
m1v1
B (before)

   ′1m1vB (after)

   ′2m2vB (after)

170

Linear Momentum
CHAPTER-OPENING QUESTIONS—Guess now!
1. A railroad car loaded with rocks coasts on a level track without friction.
A worker at the back of the car starts throwing the rocks horizontally backward
from the car. Then what happens?

(a) The car slows down.
(b) The car speeds up.
(c) First the car speeds up and then it slows down.
(d) The car’s speed remains constant.
(e) None of these.

2. Which answer would you choose if the rocks fall out through a hole in the floor
of the car, one at a time?

T he law of conservation of energy, which we discussed in the previous Chapter,
is one of several great conservation laws in physics. Among the other quan-
tities found to be conserved are linear momentum, angular momentum, and

electric charge. We will eventually discuss all of these because the conservation laws
are among the most important ideas in science. In this Chapter we discuss linear
momentum and its conservation. The law of conservation of momentum is essen-
tially a reworking of Newton’s laws that gives us tremendous physical insight and
problem-solving power.

The law of conservation of momentum is particularly useful when dealing with
a system of two or more objects that interact with each other, such as in collisions
of ordinary objects or nuclear particles.

Our focus up to now has been mainly on the motion of a single object, often
thought of as a “particle” in the sense that we have ignored any rotation or internal
motion. In this Chapter we will deal with systems of two or more objects, and—toward
the end of the Chapter—the concept of center of mass.
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Conservation of linear momentum is another great conservation law of physics.
Collisions, such as between billiard or pool balls, illustrate this law very nicely: the 
total vector momentum just before the collision equals the total vector momentum 
just after the collision. In this photo, the moving cue ball makes a glancing collision with 
the 11 ball which is initially at rest. After the collision, both balls move at angles, but the 
sum of their vector momenta equals the initial vector momentum of the incoming cue ball.

We will consider both elastic collisions (where kinetic energy is also conserved) 
and inelastic collisions. We also examine the concept of center of mass, and how it 
helps us in the study of complex motion.



7–1 Momentum and Its Relation to Force
The linear momentum (or “momentum” for short) of an object is defined as the
product of its mass and its velocity. Momentum (plural is momenta—from Latin) is
represented by the symbol If we let m represent the mass of an object and 

represent its velocity, then its momentum is defined as

(7;1)

Velocity is a vector, so momentum too is a vector. The direction of the momentum
is the direction of the velocity, and the magnitude of the momentum is  
Because velocity depends on the reference frame, so does momentum; thus the ref-
erence frame must be specified. The unit of momentum is that of 
which in SI units is There is no special name for this unit.

Everyday usage of the term momentum is in accord with the definition above.
According to Eq. 7–1, a fast-moving car has more momentum than a slow-moving
car of the same mass; a heavy truck has more momentum than a small car moving
with the same speed. The more momentum an object has, the harder it is to stop
it, and the greater effect it will have on another object if it is brought to rest by
striking that object. A football player is more likely to be stunned if tackled by a
heavy opponent running at top speed than by a lighter or slower-moving tackler.
A heavy, fast-moving truck can do more damage than a slow-moving motorcycle.

EXERCISE A Can a small sports car ever have the same momentum as a large sport-
utility vehicle with three times the sports car’s mass? Explain.

A force is required to change the momentum of an object, whether to 
increase the momentum, to decrease it, or to change its direction. Newton origi-
nally stated his second law in terms of momentum (although he called the product
mv the “quantity of motion”). Newton’s statement of the second law of motion,
translated into modern language, is as follows:

The rate of change of momentum of an object is equal to the net force
applied to it.

We can write this as an equation,

(7;2)

where is the net force applied to the object (the vector sum of all forces acting
on it) and is the resulting momentum change that occurs during the time
interval†

We can readily derive the familiar form of the second law, from
Eq. 7–2 for the case of constant mass. If is the initial velocity of an object and

is its velocity after a time interval has elapsed, then

By definition, so

[constant mass]

Equation 7–2 is a more general statement of Newton’s second law than the more
familiar version  because it includes the situation in which the mass
may change. A change in mass occurs in certain circumstances, such as for rockets
which lose mass as they expel burnt fuel.

A©F
B

= maB B
©F

B

= maB.

aB = ¢vB�¢t,

= m
¢vB

¢t
.©F

B

=
¢pB

¢t
=

mvB2 - mvB1

¢t
=

mAvB2 - vB1B
¢t

¢tvB2

vB1

©F
B

= maB,
¢t.
¢pB

©F
B

©F
B

=
¢pB

¢t
,

kg �m�s.
mass * velocity,

p = mv.

pB = mvB.

pBvB
pB.
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NEWTON’S SECOND LAW

C A U T I O N

The change in the momentum vector
is in the direction of the net force

NEWTON’S SECOND LAW

†Normally we think of as being a small time interval. If it is not small, then Eq. 7–2 is valid if 
is constant during that time interval, or if is the average net force during that time interval.©F

B
©F

B

¢t



EXERCISE B If the water splashes back from the car in Example 7–2, would the force
on the car be larger or smaller?

