulum does not depend
on the amplitude (like any SHM, Section 11–3), as long as the amplitude is small.
Galileo is said to have first noted this fact while watching a swinging lamp in the
cathedral at Pisa (Fig. 11–13). This discovery led to the invention of the pendulum
clock, the first really precise timepiece, which became the standard for centuries.

u

[u small]f =
1

2p Ag

l

.

f = 1�T,

[u small]T = 2pB lg .

T = 2pAm

k
= 2pA m

mg�l

k = mg�l
k = mg�l.
F = –kx,

F L –
mg

l
s.

u = s�l,s = lu,
F = –mg sin u L –mgu.

sin uu

u

(= l sin u)
s (= lu)

usin uu

uu

u.

F = –mg sin u,

u,
lu

s = lu,
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TABLE 11–1

Sin at Small Angles

%
(degrees) (radians) Difference

0 0 0 0

1° 0.01745 0.01745 0.005%

5° 0.08727 0.08716 0.1%

10° 0.17453 0.17365 0.5%

15° 0.26180 0.25882 1.1%

20° 0.34907 0.34202 2.0%

30° 0.52360 0.50000 4.5%

sin U
UU

U

FIGURE 11–13 The swinging motion
of this elaborate lamp, hanging by a
very long cord from the ceiling of the
cathedral at Pisa, is said to have
been observed by Galileo and to
have inspired him to the conclusion
that the period of a pendulum does
not depend on amplitude.

EXERCISE E Return to Chapter-Opening Question 1, page 292, and answer it again
now. Try to explain why you may have answered differently the first time.

mg sin θ

l sin θ

l

   T

θ

m

mg cos

m

θ

s

F
B

gB

FIGURE 11–12 Simple pendulum,
and a free-body diagram.

P H Y S I C S  A P P L I E D

Pendulum clock

Because a pendulum does not undergo precisely SHM, the period does depend
slightly on the amplitude—the more so for large amplitudes. The accuracy of a
pendulum clock would be affected, after many swings, by the decrease in amplitude
due to friction. But the mainspring in a pendulum clock (or the falling weight in a
grandfather clock) supplies energy to compensate for the friction and to maintain
the amplitude constant, so that the timing remains precise.
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†To “damp” means to diminish, restrain, or extinguish, as to “dampen one’s spirits.”

t

A
B

C

x

FIGURE 11–15 Graphs that represent 
(A) underdamped, (B) critically damped,
and (C) overdamped oscillatory motion.

x

t0

FIGURE 11–14 Damped harmonic
motion.

Piston

Viscous
fluid

Attached to
car axle

Attached to
car frame

FIGURE 11–16 Automobile spring 
and shock absorber provide damping 
so that a car won’t bounce up and 
down so much.

Measuring g. A geologist uses a simple pendulum that has
a length of 37.10 cm and a frequency of 0.8190 Hz at a particular location on the
Earth. What is the acceleration due to gravity at this location?

APPROACH We can use the length and frequency f of the pendulum in
Eq. 11–11b, which contains our unknown, g.

SOLUTION We solve Eq. 11–11b for g and obtain
g = (2pf)2

l = (2p)2 A0.8190 s–1)2(0.3710 m) = 9.824 m�s2.

l

EXAMPLE 11;9

11–5 Damped Harmonic Motion
The amplitude of any real oscillating spring or swinging pendulum slowly decreases
in time until the oscillations stop altogether. Figure 11–14 shows a typical graph of
the displacement as a function of time. This is called damped harmonic motion. The
damping† is generally due to the resistance of air and to internal friction within the
oscillating system. The energy that is dissipated to thermal energy results in a
decreased amplitude of oscillation.

Since natural oscillating systems are damped in general, why do we even talk
about (undamped) simple harmonic motion? The answer is that SHM is much
easier to deal with mathematically. And if the damping is not large, the oscillations
can be thought of as simple harmonic motion on which the damping is super-
posed, as represented by the dashed curves in Fig. 11–14. Although damping
does alter the frequency of vibration, the effect can be small if the damping is
small; then Eqs. 11–6 can still be useful approximations.

Sometimes the damping is so large, however, that the motion no longer resem-
bles simple harmonic motion. Three common cases of heavily damped systems are
shown in Fig. 11–15. Curve A represents an underdamped situation, in which the
system makes several oscillations before coming to rest; it corresponds to a more
heavily damped version of Fig. 11–14. Curve C represents the overdamped situation,
when the damping is so large that there is no oscillation and the system takes a
long time to come to rest (equilibrium). Curve B represents critical damping: in
this case the displacement reaches zero in the shortest time. These terms all
derive from the use of practical damped systems such as door-closing mechanisms
and shock absorbers in a car (Fig. 11–16), which are usually designed to give critical
damping. But as they wear out, underdamping occurs: the door of a room slams
and a car bounces up and down several times when it hits a bump.

In many systems, the oscillatory motion is what counts, as in clocks and 
musical instruments, and damping may need to be minimized. In other systems,
oscillations are the problem, such as a car’s springs, so a proper amount of damping
(i.e., critical) is desired. Well-designed damping is needed for all kinds of applica-
tions. Large buildings, especially in California, are now built (or retrofitted) with
huge dampers to reduce possible earthquake damage (Fig. 11–17).

FIGURE 11–17 These huge dampers 
placed in a building look a lot like 
huge automobile shock absorbers,
and they serve a similar purpose—to
reduce the amplitude and the 
acceleration of movement when the 
shock of an earthquake hits.

P H Y S I C S  A P P L I E D

Shock absorbers and 
building dampers



11–6 Forced Oscillations; Resonance
When an oscillating system is set into motion, it oscillates at its natural frequency
(Eqs. 11–6b and 11–11b). However, a system may have an external force applied
to it that has its own particular frequency. Then we have a forced oscillation.

For example, we might pull the mass on the spring of Fig. 11–1 back and forth
at an externally applied frequency f. The mass then oscillates at the external fre-
quency f of the external force, even if this frequency is different from the natural
frequency of the spring, which we will now denote by where (see Eq. 11–6b)

For a forced oscillation with only light damping, the amplitude of oscillation
is found to depend on the difference between f and and is a maximum when
the frequency of the external force equals the natural frequency of the system—
that is, when The amplitude is plotted in Fig. 11–18 as a function of the
external frequency f. Curve A represents light damping and curve B heavy damp-
ing. When the external driving frequency f is near the natural frequency,
the amplitude can become large if the damping is small. This effect of increased
amplitude at is known as resonance. The natural oscillation frequency 
of a system is also called its resonant frequency.

A simple illustration of resonance is pushing a child on a swing. A swing, like
any pendulum, has a natural frequency of oscillation. If you push on the swing at
a random frequency, the swing bounces around and reaches no great amplitude.
But if you push with a frequency equal to the natural frequency of the swing, the
amplitude increases greatly. At resonance, relatively little effort is required to
obtain and maintain a large amplitude.

The great tenor Enrico Caruso was said to be able to shatter a crystal goblet
by singing a note of just the right frequency at full voice. This is an example of
resonance, for the sound waves emitted by the voice act as a forced oscillation on
the glass. At resonance, the resulting oscillation of the goblet may be large enough
in amplitude that the glass exceeds its elastic limit and breaks (Fig. 11–19).

Since material objects are, in general, elastic, resonance is an important phe-
nomenon in a variety of situations. It is particularly important in construction,
although the effects are not always foreseen. For example, it has been reported
that a railway bridge collapsed because a nick in one of the wheels of a crossing
train set up a resonant oscillation in the bridge. Marching soldiers break step when
crossing a bridge to avoid the possibility that their rhythmic march might match a
resonant frequency of the bridge. The famous collapse of the Tacoma Narrows
Bridge (Fig. 11–20a) in 1940 occurred as a result of strong gusting winds driving
the span into large-amplitude oscillatory motion. Bridges and tall buildings are
now designed with more inherent damping. The Oakland freeway collapse in 
the 1989 California earthquake (Fig. 11–20b) involved resonant oscillation of a
section built on mudfill that readily transmitted that frequency.

Resonance can be very useful, too, and we will meet important examples
later, such as in musical instruments and tuning a radio. We will also see that
vibrating objects often have not one, but many resonant frequencies.

f0f = f0

f L f0 ,

f = f0 .

f0 ,

f0 =
1

2p B k
m

.

f0 ,
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FIGURE 11–19 This goblet breaks as it
vibrates in resonance to a trumpet call.
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FIGURE 11–18 Amplitude as a
function of driving frequency f,
showing resonance for lightly
damped (A) and heavily damped (B)
systems.

FIGURE 11–20 (a) Large-amplitude 
oscillations of the Tacoma Narrows 
Bridge, due to gusty winds, led to its 
collapse (November 7, 1940).
(b) Collapse of a freeway in 
California, due to the 1989 earthquake.
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Resonant collapse
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Shattering glass via resonance
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Child on a swing

(b)(a)
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Velocity of rope particle

Velocity of wave FIGURE 11–22 Wave traveling on a rope or
cord. The wave travels to the right along the
rope. Particles of the rope oscillate back and
forth on the tabletop.

FIGURE 11–21 Water waves
spreading outward from a source. In
this case the source is a small spot of
water oscillating up and down briefly
where a rock hit (left photo).

11–7 Wave Motion
When you throw a stone into a lake or pool of water, circular waves form and
move outward, Fig. 11–21. Waves will also travel along a rope that is stretched
out straight on a table if you vibrate one end back and forth as shown in 
Fig. 11–22. Water waves and waves on a rope or cord are two common examples
of mechanical waves, which propagate as oscillations of matter. We will discuss
other kinds of waves in later Chapters, including electromagnetic waves and light.

†Do not be confused by the “breaking” of ocean waves, which occurs when a wave interacts with the
ground in shallow water and hence is no longer a simple wave.

If you have ever watched ocean waves moving toward shore before they break,
you may have wondered if the waves were carrying water from far out at sea onto
the beach. They don’t.† Water waves move with a recognizable velocity. But each
particle (or molecule) of the water itself merely oscillates about an equilibrium
point. This is clearly demonstrated by observing leaves on a pond as waves move
by. The leaves (or a cork) are not carried forward by the waves, but oscillate more
or less up and down about an equilibrium point because this is the motion of the
water itself.

Waves can move over large distances, but the medium (the water or the rope)
itself has only a limited movement, oscillating about an equilibrium point as in
simple harmonic motion. Thus, although a wave is not itself matter, the wave 
pattern can travel in matter. A wave consists of oscillations that move without
carrying matter with them.

Wave vs. particle velocity. Is the velocity
of a wave moving along a rope the same as the velocity of a particle of the rope?
See Fig. 11–22.

RESPONSE No. The two velocities are different, both in magnitude and direc-
tion. The wave on the rope of Fig. 11–22 moves to the right along the tabletop,
but each piece of the rope only vibrates to and fro, perpendicular to the traveling
wave. (The rope clearly does not travel in the direction that the wave on it does.)

CONCEPTUAL EXAMPLE 11;10
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FIGURE 11–24 Characteristics of a
single-frequency continuous wave
moving through space.

(a)

(d)

(b)

(c)

FIGURE 11–23 A wave pulse is 
generated by a hand holding the end
of a cord and moving up and down
once. Motion of the wave pulse is to
the right. Arrows indicate velocity of
cord particles.

Waves carry energy from one place to another. Energy is given to a water wave,
for example, by a rock thrown into the water, or by wind far out at sea. The energy is
transported by waves to the shore. The oscillating hand in Fig. 11–22 transfers
energy to the rope, and that energy is transported down the rope and can be trans-
ferred to an object at the other end. All forms of traveling waves transport energy.

EXERCISE G Return to Chapter-Opening Question 2, page 292, and answer it again
now. Try to explain why you may have answered differently the first time.

Let us look more closely at how a wave is formed and how it comes to “travel.”
We first look at a single wave bump, or pulse. A single pulse can be formed on 
a cord by a quick up-and-down motion of the hand, Fig. 11–23. The hand pulls 
up on one end of the cord. Because the end section is attached to adjacent sections,
these also feel an upward force and they too begin to move upward. As each 
succeeding section of cord moves upward, the wave crest moves outward along the
cord. Meanwhile, the end section of cord has been returned to its original position
by the hand. As each succeeding section of cord reaches its peak position, it too
is pulled back down again by tension from the adjacent section of cord. Thus the
source of a traveling wave pulse is a disturbance (or vibration), and cohesive forces
between adjacent sections of cord cause the pulse to travel. Waves in other media are
created and propagate outward in a similar fashion. A dramatic example of a wave
pulse is a tsunami or tidal wave that is created by an earthquake in the Earth’s crust
under the ocean. The bang you hear when a door slams is a sound wave pulse.

A continuous or periodic wave, such as that shown in Fig. 11–22, has as its
source a disturbance that is continuous and oscillating; that is, the source is a
vibration or oscillation. In Fig. 11–22, a hand oscillates one end of the rope.
Water waves may be produced by any vibrating object at the surface, such as your
hand; or the water itself is made to vibrate when wind blows across it or a rock 
is thrown into it. A vibrating tuning fork or drum membrane gives rise to sound
waves in air. We will see later that oscillating electric charges give rise to light
waves. Indeed, almost any vibrating object sends out waves.

The source of any wave, then, is a vibration. And it is a vibration that propa-
gates outward and thus constitutes the wave. If the source vibrates sinusoidally 
in SHM, then the wave itself—if the medium is elastic—will have a sinusoidal
shape both in space and in time. (1) In space: if you take a picture of the wave in
space at a given instant of time, the wave will have the shape of a sine or cosine as
a function of position. (2) In time: if you look at the motion of the medium at one
place over a long period of time—for example, if you look between two closely
spaced posts of a pier or out of a ship’s porthole as water waves pass by—the
up-and-down motion of that small segment of water will be simple harmonic
motion. The water moves up and down sinusoidally in time.

Some of the important quantities used to describe a periodic sinusoidal wave
are shown in Fig. 11–24. The high points on a wave are called crests; the low points,
troughs. The amplitude, A, is the maximum height of a crest, or depth of a trough,
relative to the normal (or equilibrium) level. The total swing from a crest to a trough
is 2A (twice the amplitude). The distance between two successive crests is the
wavelength, (the Greek letter lambda). The wavelength is also equal to the dis-
tance between any two successive identical points on the wave. The frequency, f,
is the number of crests—or complete cycles—that pass a given point per unit time.
The period, T, equals 1/f and is the time elapsed between two successive crests
passing by the same point in space.

l

306 CHAPTER 11 Oscillations and Waves

Velocity of
rope particle

Velocity of wave

FIGURE 11–22 (Repeated.) Wave
traveling on a rope or cord. The
wave travels to the right along the
rope. Particles of the rope oscillate
back and forth on the tabletop.
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The wave speed, v, is the speed at which wave crests (or any other fixed 
point on the wave shape) move forward. The wave speed must be distinguished 
from the speed of a particle of the medium itself as we saw in Example 11–10.

A wave crest travels a distance of one wavelength, in a time equal to one
period, T. Thus the wave speed is Then, since

(11;12)

For example, suppose a wave has a wavelength of 5 m and a frequency of 3 Hz.
Since three crests pass a given point per second, and the crests are 5 m apart, the
first crest (or any other part of the wave) must travel a distance of 15 m during
the 1 s. So the wave speed is 

EXERCISE H You notice a water wave pass by the end of a pier, with about 0.5 s 
between crests. Therefore (a) the frequency is 0.5 Hz; (b) the velocity is (c) the
wavelength is 0.5 m; (d) the period is 0.5 s.

11–8 Types of Waves and Their Speeds:
Transverse and Longitudinal

When a wave travels down a cord—say, from left to right as in Fig. 11–22—the
particles of the cord vibrate back and forth in a direction transverse (that is, perpen-
dicular) to the motion of the wave itself. Such a wave is called a transverse wave
(Fig. 11–25a). There exists another type of wave known as a longitudinal wave. In a
longitudinal wave, the vibration of the particles of the medium is along the direction
of the wave’s motion. Longitudinal waves are readily formed on a stretched spring
or Slinky by alternately compressing and expanding one end. This is shown in
Fig. 11–25b, and can be compared to the transverse wave in Fig. 11–25a. A series
of compressions and expansions travel along the spring. The compressions are
those areas where the coils are momentarily close together. Expansions (sometimes
called rarefactions) are regions where the coils are momentarily far apart. Compres-
sions and expansions correspond to the crests and troughs of a transverse wave.

0.5 m�s;

15 m�s.

v = lf.

1�T = f,v = l�T.
l,

(a)
Wavelength

(b)
Wavelength

Compression Expansion

FIGURE 11–25

(a) Transverse wave;
(b) longitudinal wave.

An important example of a longitudinal wave is a sound wave in air. A vibrat-
ing drumhead, for instance, alternately compresses and expands the air in contact
with it, producing a longitudinal wave that travels outward in the air, as shown in
Fig. 11–26.

As in the case of transverse waves, each section of the medium in which a
longitudinal wave passes oscillates over a very small distance, whereas the wave
itself can travel large distances. Wavelength, frequency, and wave speed all 
have meaning for a longitudinal wave. The wavelength is the distance between
successive compressions (or between successive expansions), and frequency is
the number of compressions that pass a given point per second. The wave speed
is the speed with which each compression appears to move; it is equal to the
product of wavelength and frequency, (Eq. 11–12).v = lf

Drum
membrane Compression Expansion

FIGURE 11–26 Production of a
sound wave, which is longitudinal,
shown at two moments in time about
a half period apart.A12 TB



Speed of Transverse Waves
The speed of a wave depends on the properties of the medium in which it travels.
The speed of a transverse wave on a stretched string or cord, for example, depends
on the tension in the cord, and on the mass per unit length of the cord,

(the Greek letter mu). If m is the mass of a length of wire, For
waves of small amplitude, the wave speed is

(11;13)

This formula makes sense qualitatively on the basis of Newtonian mechanics.
That is, we do expect the tension to be in the numerator and the mass per unit
length in the denominator. Why? Because when the tension is greater, we expect
the speed to be greater since each segment of cord is in tighter contact with its
neighbor. Also, the greater the mass per unit length, the more inertia the cord
has and the more slowly the wave would be expected to propagate.

c transverse wave
on a cord

dv = BFT

m
.

m = m�l.lm

FT ,
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A longitudinal wave can be represented graphically by plotting the density of
air molecules (or coils of a Slinky) versus position at a given instant, as shown in
Fig. 11–27. Such a graphical representation makes it easy to illustrate what is
happening. Note that the graph looks much like a transverse wave.
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f 
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(a)

Normal

Low

(b)

FIGURE 11–27 (a) A longitudinal wave
in air, with (b) its graphical representation
at a particular instant in time.

Wave along a wire. A wave whose wavelength is 0.30 m
is traveling down a 300-m-long wire whose total mass is 15 kg. If the wire is under
a tension of 1000 N, what are the speed and frequency of this wave?

APPROACH We assume the velocity of this wave on a wire is given by
Eq. 11–13. We get the frequency from Eq. 11–12,

SOLUTION From Eq. 11–13, the velocity is

The frequency is

NOTE A higher tension would increase both v and f, whereas a thicker, denser
wire would reduce v and f.

f =
v

l
=

140 m�s
0.30 m

= 470 Hz.

v = B 1000 N
(15 kg)�(300 m)

= B 1000 N
(0.050 kg�m)

= 140 m�s.

f = v�l.

EXAMPLE 11;11

Speed of Longitudinal Waves
The speed of a longitudinal wave has a form similar to that for a transverse wave
on a cord (Eq. 11–13); that is,

In particular, for a longitudinal wave traveling down a long solid rod,

(11;14a)

where E is the elastic modulus (Section 9–5) of the material and is its density.r

c longitudinal wave
in a long rod dv = BE

r
,

v = Belastic force factor
inertia factor

.
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For a longitudinal wave traveling in a liquid or gas,

(11;14b)

where B is the bulk modulus (Section 9–5) and again is the density.r

c longitudinal wave
in a fluid dv = BB

r
,

Echolocation. Echolocation is a form of sensory percep-
tion used by animals such as bats, dolphins, and toothed whales (Fig. 11–28). The
animal emits a pulse of sound (a longitudinal wave) which, after reflection from
objects, returns and is detected by the animal. Echolocation waves can have
frequencies of about 100,000 Hz. (a) Estimate the wavelength of a sea animal’s
echolocation wave. (b) If an obstacle is 100 m from the animal, how long after
the animal emits a wave is its reflection detected?

APPROACH We first compute the speed of longitudinal (sound) waves in sea
water, using Eq. 11–14b and Tables 9–1 and 10–1. The wavelength is

SOLUTION (a) The speed of longitudinal waves in sea water, which is slightly
more dense than pure water, is (Tables 9–1 and 10–1)

Then, using Eq. 11–12, we find

(b) The time required for the round trip between the animal and the object is

NOTE We shall see later that waves can be used to “resolve” (or detect) objects
whose size is comparable to or larger than the wavelength. Thus, a dolphin 
can resolve objects on the order of a centimeter or larger in size.

t =
distance

speed
=

2(100 m)

1.4 * 103 m�s
= 0.14 s.

l =
v

f
=
A1.4 * 103 m�sB
A1.0 * 105 HzB = 14 mm.

v = BB
r

= B 2.0 * 109 N�m2

1.025 * 103 kg�m3
= 1.4 * 103 m�s.

l = v�f.