Force of a tennis serve. For a top player, a ten-
nis ball may leave the racket on the serve with a speed of (about 

), Fig. 7–1. If the ball has a mass of 0.060 kg and is in contact with the
racket for about 4 ms estimate the average force on the ball. Would
this force be large enough to lift a 60-kg person?

APPROACH We write Newton’s second law, Eq. 7–2, for the average force as

where and are the initial and final momenta. The tennis ball is hit when
its initial velocity is very nearly zero at the top of the throw, so we set  
and we assume  is in the horizontal direction. We ignore all other
forces on the ball during this brief time interval, such as gravity, in comparison
to the force exerted by the tennis racket.

SOLUTION The force exerted on the ball by the racket is

This is a large force, larger than the weight of a 60-kg person, which would
require a force  to lift.

NOTE The force of gravity acting on the tennis ball is
which justifies our ignoring it compared to the enormous force the

racket exerts.

NOTE High-speed photography and radar can give us an estimate of the contact
time and the velocity of the ball leaving the racket. But a direct measure-
ment of the force is not practical. Our calculation shows a handy technique for 
determining an unknown force in the real world.

0.59 N,
mg = (0.060 kg)A9.8 m�s2B =

mg = (60 kg)A9.8 m�s2B L 600 N

L 800 N.Favg =
¢p

¢t
=

mv2 - mv1

¢t
=

(0.060 kg)(55 m�s) - 0
0.004 s

v2 = 55 m�s
v1 = 0,v1

mv2mv1

Favg =
¢p

¢t
=

mv2 - mv1

¢t
,

A4 * 10–3 sB,120 mi�h
55 m�s

EXAMPLE 7;1 ESTIMATE
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v = 20 m/s

x

FIGURE 7;2 Example 7–2.

FIGURE 7;1 Example 7–1.

Washing a car: momentum change and force. Water
leaves a hose at a rate of with a speed of and is aimed at the side
of a car, which stops it, Fig. 7–2. (That is, we ignore any splashing back.) What
is the force exerted by the water on the car?

APPROACH The water leaving the hose has mass and velocity, so it has a
momentum in the horizontal (x) direction, and we assume gravity doesn’t
pull the water down significantly. When the water hits the car, the water loses
this momentum We use Newton’s second law in the momentum
form, Eq. 7–2, to find the force that the car exerts on the water to stop it.
By Newton’s third law, the force exerted by the water on the car is equal and
opposite. We have a continuing process: 1.5 kg of water leaves the hose in
each 1.0-s time interval. So let us write where and

SOLUTION The force (assumed constant) that the car must exert to change
the momentum of the water is

The minus sign indicates that the force exerted by the car on the water is oppo-
site to the water’s original velocity. The car exerts a force of 30 N to the left to
stop the water, so by Newton’s third law, the water exerts a force of 30 N to the
right on the car.

NOTE Keep track of signs, although common sense helps too. The water is
moving to the right, so common sense tells us the force on the car must be to 
the right.

F =
¢p

¢t
=

pfinal - pinitial

¢t
=

0 - 30 kg �m�s
1.0 s

= –30 N.

mvinitial = (1.5 kg)(20 m�s) = 30 kg �m�s.
¢t = 1.0 s,F = ¢p�¢t

Apfinal = 0B.
pinitial

20 m�s1.5 kg�s
EXAMPLE 7;2
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CONSERVATION OF MOMENTUM 
(two objects colliding)

mA A mB B
A

B

B

B

x

A

A
mA �AvB mB �BvB

vBvB

FIGURE 7;3 Momentum is 
conserved in a collision of two balls,
labeled A and B.

7–2 Conservation of Momentum
The concept of momentum is particularly important because, if no net external
force acts on a system, the total momentum of the system is a conserved quantity.
This was expressed in Eq. 7–2 for a single object, but it holds also for a system as
we shall see.

Consider the head-on collision of two billiard balls, as shown in Fig. 7–3.
We assume the net external force on this system of two balls is zero—that is,
the only significant forces during the collision are the forces that each ball 
exerts on the other. Although the momentum of each of the two balls changes 
as a result of the collision, the sum of their momenta is found to be the same
before as after the collision. If is the momentum of ball A and 
the momentum of ball B, both measured just before the collision, then the 
total momentum of the two balls before the collision is the vector sum

Immediately after the collision, the balls each have a different
velocity and momentum, which we designate by a “prime” on the velocity:

and The total momentum after the collision is the vector sum
No matter what the velocities and masses are, experiments

show that the total momentum before the collision is the same as afterward,
whether the collision is head-on or not, as long as no net external force acts:

(7;3)

That is, the total vector momentum of the system of two colliding balls is conserved:
it stays constant. (We saw this result in this Chapter’s opening photograph.)