EXAMPLE 11;12

Other Waves
Both transverse and longitudinal waves are produced when an earthquake occurs.
The transverse waves that travel through the body of the Earth are called S waves
(S for shear), and the longitudinal waves are called P waves (P for pressure) or
compression waves. Both longitudinal and transverse waves can travel through a
solid since the atoms or molecules can vibrate about their relatively fixed positions
in any direction. But only longitudinal waves can propagate through a fluid,
because any transverse motion would not experience any restoring force since 
a fluid is readily deformable. This fact was used by geophysicists to infer that a
portion of the Earth’s core must be liquid: after an earthquake, longitudinal waves
are detected diametrically across the Earth, but not transverse waves.

Besides these two types of waves that can pass through the body of the Earth
(or other substance), there can also be surface waves that travel along the bound-
ary between two materials. A wave on water is actually a surface wave that moves
on the boundary between water and air. The motion of each particle of water at
the surface is circular or elliptical (Fig. 11–29), so it is a combination of horizontal
and vertical motions. Below the surface, there is also horizontal plus vertical
motion, as shown. At the bottom, the motion is only horizontal. (When a wave
approaches shore, the water drags at the bottom and is slowed down, while the
crests move ahead at higher speed (Fig. 11–30) and “spill” over the top.)

Surface waves are also set up on the Earth when an earthquake occurs. The
waves that travel along the surface are mainly responsible for the damage caused
by earthquakes.

P H Y S I C S  A P P L I E D

Space perception 
by animals using sound waves

FIGURE 11–28 A toothed whale
(Example 11–12).

vB

FIGURE 11–30 How a water wave
breaks. The green arrows represent
the local velocity of water molecules.

vB

FIGURE 11–29 A shallow water
wave is an example of a surface wave,
which is a combination of transverse
and longitudinal wave motions.

P H Y S I C S  A P P L I E D

Earthquake waves



Waves which travel along a line in one dimension, such as transverse waves
on a stretched string, or longitudinal waves in a rod or fluid-filled tube, are linear
or one-dimensional waves. Surface waves, such as water waves (Fig. 11–21), are
two-dimensional waves. Finally, waves that move out from a source in all direc-
tions, such as sound from a loudspeaker or earthquake waves through the Earth,
are three-dimensional waves.

11–9 Energy Transported by Waves
Waves transport energy from one place to another. As waves travel through a
medium, the energy is transferred as vibrational energy from particle to particle
of the medium. For a sinusoidal wave of frequency f, the particles move in SHM
as a wave passes, so each particle has an energy where A is the
amplitude of its motion, either transversely or longitudinally. See Eq. 11–4a.

Thus, we have the important result that the energy transported by a wave is
proportional to the square of the amplitude. The intensity I of a wave is defined
as the power (energy per unit time) transported across unit area perpendicular 
to the direction of energy flow:

The SI unit of intensity is watts per square meter Since the energy is
proportional to the wave amplitude squared, so too is the intensity:

(11;15)

If a wave flows out from the source in all directions, it is a three-dimensional
wave. Examples are sound traveling in open air, earthquake waves, and light waves.
If the medium is isotropic (same in all directions), the wave is a spherical wave
(Fig. 11–31). As the wave moves outward, the energy it carries is spread over 
a larger and larger area since the surface area of a sphere of radius r is
Thus the intensity of a spherical wave is

[spherical wave] (11;16a)

If the power output P of the source is constant, then the intensity decreases as
the inverse square of the distance from the source:

[spherical wave] (11;16b)

This is often called the inverse square law, or the “one over law.” If we consider
two points at distances and from the source, as in Fig. 11–31, then
and so

[spherical wave] (11;16c)

Thus, for example, when the distance doubles the intensity is reduced
to its earlier value:

The amplitude of a wave also decreases with distance. Since the intensity is
proportional to the square of the amplitude (Eq. 11–15), the amplitude A must
decrease as 1/r so that will be proportional to (as in Eq. 11–16b).
Hence

If we consider again two distances from the source, and then

[spherical wave]

When the wave is twice as far from the source, the amplitude is half as large, and
so on (ignoring damping due to friction).

A2

A1
=

r1

r2

.

r2 ,r1

A r
1
r

.

1�r2I r A2

I2�I1 = A12B2 = 1
4
.1

4

Ar2�r1 = 2B,
I2

I1
=

r1
2

r2
2

.

I2 = P�4pr2
2 ,

I1 = P�4pr1
2r2r1

r2

I r
1

r2
.

I =
power
area

=
P

4pr2
.

4pr2.

I r A2.

AW�m2B.
I =

energy�time
area

=
power
area

.

E = 1
2 kA2,
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P R O B L E M  S O L V I N G

The law1�r2

r1 r2

Source

FIGURE 11–31 A wave traveling
uniformly outward in three 
dimensions from a source is spherical.
Two crests (or compressions) are
shown, of radii and r2 .r1
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Earthquake intensity. The intensity of an earthquake
P wave traveling through the Earth and detected 100 km from the source is

What is the intensity of that wave if detected 400 km from the
source?

APPROACH We assume the wave is spherical, so the intensity decreases as the
square of the distance from the source.

SOLUTION At 400 km the distance is 4 times greater than at 100 km, so the
intensity will be of its value at 100 km, or

NOTE Using Eq. 11–16c directly gives:

The situation is different for a one-dimensional wave, such as a transverse
wave on a string or a longitudinal wave pulse traveling down a thin uniform metal
rod. The area remains constant, so the amplitude A also remains constant (ignoring
friction). Thus the amplitude and the intensity do not decrease with distance.

In practice, frictional damping is generally present, and some of the energy 
is transformed into thermal energy. Thus the amplitude and intensity of a 
one-dimensional wave will decrease with distance from the source. For a
three-dimensional wave, the decrease will be greater than that discussed above,
more than although the effect may often be small.

Intensity Related to Amplitude and Frequency
For a sinusoidal wave of frequency f, the particles move in SHM as a wave 
passes, so each particle has an energy where A is the amplitude of 
its motion. Using Eq. 11–6b, we can write k in terms of the frequency:

where m is the mass of a particle (or small volume) of the
medium. Then

The mass where is the density of the medium and V is the volume of
a small slice of the medium as shown in Fig. 11–32. The volume where 
S is the cross-sectional surface area through which the wave travels. (We use S
instead of A for area because we are using A for amplitude.) We can write as the
distance the wave travels in a time t as where v is the speed of the wave.
Thus and

(11;17a)

From this equation, we see again the important result that the energy transported
by a wave is proportional to the square of the amplitude. The average power trans-
ported, is

(11;17b)

Finally, the intensity I of a wave is the average power transported across unit
area perpendicular to the direction of energy flow:

(11;18)

This relation shows explicitly that the intensity of a wave is proportional both to
the square of the wave amplitude A at any point and to the square of the 
frequency f.

I =
g

S
= 2p2rvf2A2.

g =
E

t
= 2p2rSvf2A2.

g = E�t,

E = 2p2rSv tf2A2.

m = rV = rSl = rSvt,
l = vt,

l

V = Sl,
rm = rV,

E = 1
2 kA2 = 2p2mf2A2.

k = 4p2mf2,

E = 1
2 kA2,

1�r2,

I2 = I1 r1
2�r2

2 = A1.0 * 106 W�m2B A100 kmB2�A400 kmB2 = 6.3 * 104 W�m2.

6.3 * 104 W�m2.
=(1.0 * 106 W�m2)�16A14B2 = 1

16

1.0 * 106 W�m2.

EXAMPLE 11;13

S

l = vt

vB

FIGURE 11–32 Calculating the
energy carried by a wave moving
with velocity v.



11–10 Reflection and Transmission
of Waves

When a wave strikes an obstacle, or comes to the end of the medium in which it is
traveling, at least a part of the wave is reflected. You have probably seen water
waves reflect off a rock or the side of a swimming pool. And you may have heard
a shout reflected from a distant cliff—which we call an “echo.”

A wave pulse traveling along a cord is reflected as shown in Fig. 11–33 (time
increases going downward in both a and b). The reflected pulse returns inverted
as in Fig. 11–33a if the end of the cord is fixed; it returns right side up if the end is
free as in Fig. 11–33b. When the end is fixed to a support, as in Fig. 11–33a, the
pulse reaching that fixed end exerts a force (upward) on the support. The support
exerts an equal but opposite force downward on the cord (Newton’s third law).
This downward force on the cord is what “generates” the inverted reflected pulse.

312 CHAPTER 11 Oscillations and Waves
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FIGURE 11–35 Rays, signifying the direction of wave
motion, are always perpendicular to the wave fronts
(wave crests). (a) Circular or spherical waves near the
source. (b) Far from the source, the wave fronts are
nearly straight or flat, and are called plane waves.

Light
section

Heavy
section

Reflected
pulse

Transmitted
pulse

(a)

(b)

FIGURE 11–34 When a wave pulse
traveling to the right along a thin
cord (a) reaches a discontinuity
where the cord becomes thicker and
heavier, then part is reflected and
part is transmitted (b).

(b)(a)

Time

FIGURE 11–33 Reflection of a wave pulse
traveling along a cord lying on a table.
(Time increases going down.) (a) The end
of the cord is fixed to a peg. (b) The end of
the cord is free to move.

Consider next a pulse that travels along a cord which consists of a light section
and a heavy section, as shown in Fig. 11–34. When the wave pulse reaches the
boundary between the two sections, part of the pulse is reflected and part is trans-
mitted, as shown. The heavier the second section of the cord, the less the energy
that is transmitted. (When the second section is a wall or rigid support, very little
is transmitted and most is reflected, as in Fig. 11–33a.) For a sinusoidal wave, the
frequency of the transmitted wave does not change across the boundary because
the boundary point oscillates at that frequency. Thus if the transmitted wave has a
lower speed, its wavelength is also less 

For a two or three dimensional wave, such as a water wave, we are concerned
with wave fronts, by which we mean all the points along the wave forming the wave
crest (what we usually refer to simply as a “wave” at the seashore). A line drawn in
the direction of wave motion, perpendicular to the wave front, is called a ray, as
shown in Fig. 11–35. Wave fronts far from the source have lost almost all their curva-
ture (Fig. 11–35b) and are nearly straight, as ocean waves often are. They are then
called plane waves.

(l = v�f).
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For reflection of a two or three dimensional plane wave, as shown in Fig. 11–36,
the angle that the incoming or incident wave makes with the reflecting surface is
equal to the angle made by the reflected wave. This is the law of reflection:

the angle of reflection equals the angle of incidence.

The angle of incidence is defined as the angle the incident ray makes with 
the perpendicular to the reflecting surface (or the wave front makes with the sur-
face). The angle of reflection is the corresponding angle for the reflected wave.

11–11 Interference;
Principle of Superposition

Interference refers to what happens when two waves pass through the same region
of space at the same time. Consider, for example, the two wave pulses on a cord
traveling toward each other as shown in Fig. 11–37 (time increases downward in
both a and b). In Fig. 11–37a the two pulses have the same amplitude, but one is
a crest and the other a trough; in Fig. 11–37b they are both crests. In both cases,
the waves meet and pass right by each other. However, in the region where they
overlap, the resultant displacement is the algebraic sum of their separate displace-
ments (a crest is considered positive and a trough negative). This is the principle of
superposition. In Fig. 11–37a, the two waves have opposite displacements at the
instant they pass one another, and they add to zero. The result is called destructive
interference. In Fig. 11–37b, at the instant the two pulses overlap, they produce a
resultant displacement that is greater than the displacement of either separate
pulse, and the result is constructive interference.

You may wonder where the energy is at the moment of destructive interfer-
ence in Fig. 11–37a; the cord may be straight at this instant, but the central parts 
of it are still moving up or down (kinetic energy).

(ur)

(ui)

Incident
ray

Reflected
ray

Incident

wave fro
nt

Reflected
wave front

θi θr

θi θr

FIGURE 11–36 Law of
reflection: ur = ui .

(b)(a)

Time

Pulses far apart,
approaching

Pulses overlap
precisely

(for an instant)

Pulses far apart,
receding

FIGURE 11–37 Two wave pulses
pass each other. Where they overlap,
interference occurs: (a) destructive,
and (b) constructive. Read (a) and
(b) downward (increasing time).



When two rocks are thrown into a pond simultaneously, the two sets of circu-
lar waves that move outward interfere with one another as shown in Fig. 11–38a. In
some areas of overlap, crests of one wave repeatedly meet crests of the other (and
troughs meet troughs), Fig. 11–38b. Constructive interference is occurring at these
points, and the water continuously oscillates up and down with greater amplitude
than either wave separately. In other areas, destructive interference occurs where the
water does not move up and down at all over time. This is where crests of one wave
meet troughs of the other, and vice versa. Figure 11–39a shows the displacement
of two identical waves graphically as a function of time, as well as their sum, for
the case of constructive interference. For any two such waves, we use the term
phase to describe the relative positions of their crests. When the crests and troughs
are aligned as in Fig.11–39a, for constructive interference, the two waves are in phase.
At points where destructive interference occurs (Fig. 11–39b), crests of one wave
repeatedly meet troughs of the other wave and the two waves are said to be 
completely out of phase or, more precisely, out of phase by one-half wavelength (or
180 ).† That is, the crests of one wave occur a half wavelength behind the crests of the
other wave. The relative phase of the two water waves in Fig. 11–38 in most areas
is intermediate between these two extremes, resulting in partially destructive
interference, as illustrated in Fig. 11–39c. If the amplitudes of two interfering waves
are not equal, fully destructive interference (as in Fig. 11–39b) does not occur.

°
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(a) (b)

Constructive
interference

Destructive
interference

FIGURE 11–38 (a) Interference of water waves. (b) Constructive interference occurs where one wave’s
maximum (a crest) meets the other’s maximum. Destructive interference (“flat water”) occurs where one
wave’s maximum (a crest) meets the other’s miminum (a trough).

(b)(a) (c)

+

=

+

=

+

=

FIGURE 11–39 Graphs showing two identical waves, and their sum, as a function of time at three locations.
In (a) the two waves interfere constructively, in (b) destructively, and in (c) partially destructively.

†One wavelength, or one full oscillation, corresponds to 360 —see Section 11–3, just after Eq. 11–8c,
and also Fig. 11–7.
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11–12 Standing Waves; Resonance
If you shake one end of a cord and the other end is kept fixed, a continuous wave
will travel down to the fixed end and be reflected back, inverted, as we saw in 
Fig. 11–33a. As you continue to oscillate the cord, waves will travel in both direc-
tions, and the wave traveling along the cord, away from your hand, will interfere
with the reflected wave coming back. Usually there will be quite a jumble. But 
if you oscillate the cord at just the right frequency, the two traveling waves will
interfere in such a way that a large-amplitude standing wave will be produced,
Fig. 11–40. It is called a “standing wave” because it does not appear to be traveling.
The cord simply appears to have segments that oscillate up and down in a fixed
pattern. The points of destructive interference, where the cord remains still at 
all times, are called nodes. Points of constructive interference, where the cord
oscillates with maximum amplitude, are called antinodes. The nodes and antinodes
remain in fixed positions for a particular frequency.

Standing waves can occur at more than one frequency. The lowest frequency
of oscillation that produces a standing wave gives rise to the pattern shown in 
Fig. 11–40a. The standing waves shown in Figs. 11–40b and 11–40c are produced
at precisely twice and three times the lowest frequency, respectively, assuming
the tension in the cord is the same. The cord can also oscillate with four loops
(four antinodes) at four times the lowest frequency, and so on.

The frequencies at which standing waves are produced are the natural
frequencies or resonant frequencies of the cord, and the different standing wave
patterns shown in Fig. 11–40 are different “resonant modes of vibration.” A stand-
ing wave on a cord is the result of the interference of two waves traveling in
opposite directions. A standing wave can also be considered a vibrating object at
resonance. Standing waves represent the same phenomenon as the resonance of
an oscillating spring or pendulum, which we discussed in Section 11–6. However,
a spring or pendulum has only one resonant frequency, whereas the cord has 
an infinite number of resonant frequencies, each of which is a whole-number
multiple of the lowest resonant frequency.

Consider a string stretched between two supports that is plucked like a guitar
or violin string, Fig. 11–41a. Waves of a great variety of frequencies will travel in
both directions along the string, will be reflected at the ends, and will travel back
in the opposite direction. Most of these waves interfere with each other and
quickly die out. However, those waves that correspond to the resonant frequen-
cies of the string will persist. The ends of the string, since they are fixed, will be
nodes. There may be other nodes as well. Some of the possible resonant modes of
vibration (standing waves) are shown in Fig. 11–41b. Generally, the motion will
be a combination of these different resonant modes, but only those frequencies
that correspond to a resonant frequency will be present.

(c)

(a)

(b)

Antinode
Node

Node
Antinode

AntinodeNode

FIGURE 11–40 Standing waves 
corresponding to three resonant 
frequencies.
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l

l
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FIGURE 11–41 (a) A string is plucked. (b) Only standing waves corresponding to resonant frequencies persist for long.
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To determine the resonant frequencies, we first note that the wavelengths of
the standing waves bear a simple relationship to the length of the string. The
lowest frequency, called the fundamental frequency, corresponds to one antinode
(or loop). And as can be seen in Fig. 11–41b, the whole length corresponds to
one-half wavelength. Thus where stands for the wavelength of the
fundamental frequency. The other natural frequencies are called overtones; for a
vibrating string they are whole-number (integral) multiples of the fundamental,
and then are also called harmonics, with the fundamental being referred to as the
first harmonic.† The next mode of vibration after the fundamental has two loops
and is called the second harmonic (or first overtone), Fig. 11–41b. The length of
the string at the second harmonic corresponds to one complete wavelength:

For the third and fourth harmonics, and respec-
tively, and so on. In general, we can write

The integer n labels the number of the harmonic: for the fundamental,
for the second harmonic, and so on. We solve for and find

(11;19a)

To find the frequency f of each vibration we use Eq. 11–12, and see that

(11;19b)

where is the fundamental frequency. We see that each resonant
frequency is an integer multiple of the fundamental frequency on a vibrating string.

Because a standing wave is equivalent to two traveling waves moving in
opposite directions, the concept of wave velocity still makes sense and is given by
Eq. 11–13 in terms of the tension in the string and its mass per unit length

That is, for waves traveling in either direction.v = 1FT�m(m = m�l).
FT

f1 = v�l1 = v�2l

fn =
v

ln
= n

v

2l
= nf1 ,     

n = 1,  2,  3, p ,

f = v�l,

c string fixed
at both ends

dln =
2l
n

,    n = 1,  2,  3, p .

lnn = 2
n = 1

l =
nln

2
,  where n = 1,  2,  3, p .

l = 4
2 l4 = 2l4 ,l = 3

2 l3 ,l = l2 .
l

l1l = 1
2 l1 ,

l
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Piano string. A piano string 1.10 m long has mass 9.00 g.
(a) How much tension must the string be under if it is to vibrate at a fundamental
frequency of 131 Hz? (b) What are the frequencies of the first four harmonics?

APPROACH To determine the tension, we need to find the wave speed using
Eq. 11–12 and then use Eq. 11–13, solving it for 

SOLUTION (a) The wavelength of the fundamental is 
(Eq. 11–19a with ). The speed of the wave on the string is

Then we have (Eq. 11–13)

(b) The first harmonic (the fundamental) has a frequency The
frequencies of the second, third, and fourth harmonics are two, three, and four
times the fundamental frequency: 262, 393, and 524 Hz, respectively.

NOTE The speed of the wave on the string is not the same as the speed of the
sound wave that the piano string produces in the air (as we shall see in Chapter 12).

f1 = 131 Hz.

FT = mv2 =
m

l
v2 = ¢ 9.00 * 10–3 kg

1.10 m
≤ (288 m�s)2 = 679 N.

(2.20 m)A131 s–1B = 288 m�s.
=v = lfn = 1

l = 2l = 2.20 m

FT .(v = lf),

EXAMPLE 11;14

A standing wave does appear to be standing in place (and a traveling wave
appears to move). The term “standing” wave is also meaningful from the point of
view of energy. Since the string is at rest at the nodes, no energy flows past these
points. Hence the energy is not transmitted down the string but “stands” in place
in the string.

Standing waves are produced not only on strings, but also on any object that is
struck, such as a drum membrane or an object made of metal or wood. The resonant
frequencies depend on the dimensions of the object, just as for a string they depend
on its length. Large objects have lower resonant frequencies than small objects.

1
2 1l =

3
2 3l =

l = 2

Second overtone or third harmonic, f3 = 3f1

Fundamental or first harmonic, f1

First overtone or second harmonic, f2 = 2f1

l

l

l

FIGURE 11–41b (Repeated.)
(b) Only standing waves 
corresponding to resonant 
frequencies persist for long.
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All musical instruments, from stringed to wind instruments (in which a column of air
oscillates as a standing wave) to drums and other percussion instruments, depend on
standing waves to produce their particular musical sounds, as we shall see in Chapter 12.

11–13 Refraction†

When any wave strikes a boundary, some of the energy is reflected and some is
transmitted or absorbed. When a two- or three-dimensional wave traveling in one
medium crosses a boundary into a medium where its speed is different, the trans-
mitted wave may move in a different direction than the incident wave, as shown
in Fig. 11–42. This phenomenon is known as refraction. One example is a water
wave; the velocity decreases in shallow water and the waves refract, as shown in
Fig. 11–43. [When the wave velocity changes gradually, as in Fig. 11–43, without
a sharp boundary, the waves change direction (refract) gradually.]

In Fig. 11–42, the velocity of the wave in medium 2 is less than in medium 1.
In this case, the wave front bends so that it travels more nearly parallel to the
boundary. That is, the angle of refraction, is less than the angle of incidence,
To see why this is so, and to help us get a quantitative relation between and 
let us think of each wave front as a row of soldiers. The soldiers are marching
from firm ground (medium 1) into mud (medium 2) and hence are slowed down
after the boundary. The soldiers that reach the mud first are slowed down first,
and the row bends as shown in Fig. 11–44a. Let us consider the wave front (or
row of soldiers) labeled A in Fig. 11–44b. In the same time that moves a 
distance we see that moves a distance The two right triangles
in Fig. 11–44b, shaded yellow and green, have the side labeled a in common. Thus

since a is the hypotenuse, and

Dividing these two equations, we obtain the law of refraction:

(11;20)

Since is the angle of incidence and is the angle of refraction 
Eq. 11–20 gives the quantitative relation between the two. If the wave were going
in the opposite direction, the geometry would not change; only and would
change roles: would be the angle of incidence and the angle of refraction.
Thus, if the wave travels into a medium where it can move faster, it will bend 
the opposite way, We see from Eq. 11–20 that if the velocity increases,
the angle increases, and vice versa.
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†This Section and the next are covered in more detail in Chapters 23 and 24 on optics.

FIGURE 11–43 Water waves refract
gradually as they approach the
shore, as their velocity decreases.
There is no distinct boundary, as in
Fig. 11–42, because the wave 
velocity changes gradually.
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FIGURE 11–42 Refraction of waves
passing a boundary.
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FIGURE 11–44 (a) Marching soldier analogy to derive 
(b) law of refraction for waves.



Earthquake waves refract within the Earth as they travel through rock layers
of different densities (which have different velocities) just as water waves do. Light
waves refract as well, and when we discuss light, we shall find Eq. 11–20 very useful.

11–14 Diffraction
Waves spread as they travel. When waves encounter an obstacle, they bend around
it somewhat and pass into the region behind it, as shown in Fig. 11–45 for water
waves. This phenomenon is called diffraction.

The amount of diffraction depends on the wavelength of the wave and on the
size of the obstacle, as shown in Fig. 11–46. If the wavelength is much larger than
the object, as with the grass blades of Fig. 11–46a, the wave bends around them
almost as if they are not there. For larger objects, parts (b) and (c), there is more
of a “shadow” region behind the obstacle where we might not expect the waves
to penetrate—but they do, at least a little. Then notice in part (d), where the
obstacle is the same as in part (c) but the wavelength is longer, that there is more
diffraction into the shadow region. As a rule of thumb, only if the wavelength
is smaller than the size of the object will there be a significant shadow region.
This rule applies to reflection from an obstacle as well. Very little of a wave is
reflected unless the wavelength is smaller than the size of the obstacle.

A rough guide to the amount of diffraction is

where is roughly the angular spread of waves after they have passed through an
opening of width or around an obstacle of width 

That waves can bend around obstacles, and thus can carry energy to areas
behind obstacles, is very different from energy carried by material particles.
A clear example is the following: if you are standing around a corner on one side
of a building, you cannot be hit by a baseball thrown from the other side, but you
can hear a shout or other sound because the sound waves diffract around the
edges of the building.

l.l

u

u(radians) L
l

l

,

*
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P H Y S I C S  A P P L I E D

Earthquake wave refraction

(b) Stick in water (c) Short-wavelength 
      waves passing log

(d) Long-wavelength 
     waves passing log

(a) Water waves passing
        blades of grass

FIGURE 11–46 Water waves, coming from upper left, pass objects of 
various sizes. Note that the longer the wavelength compared to the 
size of the object, the more diffraction there is into the “shadow region.”

Cell phones. Cellular phones operate by
radio waves with frequencies of about 1 or 2 GHz These
waves cannot penetrate objects that conduct electricity, such as a sheet of metal or
a tree trunk. The sound quality is best if the transmitting antenna is within clear
view of the handset. Yet it is possible to carry on a phone conversation even if
the tower is blocked by trees, or if the handset is inside a car. Why?

RESPONSE If the radio waves have a frequency of about 2 GHz, and the speed
of propagation is equal to the speed of light, (Section 1–5), then
the wavelength is The waves
can diffract readily around objects 15 cm in diameter or smaller.

l = v�f = A3 * 108 m�sB�A2 * 109 HzB = 0.15 m.
3 * 108 m�s

A1 gigahertz = 109 HzB.CONCEPTUAL EXAMPLE 11;15

FIGURE 11–45 Wave diffraction.
In (a) the waves pass through a slit
and into the “shadow region” behind.
In (b) the waves are coming from 
the upper left. As they pass an 
obstacle, they bend around it into the
shadow region behind it.

(a)

(b)
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FIGURE 11–48 A traveling wave. In
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FIGURE 11–47 The characteristics
of a single-frequency wave at
(just as in Fig. 11–24).

t = 0

An oscillating (or vibrating) object undergoes simple harmonic
motion (SHM) if the restoring force is proportional to (the
negative of) the displacement,

(11;1)

The maximum displacement from equilibrium is called the
amplitude.

The period, T, is the time required for one complete cycle
(back and forth), and the frequency, f, is the number of cycles
per second; they are related by

(11;2)

The period of oscillation for a mass m on the end of a
spring is given by

(11;6a)

SHM is sinusoidal, which means that the displacement as
a function of time follows a sine curve.

During SHM, the total energy

(11;3)

is continually changing from potential to kinetic and back
again.

E = 1
2 mv2 + 1

2 kx2

T = 2pAm

k
.

f =
1
T

.

F = –kx.

A simple pendulum of length approximates SHM if its
amplitude is small and friction can be ignored. For small ampli-
tudes, its period is given by

(11;11a)

where g is the acceleration of gravity.
When friction is present (for all real springs and pendulums),

the motion is said to be damped. The maximum displacement
decreases in time, and the mechanical energy is eventually all
transformed to thermal energy.

If a varying force of frequency f is applied to a system capable
of oscillating, the amplitude of oscillation can be very large if the
frequency of the applied force is near the natural (or resonant)
frequency of the oscillator. This is called resonance.

Vibrating objects act as sources of waves that travel 
outward from the source. Waves on water and on a cord are
examples. The wave may be a pulse (a single crest), or it may
be continuous (many crests and troughs).

The wavelength of a continuous sinusoidal wave is the dis-
tance between two successive crests.

The frequency is the number of full wavelengths (or crests)
that pass a given point per unit time.

The amplitude of a wave is the maximum height of a crest,
or depth of a trough, relative to the normal (or equilibrium)
level.

T = 2pB lg ,

l

Summary

11–15 Mathematical Representation
of a Traveling Wave

A simple wave with a single frequency, as in Fig. 11–47, is sinusoidal. To express
such a wave mathematically, we assume it has a particular wavelength and 
frequency f. At the wave shape shown is

(11;21)

where y is the displacement of the wave (either longitudinal or transverse) 
at position x, is the wavelength, and A is the amplitude of the wave.
[Equation 11–21 works because it repeats itself every wavelength: when

]
Suppose the wave is moving to the right with speed v. After a time , each 

part of the wave (indeed, the whole wave “shape”) has moved to the right a dis-
tance v . Figure 11–48 shows the wave at as a solid curve, and at a later
time as a dashed curve. Consider any point on the wave at say, a crest 
at some position x. After a time , that crest will have traveled a distance v , so 
its new position is a distance v greater than its old position. To describe this 
crest (or other point on the wave shape), the argument of the sine function must
have the same numerical value, so we replace x in Eq. 11–21 by

(11;22)

Said another way, if you are on a crest, as increases, x must increase at the same
rate so that remains constant.

For a wave traveling along the x axis to the left, toward decreasing values of x,
v becomes so

y = A sin c
2p
l

(x + vt) d .

–v,

(x - vt)
t

y = A sin c
2p
l

(x - vt) d .

(x - vt):

t
tt

t = 0:t
t = 0t

t
y = sin 2p = sin 0.

x = l,
l

y = A sin
2p
l

x,

t = 0,
l

*
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The wave speed (how fast a crest moves) is equal to the
product of wavelength and frequency,

(11;12)

In a transverse wave, the oscillations are perpendicular to
the direction in which the wave travels. An example is a wave
on a cord.

In a longitudinal wave, the oscillations are along (parallel
to) the line of travel; sound is an example.

Waves carry energy from place to place without matter
being carried. The intensity of a wave is the energy per unit time
carried across unit area (in ). For three-dimensional
waves traveling outward from a point source, the intensity
decreases inversely as the square of the distance from the source
(ignoring damping):

(11;16b)

Wave intensity is proportional to the amplitude squared
and to the frequency squared.

Waves reflect off objects in their path. When the wave front
(of a two- or three-dimensional wave) strikes an object, the
angle of reflection is equal to the angle of incidence. This is 
the law of reflection. When a wave strikes a boundary between
two materials in which it can travel, part of the wave is reflected
and part is transmitted.

I r
1

r2
.

watts�m2

v = lf.

When two waves pass through the same region of space 
at the same time, they interfere. The resultant displacement at
any point and time is the sum of their separate displacements
( the superposition principle). This can result in constructive
interference, destructive interference, or something in between,
depending on the amplitudes and relative phases of the waves.

Waves traveling on a string of fixed length interfere with
waves that have reflected off the end and are traveling back in
the opposite direction. At certain frequencies, standing waves can
be produced in which the waves seem to be standing still rather
than traveling. The string (or other medium) is vibrating as a
whole. This is a resonance phenomenon, and the frequencies
at which standing waves occur are called resonant frequencies.
Points of destructive interference (no oscillation) are called
nodes. Points of constructive interference (maximum amplitude
of vibration) are called antinodes.

[ Waves change direction, or refract, when traveling from
one medium into a second medium where their speed is different.
Waves spread, or diffract, as they travel and encounter obstacles.
A rough guide to the amount of diffraction is where 

is the wavelength and the width of an obstacle or opening.
There is a significant “shadow region” only if the wavelength 
is smaller than the size of the obstacle.]

[ A traveling wave can be represented mathematically as
]y = A sin E(2p�l)(x & vt)F .

*

l
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1. Is the acceleration of a simple harmonic oscillator ever
zero? If so, where?

2. Real springs have mass. Will the true period and frequency
be larger or smaller than given by the equations for a mass
oscillating on the end of an idealized massless spring?
Explain.

3. How could you double the maximum speed of a simple
harmonic oscillator (SHO)?

4. If a pendulum clock is accurate at sea level, will it gain or
lose time when taken to high altitude? Why?

5. A tire swing hanging from a branch reaches nearly to the
ground (Fig. 11–49). How could you estimate the height 
of the branch using only a stopwatch?

6. For a simple harmonic oscillator, when (if ever) are the
displacement and velocity vectors in the same direction?
When are the displacement and acceleration vectors in the
same direction?

7. Two equal masses are attached to separate identical springs
next to one another. One mass is pulled so its spring stretches
40 cm and the other is pulled so its spring stretches only
20 cm. The masses are released simultaneously. Which mass
reaches the equilibrium point first?

8. What is the approximate period of your walking step?

9. What happens to the period of a playground swing if you
rise up from sitting to a standing position?

10. Why can you make water slosh back and forth in a pan
only if you shake the pan at a certain frequency?

11. Is the frequency of a simple periodic wave equal to the 
frequency of its source? Why or why not?

12. Explain the difference between the speed of a transverse
wave traveling along a cord and the speed of a tiny piece 
of the cord.

13. What kind of waves do you think will travel along a hori-
zontal metal rod if you strike its end (a) vertically from
above and (b) horizontally parallel to its length?

14. Since the density of air decreases with an increase in tem-
perature, but the bulk modulus B is nearly independent of
temperature, how would you expect the speed of sound
waves in air to vary with temperature?

15. If a rope has a free end, a pulse sent down the rope
behaves differently on reflection than if the rope has that
end fixed in position. What is this difference, and why does
it occur?

16. How did geophysicists determine that part of the Earth’s
interior is liquid?

Questions

FIGURE 11–49 Question 5.
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1. A mass on a spring in SHM (Fig. 11–1) has amplitude A
and period T. At what point in the motion is the velocity
zero and the acceleration zero simultaneously?
(a)
(b) but
(c)
(d)
(e) None of the above.

2. An object oscillates back and forth on the end of a spring.
Which of the following statements are true at some time
during the course of the motion?
(a) The object can have zero velocity and, simultaneously,

nonzero acceleration.
(b) The object can have zero velocity and, simultaneously,

zero acceleration.
(c) The object can have zero acceleration and,

simultaneously, nonzero velocity.
(d) The object can have nonzero velocity and nonzero

acceleration simultaneously.

3. An object of mass M oscillates on the end of a spring. To
double the period, replace the object with one of mass:
(a) 2M.
(b) M/2.
(c) 4M.
(d) M/4.
(e) None of the above.

4. An object of mass m rests on a frictionless surface and is
attached to a horizontal ideal spring with spring constant k.
The system oscillates with amplitude A. The oscillation
frequency of this system can be increased by
(a) decreasing k.
(b) decreasing m.
(c) increasing A.
(d) More than one of the above.
(e) None of the above will work.

x 6 0.
x = 0.

x 6 A.x 7 0
x = A.

MisConceptual Questions
5. When you use the approximation for a pendulum,

you must specify the angle in
(a) radians only.
(b) degrees only.
(c) revolutions or radians.
(d) degrees or radians.

6. Suppose you pull a simple pendulum to one side by an
angle of 5°, let go, and measure the period of oscillation
that ensues. Then you stop the oscillation, pull the pendu-
lum to an angle of 10°, and let go. The resulting oscillation
will have a period about ________ the period of the first 
oscillation.
(a) four times
(b) twice
(c) half
(d) one-fourth
(e) the same as

7. At a playground, two young children are on identical swings.
One child appears to be about twice as heavy as the other. If
you pull them back together the same distance and release
them to start them swinging, what will you notice about
the oscillations of the two children?
(a) The heavier child swings with a period twice that of the

lighter one.
(b) The lighter child swings with a period twice that of the

heavier one.
(c) Both children swing with the same period.

8. A grandfather clock is “losing” time because its pendulum
moves too slowly. Assume that the pendulum is a massive
bob at the end of a string. The motion of this pendulum can
be sped up by (list all that work):
(a) shortening the string.
(b) lengthening the string.
(c) increasing the mass of the bob.
(d) decreasing the mass of the bob.

u

sin u L u

17. The speed of sound in most solids is somewhat greater
than in air, yet the density of solids is much greater ( to

times). Explain.

18. Give two reasons why circular water waves decrease in
amplitude as they travel away from the source.

19. Two linear waves have the same amplitude and speed, and
otherwise are identical, except one has half the wavelength
of the other. Which transmits more energy? By what factor?

20. When a sinusoidal wave crosses the boundary between two
sections of cord as in Fig. 11–34, the frequency does not
change (although the wavelength and velocity do change).
Explain why.

21. Is energy always conserved when two waves interfere?
Explain.

22. If a string is vibrating as a standing wave in three loops,
are there any places you could touch it with a knife blade
without disturbing the motion?

23. Why do the strings used for the lowest-frequency notes on
a piano normally have wire wrapped around them?

104
103

24. When a standing wave exists on a string, the vibrations of
incident and reflected waves cancel at the nodes. Does this
mean that energy was destroyed? Explain.

25. Can the amplitude of the standing waves in Fig. 11–40 be
greater than the amplitude of the vibrations that cause them
(up and down motion of the hand)?

26. “In a round bowl of water, waves move from the center 
to the rim, or from the rim to the center, depending on
whether you strike at the center or at the rim.” So wrote
Dante Alighieri 700 years ago in his great poem Paradiso
(Canto 14), the last part of his famous Divine Comedy. Try
this experiment and discuss your results.

*27. AM radio signals can usually be heard behind a hill, but
FM often cannot. That is, AM signals bend more than FM.
Explain. (Radio signals, as we shall see, are carried by elec-
tromagnetic waves whose wavelength for AM is typically
200 to 600 m and for FM about 3 m.)
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13. What happens when two waves, such as waves on a lake,
come from different directions and run into each other?
(a) They cancel each other out and disappear.
(b) If they are the same size, they cancel each other out

and disappear. If one wave is larger than the other, the
smaller one disappears and the larger one shrinks but
continues.

(c) They get larger where they run into each other; then
they continue in a direction between the direction of
the two original waves and larger than either original
wave.

(d) They may have various patterns where they overlap,
but each wave continues with its original pattern away
from the region of overlap.

(e) Waves cannot run into each other; they always come
from the same direction and so are parallel.

14. A student attaches one end of a Slinky to the top of a table.
She holds the other end in her hand, stretches it to a length ,
and then moves it back and forth to send a wave down the
Slinky. If she next moves her hand faster while keeping the
length of the Slinky the same, how does the wavelength
down the Slinky change?
(a) It increases.
(b) It stays the same.
(c) It decreases.

15. A wave transports
(a) energy but not matter.
(b) matter but not energy.
(c) both energy and matter.

l

11–1 to 11–3 Simple Harmonic Motion

1. (I) If a particle undergoes SHM with amplitude 0.21 m,
what is the total distance it travels in one period?

2. (I) The springs of a 1700-kg car compress 5.0 mm when its
66-kg driver gets into the driver’s seat. If the car goes over
a bump, what will be the frequency of oscillations? Ignore
damping.

3. (II) An elastic cord is 61 cm long when a weight of 75 N
hangs from it but is 85 cm long when a weight of 210 N hangs
from it. What is the “spring” constant k of this elastic cord?

4. (II) Estimate the stiffness of the spring in a child’s pogo
stick if the child has a mass of 32 kg and bounces once
every 2.0 seconds.

5. (II) A fisherman’s scale stretches 3.6 cm when a 2.4-kg fish
hangs from it. (a) What is the spring stiffness constant and
(b) what will be the amplitude and frequency of oscillation
if the fish is pulled down 2.1 cm more and released so that
it oscillates up and down?

6. (II) A small fly of mass 0.22 g is caught in a spider’s web.
The web oscillates predominantly with a frequency of 4.0 Hz.
(a) What is the value of the effective spring stiffness con-
stant k for the web? (b) At what frequency would you expect
the web to oscillate if an insect of mass 0.44 g were trapped?

7. (II) A mass m at the end of a spring oscillates with a 
frequency of 0.83 Hz. When an additional 780-g mass is
added to m, the frequency is 0.60 Hz. What is the value
of m?

8. (II) A vertical spring with spring stiffness constant 
oscillates with an amplitude of 28.0 cm when 0.235 kg
hangs from it. The mass passes through the equilibrium
point with positive velocity at (a) What
equation describes this motion as a function of time?
(b) At what times will the spring be longest and shortest?

9. (II) Figure 11–51 shows two examples of SHM, labeled A
and B. For each, what is (a) the amplitude, (b) the fre-
quency, and (c) the period?

t = 0.(y = 0)

305 N�m
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Problem 9.

9. Consider a wave traveling down a cord and the transverse
motion of a small piece of the cord. Which of the following
is true?
(a) The speed of the wave must be the same as the speed

of a small piece of the cord.
(b) The frequency of the wave must be the same as the

frequency of a small piece of the cord.
(c) The amplitude of the wave must be the same as the

amplitude of a small piece of the cord.
(d) All of the above are true.
(e) Both (b) and (c) are true.

10. Two waves are traveling toward each other along a rope.
When they meet, the waves
(a) pass through each other.
(b) bounce off of each other.
(c) disappear.

11. Which of the following increases the speed of waves in a
stretched elastic cord? (More than one answer may apply.)
(a) Increasing the wave amplitude.
(b) Increasing the wave frequency.
(c) Increasing the wavelength.
(d) Stretching the elastic cord further.

12. Consider a wave on a string moving to the right, as shown
in Fig. 11–50. What is the direction of the velocity of a 
particle of string at point B?

(a)

(b)

(c)

(d)

(e) so no direction.vB = 0,

For assigned homework and other learning materials, go to the MasteringPhysics website.
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10. (II) A balsa wood block of mass 52 g floats on a lake,
bobbing up and down at a frequency of 3.0 Hz. (a) What 
is the value of the effective spring constant of the water?
(b) A partially filled water bottle of mass 0.28 kg and almost
the same size and shape of the balsa block is tossed into
the water. At what frequency would you expect the bottle
to bob up and down? Assume SHM.

11. (II) At what displacement of a SHO is the energy half
kinetic and half potential?

12. (II) An object of unknown mass m is hung from a vertical
spring of unknown spring constant k, and the object is
observed to be at rest when the spring has stretched by
14 cm. The object is then given a slight push upward and
executes SHM. Determine the period T of this oscillation.

13. (II) A 1.65-kg mass stretches a vertical spring 0.215 m. If
the spring is stretched an additional 0.130 m and released,
how long does it take to reach the (new) equilibrium
position again?

14. (II) A 1.15-kg mass oscillates according to the equation
where x is in meters and in seconds.

Determine (a) the amplitude, (b) the frequency, (c) the
total energy, and (d) the kinetic energy and potential
energy when

15. (II) A 0.25-kg mass at the end of a spring oscillates 2.2
times per second with an amplitude of 0.15 m. Determine 
(a) the speed when it passes the equilibrium point, (b) the
speed when it is 0.10 m from equilibrium, (c) the total
energy of the system, and (d) the equation describing 
the motion of the mass, assuming that at x was a
maximum.

16. (II) It takes a force of 91.0 N to compress the spring of a
toy popgun 0.175 m to “load” a 0.160-kg ball. With what
speed will the ball leave the gun if fired horizontally?

17. (II) If one oscillation has 3.0 times the energy of a second
one of equal frequency and mass, what is the ratio of their
amplitudes?

18. (II) A mass of 240 g oscillates on a horizontal frictionless
surface at a frequency of 2.5 Hz and with amplitude of
4.5 cm. (a) What is the effective spring constant for this
motion? (b) How much energy is involved in this motion?

19. (II) A mass resting on a horizontal, frictionless surface is
attached to one end of a spring; the other end is fixed to 
a wall. It takes 3.6 J of work to compress the spring by
0.13 m. If the spring is compressed, and the mass is released
from rest, it experiences a maximum acceleration of

Find the value of (a) the spring constant and (b) the
mass.

20. (II) An object with mass 2.7 kg is executing simple har-
monic motion, attached to a spring with spring constant

When the object is 0.020 m from its equi-
librium position, it is moving with a speed of 
(a) Calculate the amplitude of the motion. (b) Calculate
the maximum speed attained by the object.

21. (II) At an 885-g mass at rest on the end of a hori-
zontal spring is struck by a hammer which
gives it an initial speed of Determine (a) the
period and frequency of the motion, (b) the amplitude,
(c) the maximum acceleration, (d) the total energy, and 
(e) the kinetic energy when where A is the
amplitude.

x = 0.40A

2.26 m�s.
(k = 184 N�m)

t = 0,

0.55 m�s.
k = 310 N�m.

12 m�s2.

t = 0,

x = 0.360 m.

tx = 0.650 cos(8.40 t)

22. (III) Agent Arlene devised the following method of 
measuring the muzzle velocity of a rifle (Fig. 11–52). She
fires a bullet into a 4.148-kg wooden block resting on a
smooth surface, and attached to a spring of spring constant

The bullet, whose mass is 7.870 g, remains
embedded in the wooden block. She measures the maximum
distance that the block compresses the spring to be 9.460 cm.
What is the speed v of the bullet?

k = 162.7 N�m.

m

k

M

M + m

9.460 cm

vB

FIGURE 11–52 Problem 22.

23. (III) A bungee jumper with mass 65.0 kg jumps from a
high bridge. After arriving at his lowest point, he oscillates
up and down, reaching a low point seven more times in
43.0 s. He finally comes to rest 25.0 m below the level of
the bridge. Estimate the spring stiffness constant and the
unstretched length of the bungee cord assuming SHM.

24. (III) A block of mass m is supported by two identical
parallel vertical springs, each with spring stiffness con-
stant k (Fig. 11–53). What will be the frequency of vertical
oscillation?

m

kk

FIGURE 11–53

Problem 24.

25. (III) A 1.60-kg object oscillates at the end of a vertically
hanging light spring once every 0.45 s. (a) Write down the
equation giving its position as a function of
time Assume the object started by being compressed
16 cm from the equilibrium position (where ), and
released. (b) How long will it take to get to the equilibrium
position for the first time? (c) What will be its maximum
speed? (d) What will be the object’s maximum accelera-
tion, and where will it first be attained?

26. (III) Consider two objects, A and B, both undergoing
SHM, but with different frequencies, as described by the equa-
tions and
where is in seconds. After find the next three 
times at which both objects simultaneously pass through
the origin.

t
t = 0,t

xB = (5.0 m) sin(3.0 t),xA = (2.0 m) sin(4.0 t)

y = 0
t.

y (±  upward)
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11–4 Simple Pendulum

27. (I) A pendulum has a period of 1.85 s on Earth. What is its
period on Mars, where the acceleration of gravity is about
0.37 that on Earth?

28. (I) How long must a simple pendulum be if it is to make
exactly one swing per second? (That is, one complete oscil-
lation takes exactly 2.0 s.)

29. (I) A pendulum makes 28 oscillations in exactly 50 s. What
is its (a) period and (b) frequency?

30. (II) What is the period of a simple pendulum 47 cm long
(a) on the Earth, and (b) when it is in a freely falling 
elevator?

31. (II) Your grandfather clock’s pendulum has a length of
0.9930 m. If the clock runs slow and loses 21 s per day, how
should you adjust the length of the pendulum?

32. (II) Derive a formula for the maximum speed of a
simple pendulum bob in terms of g, the length and the
maximum angle of swing 

33. (III) A simple pendulum oscillates with an amplitude of
10.0°. What fraction of the time does it spend between

and Assume SHM.

34. (III) A clock pendulum oscillates at a frequency of 2.5 Hz.
At it is released from rest starting at an angle of 12°
to the vertical. Ignoring friction, what will be the position
(angle in radians) of the pendulum at (a)
(b) and (c)

11–7 and 11–8 Waves

35. (I) A fisherman notices that wave crests pass the bow of
his anchored boat every 3.0 s. He measures the distance
between two crests to be 7.0 m. How fast are the waves
traveling?

36. (I) A sound wave in air has a frequency of 282 Hz and 
travels with a speed of How far apart are the wave
crests (compressions)?

37. (I) Calculate the speed of longitudinal waves in (a) water,
(b) granite, and (c) steel.

38. (I) AM radio signals have frequencies between 550 kHz
and 1600 kHz (kilohertz) and travel with a speed of

What are the wavelengths of these signals?
On FM the frequencies range from 88 MHz to 108 MHz
(megahertz) and travel at the same speed. What are their
wavelengths?

39. (II) P and S waves from an earthquake travel at different
speeds, and this difference helps locate the earthquake
“epicenter” (where the disturbance took place). (a) Assum-
ing typical speeds of and for P and S
waves, respectively, how far away did an earthquake
occur if a particular seismic station detects the arrival of
these two types of waves 1.5 min apart? (b) Is one seismic
station sufficient to determine the position of the epicenter?
Explain.

40. (II) A cord of mass 0.65 kg is stretched between two 
supports 8.0 m apart. If the tension in the cord is 120 N,
how long will it take a pulse to travel from one support to
the other?

5.5 km�s8.5 km�s

3.0 * 108 m�s.

343 m�s.

t = 500 s?t = 1.60 s,
t = 0.25 s,

t = 0,

–5.0°?±5.0°

umax .
l,
vmax

41. (II) A 0.40-kg cord is stretched between two supports,
8.7 m apart. When one support is struck by a hammer,
a transverse wave travels down the cord and reaches the
other support in 0.85 s. What is the tension in the cord?

42. (II) A sailor strikes the side of his ship just below the 
surface of the sea. He hears the echo of the wave reflected
from the ocean floor directly below 2.4 s later. How deep
is the ocean at this point?

43. (II) Two children are sending signals along a cord of total
mass 0.50 kg tied between tin cans with a tension of 35 N.
It takes the vibrations in the string 0.55 s to go from one
child to the other. How far apart are the children?

11–9 Energy Transported by Waves

44. (II) What is the ratio of (a) the intensities, and (b) the
amplitudes, of an earthquake P wave passing through the
Earth and detected at two points 15 km and 45 km from
the source?

45. (II) The intensity of an earthquake wave passing through
the Earth is measured to be at a distance
of 54 km from the source. (a) What was its intensity when
it passed a point only 1.0 km from the source? (b) At what
rate did energy pass through an area of at 1.0 km?

46. (II) A bug on the surface of a pond is observed to move 
up and down a total vertical distance of 7.0 cm, from the
lowest to the highest point, as a wave passes. If the ripples
decrease to 4.5 cm, by what factor does the bug’s maximum
KE change?

47. (II) Two earthquake waves of the same frequency travel
through the same portion of the Earth, but one is carrying
5.0 times the energy. What is the ratio of the amplitudes 
of the two waves?

11–11 Interference

48. (I) The two pulses shown in Fig. 11–54 are moving toward
each other. (a) Sketch the shape of the string at the moment
they directly overlap. (b) Sketch the shape of the string a
few moments later. (c) In Fig. 11–37a, at the moment 
the pulses pass each other, the string is straight. What has
happened to the energy at this moment?

2.0 m2

3.0 * 106 J�m2 �s

FIGURE 11–54 Problem 48.

11–12 Standing Waves; Resonance

49. (I) If a violin string vibrates at 440 Hz as its fundamental
frequency, what are the frequencies of the first four 
harmonics?

50. (I) A violin string vibrates at 294 Hz when unfingered. At
what frequency will it vibrate if it is fingered one-third of
the way down from the end? (That is, only two-thirds of the
string vibrates as a standing wave.)

51. (I) A particular string resonates in four loops at a frequency
of 240 Hz. Give at least three other frequencies at which 
it will resonate. What is each called?

52. (II) The speed of waves on a string is If the fre-
quency of standing waves is 475 Hz, how far apart are two
adjacent nodes?

97 m�s.
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53. (II) If two successive overtones of a vibrating string are
280 Hz and 350 Hz, what is the frequency of the fundamental?

54. (II) A guitar string is 92 cm long and has a mass of 3.4 g.
The distance from the bridge to the support post is

and the string is under a tension of 520 N.
What are the frequencies of the fundamental and first 
two overtones?

55. (II) One end of a horizontal string is attached to a small-
amplitude mechanical 60.0-Hz oscillator. The string’s mass
per unit length is The string passes over a
pulley, a distance away, and weights are hung
from this end, Fig. 11–55. What mass m must be hung from
this end of the string to produce (a) one loop, (b) two loops,
and (c) five loops of a standing wave? Assume the string 
at the oscillator is a node, which is nearly true.

l = 1.50 m
3.5 * 10–4 kg�m.

l = 62 cm,

57. (II) When you slosh the water back and forth in a tub at
just the right frequency, the water alternately rises and
falls at each end, remaining relatively calm at the center.
Suppose the frequency to produce such a standing wave 
in a 75-cm-wide tub is 0.85 Hz. What is the speed of the
water wave?

*11–13 Refraction

*58. (I) An earthquake P wave traveling at strikes a
boundary within the Earth between two kinds of material.
If it approaches the boundary at an incident angle of 44°
and the angle of refraction is 33°, what is the speed in the
second medium?

*59. (II) A sound wave is traveling in warm air when it hits a
layer of cold, dense air. If the sound wave hits the cold air
interface at an angle of 25°, what is the angle of refrac-
tion? Assume that the cold air temperature is and
the warm air temperature is The speed of sound 
as a function of temperature can be approximated by

where T is in °C.
*60. (III) A longitudinal earthquake wave strikes a boundary

between two types of rock at a 38° angle. As the wave
crosses the boundary, the specific gravity changes from 3.6
to 2.5. Assuming that the elastic modulus is the same for
both types of rock, determine the angle of refraction.

*11–14 Diffraction

*61. (II) What frequency of sound would have a wavelength the
same size as a 0.75-m-wide window? (The speed of sound
is at 20°C.) What frequencies would diffract
through the window?

344 m�s

v = (331 + 0.60 T) m�s,

±15°C.
–15°C

8.0 km�s

m

1.50 m

Oscillator

FIGURE 11–55 Problems 55 and 56.

62. A 62-kg person jumps from a window to a fire net 20.0 m
directly below, which stretches the net 1.4 m. Assume that
the net behaves like a simple spring. (a) Calculate how much it
would stretch if the same person were lying in it. (b) How
much would it stretch if the person jumped from 38 m?

63. An energy-absorbing car bumper has a spring constant of
Find the maximum compression of the bumper

if the car, with mass 1300 kg, collides with a wall at a speed
of (approximately ).

64. The length of a simple pendulum is 0.72 m, the pendulum
bob has a mass of 295 g, and it is released at an angle of 12°
to the vertical. Assume SHM. (a) With what frequency
does it oscillate? (b) What is the pendulum bob’s speed
when it passes through the lowest point of the swing?
(c) What is the total energy stored in this oscillation assum-
ing no losses?

65. A block of mass M is suspended from a ceiling by a spring
with spring stiffness constant k. A penny of mass m is
placed on top of the block. What is the maximum amplitude
of oscillations that will allow the penny to just stay on top
of the block? (Assume )

66. A block with mass rests on a frictionless table
and is attached by a horizontal spring to a
wall. A second block, of mass rests on top 
of M. The coefficient of static friction between the two
blocks is 0.30. What is the maximum possible amplitude 
of oscillation such that m will not slip off M?

m = 1.25 kg,
(k = 130 N�m)

M = 6.0 kg
m V M.

5 mi�h2.0 m�s

410 kN�m.

67. A simple pendulum oscillates with frequency f. What is its
frequency if the entire pendulum accelerates at 0.35 g
(a) upward, and (b) downward?

68. A 0.650-kg mass oscillates according to the equation
where x is in meters and is in seconds.

Determine (a) the amplitude, (b) the frequency, (c) the
period, (d) the total energy, and (e) the kinetic energy and
potential energy when x is 15 cm.

69. An oxygen atom at a particular site within a DNA mole-
cule can be made to execute simple harmonic motion
when illuminated by infrared light. The oxygen atom is
bound with a spring-like chemical bond to a phosphorus
atom, which is rigidly attached to the DNA backbone.
The oscillation of the oxygen atom occurs with frequency

If the oxygen atom at this site is chem-
ically replaced with a sulfur atom, the spring constant of
the bond is unchanged (sulfur is just below oxygen in the
Periodic Table). Predict the frequency after the sulfur 
substitution.

70. A rectangular block of wood floats in a calm lake. Show
that, if friction is ignored, when the block is pushed 
gently down into the water and then released, it will then
oscillate with SHM. Also, determine an equation for the
force constant.

f = 3.7 * 1013 Hz.

tx = 0.25 sin(4.70 t)

General Problems

56. (II) In Problem 55 (Fig. 11–55), the length of the string may
be adjusted by moving the pulley. If the hanging mass m is
fixed at 0.080 kg, how many different standing wave patterns
may be achieved by varying between 10 cm and 1.5 m?l

l



l

Fixed
end

Free
end
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71. A 320-kg wooden raft floats on a lake. When a 68-kg man
stands on the raft, it sinks 3.5 cm deeper into the water.
When he steps off, the raft oscillates for a while. (a) What
is the frequency of oscillation? (b) What is the total energy
of oscillation (ignoring damping)?

72. A diving board oscillates with simple harmonic motion of
frequency 2.8 cycles per second. What is the maximum
amplitude with which the end of the board can oscillate in
order that a pebble placed there (Fig. 11–56) does not lose
contact with the board during the oscillation?

77. Tall buildings are designed to sway in the wind. In a
wind, suppose the top of a 110-story building

oscillates horizontally with an amplitude of 15 cm at its
natural frequency, which corresponds to a period of 
7.0 s. Assuming SHM, find the maximum horizontal velocity
and acceleration experienced by an employee as she sits
working at her desk located on the top floor. Compare the
maximum acceleration (as a percentage) with the accelera-
tion due to gravity.

78. When you walk with a cup of coffee (diameter 8 cm) at just
the right pace of about one step per second, the coffee
sloshes higher and higher in your cup until eventually it
starts to spill over the top, Fig 11–59. Estimate the speed
of the waves in the coffee.

100-km�h

73. A 950-kg car strikes a huge spring at a speed of 
(Fig. 11–57), compressing the spring 4.0 m. (a) What is 
the spring stiffness constant of the spring? (b) How long 
is the car in contact with the spring before it bounces off 
in the opposite direction?

25 m�s

FIGURE 11–56 Problem 72.

950 kg

FIGURE 11–57 Problem 73.

C

C

OO

O O

FIGURE 11–58 Problem 75,
the molecule.CO2

74. A mass attached to the end of a spring is stretched a 
distance from equilibrium and released. At what dis-
tance from equilibrium will it have (a) velocity equal to half
its maximum velocity, and (b) acceleration equal to half its
maximum acceleration?

75. Carbon dioxide is a linear molecule. The carbon–oxygen
bonds in this molecule act very much like springs.
Figure 11–58 shows one possible way the oxygen atoms 
in this molecule can oscillate: the oxygen atoms oscillate
symmetrically in and out, while the central carbon atom
remains at rest. Hence each oxygen atom acts like a simple
harmonic oscillator with a mass equal to the mass of an
oxygen atom. It is observed that this oscillation occurs 
at a frequency What is the spring
constant of the bond?C¬O

f = 2.83 * 1013 Hz.

x0

FIGURE 11–59

Problem 78.

79. A bug on the surface of a pond is observed to move up and
down a total vertical distance of 0.12 m, lowest to highest
point, as a wave passes. (a) What is the amplitude of the
wave? (b) If the amplitude increases to 0.16 m, by what
factor does the bug’s maximum kinetic energy change?

80. An earthquake-produced surface wave can be approximated
by a sinusoidal transverse wave. Assuming a frequency of
0.60 Hz (typical of earthquakes, which actually include a
mixture of frequencies), what amplitude is needed so that
objects begin to leave contact with the ground? [Hint: Set
the acceleration ]

81. Two strings on a musical instrument are tuned to play at
392 Hz (G) and 494 Hz (B). (a) What are the frequencies of
the first two overtones for each string? (b) If the two strings
have the same length and are under the same tension, what
must be the ratio of their masses (c) If the strings,
instead, have the same mass per unit length and are under
the same tension, what is the ratio of their lengths 
(d) If their masses and lengths are the same, what must be
the ratio of the tensions in the two strings?

82. A string can have a “free” end if that end is attached to a
ring that can slide without friction on a vertical pole
(Fig. 11–60). Determine the wavelengths of the resonant
vibrations of such a string with one end fixed and the other
free.

AlG�lBB?
AmG�mBB?

a 7 g.

FIGURE 11–60

Problem 82.

76. A mass m is gently placed on the end of a freely hanging
spring. The mass then falls 27.0 cm before it stops and
begins to rise. What is the frequency of the oscillation?

83. The ripples in a certain groove 10.2 cm from the center of a
33 -rpm phonograph record have a wavelength of 1.55 mm.
What will be the frequency of the sound emitted?

1
3
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Soundwave

*87. For any type of wave that reaches a boundary beyond which
its speed is increased, there is a maximum incident angle if
there is to be a transmitted refracted wave. This maximum
incident angle corresponds to an angle of refraction
equal to 90°. If all the wave is reflected at the
boundary and none is refracted, because refraction would
correspond to (where is the angle of refraction),
which is impossible. This phenomenon is referred to as

total internal reflection. (a) Find a formula
for using the law of refraction,

Eq. 11–20. (b) How far from the
bank should a trout fisherman

stand (Fig. 11–61) so trout
won’t be frightened by his

voice (1.8 m above the
ground)? The speed
of sound is about

in air and
in water.1440 m�s

343 m�s

uiM

ursin ur 7 1

ui 7 uiM ,
uiM

1. Describe a procedure to measure the spring constant k of
a car’s springs. Assume that the owner’s manual 
gives the car’s mass M and that the shock absorbers are
worn out so that the springs are underdamped. (See 
Sections 11–3 and 11–5.)

2. A particular unbalanced wheel of a car shakes when the car
moves at The wheel plus tire has mass 17.0 kg
and diameter 0.58 m. By how much will the springs of this
car compress when it is loaded with 280 kg? (Assume the
280 kg is split evenly among all four springs, which are iden-
tical.) [Hint: Reread Sections 11–1, 11–3, 11–6, and 8–3.]

3. Sometimes a car develops a pronounced rattle or vibration
at a particular speed, especially if the road is hot enough
that the tar between concrete slabs bumps up at regularly
spaced intervals. Reread Sections 11–5 and 11–6, and
decide whether each of the following is a factor and, if so,
how: underdamping, overdamping, critical damping, and
forced resonance.

4. Destructive interference occurs where two overlapping
waves are wavelength or 180° out of phase. Explain why
180° is equivalent to wavelength.

5. Estimate the effective spring constant of a trampoline.
[Hint: Go and jump, or watch, and give your data.]

1
2

1
2

90.0 km�h.

6. A highway overpass was observed to resonate as one full
loop when a small earthquake shook the ground verti-
cally at 3.0 Hz. The highway department put a support at
the center of the overpass, anchoring it to the ground as
shown in Fig. 11–62. What resonant frequency would you
now expect for the overpass? It is noted that earthquakes
rarely do significant shaking above 5 or 6 Hz. Did the
modifications do any good? Explain. (See Section 11–3.)

A12 lB

Search and Learn

A: (b).
B: (c).
C: (a) Increases; (b) increases; (c) increases.
D: (c).

E: (c).
F: (a).
G: (c).
H: (d).

A N S W E R S  TO  E X E R C I S E S

Before modification

After modification

Added support

FIGURE 11–62 Search and Learn 6.

84. A wave with a frequency of 180 Hz and a wavelength of
10.0 cm is traveling along a cord. The maximum speed of
particles on the cord is the same as the wave speed. What
is the amplitude of the wave?

85. Estimate the average power of a moving water wave that strikes
the chest of an adult standing in the water at the seashore.
Assume that the amplitude of the wave is 0.50 m, the wave-
length is 2.5 m, and the period is 4.0 s.

86. A tsunami is a sort of pulse or “wave packet” consisting of 
several crests and troughs that become dramatically 
large as they enter shallow water at the shore. Suppose 
a tsunami of wavelength 235 km and velocity 
travels across the Pacific Ocean. As it approaches Hawaii,
people observe an unusual decrease of sea level in the 
harbors. Approximately how much time do they have to 
run to safety? (In the absence of knowledge and warning,
people have died during tsunamis, some of them attracted
to the shore to see stranded fishes and boats.)

550 km�h

FIGURE 11–61 Problem 87b.