Although the law of conservation of momentum was discovered experimen-
tally, it can be derived from Newton’s laws of motion, which we now show.

Let us consider two objects of mass and that have momenta
and before they collide and and after they

collide, as in Fig. 7–4. During the collision, suppose that the force exerted by
object A on object B at any instant is Then, by Newton’s third law, the force
exerted by object B on object A is During the brief collision time, we assume
no other (external) forces are acting (or that is much greater than any other
external forces acting). Over a very short time interval we have

and

We add these two equations together and find

This means  

or

This is Eq. 7–3. The total momentum is conserved.
We have put this derivation in the context of a collision. As long as no exter-

nal forces act, it is valid over any time interval, and conservation of momentum is
always valid as long as no external forces act on the chosen system. In the real world,
external forces do act: friction on billiard balls, gravity acting on a tennis ball, and so
on. So we often want our “observation time” (before and after) to be small.
When a racket hits a tennis ball or a bat hits a baseball, both before and after the
“collision”the ball moves as a projectile under the action of gravity and air resistance.

pB œA + pBB
œ = pBA + pBB .

pBB
œ - pBB + pBA

œ - pBA = 0,
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¢pBB + ¢pBA
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B

=
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.
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œpBB A= mBvBBBpBA A= mAvBAB
mBmA

C©F
B

ext = 0 DmA vBA + mB vBB = mA vBA
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 momentum before = momentum after

mA vBA
œ + mB vBB

œ .
mB vBB

œ .mA vBA
œ

mA vBA + mB vBB .

mB vBBmA vBA

Before
collision

At
collision

After
collision

mA

mA

mA

mB

mB

mB

−F
B

F
B

pA
B

pB
B

p�B
B

p�A
B

FIGURE 7;4 Collision of two
objects. Their momenta before 
collision are and and after
collision are and At any
moment during the collision each
exerts a force on the other of equal
magnitude but opposite direction.

pBB
œ .pBA

œ
pBB ,pBA



However, when the bat or racket hits the ball, during the brief time of the colli-
sion those external forces are insignificant compared to the collision force the bat
or racket exerts on the ball. Momentum is conserved (or very nearly so) as long
as we measure and just before the collision and and immediately
after the collision (Eq. 7–3). We can not wait for external forces to produce their
effect before measuring and 

The above derivation can be extended to include any number of interacting
objects. To show this, we let in Eq. 7–2 represent the total momen-
tum of a system—that is, the vector sum of the momenta of all objects in the system.
(For our two-object system above, ) If the net force on the
system is zero [as it was above for our two-object system, ], then
from Eq. 7–2, so the total momentum doesn’t change. The
general statement of the law of conservation of momentum is

The total momentum of an isolated system of objects remains constant.

By a system, we simply mean a set of objects that we choose, and which may
interact with each other. An isolated system is one in which the only (significant)
forces are those between the objects in the system. The sum of all these “internal”
forces within the system will be zero because of Newton’s third law. If there are
external forces—by which we mean forces exerted by objects outside the system—
and they don’t add up to zero, then the total momentum of the system won’t be
conserved. However, if the system can be redefined so as to include the other
objects exerting these forces, then the conservation of momentum principle can
apply. For example, if we take as our system a falling rock, it does not conserve
momentum because an external force, the force of gravity exerted by the Earth,
accelerates the rock and changes its momentum. However, if we include the Earth in
the system, the total momentum of rock plus Earth is conserved. (This means that
the Earth comes up to meet the rock. But the Earth’s mass is so great, its upward
velocity is very tiny.)

Although the law of conservation of momentum follows from Newton’s
second law, as we have seen, it is in fact more general than Newton’s laws. In the
tiny world of the atom, Newton’s laws fail, but the great conservation laws—
those of energy, momentum, angular momentum, and electric charge—have been
found to hold in every experimental situation tested. It is for this reason that 
the conservation laws are considered more basic than Newton’s laws.

¢pB = ©F
B

¢t = 0,
F
B

+ (–F
B

) = 0
©F

B

pB = mA vBA + mB vBB .

(©F
B

= ¢pB�¢t)pB
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œ
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LAW OF CONSERVATION 
OF MOMENTUM

vB = 0
(at rest)

v′ = ?

(b)  After collision

(a)  Before collision

x

x

vA = 24.0 m/s

A B

BA

FIGURE 7;5 Example 7–3.

Railroad cars collide: momentum conserved. A 10,000-kg
railroad car, A, traveling at a speed of strikes an identical car, B, at 
rest. If the cars lock together as a result of the collision, what is their common
speed just afterward? See Fig. 7–5.

APPROACH We choose our system to be the two railroad cars. We consider a very
brief time interval, from just before the collision until just after, so that external
forces such as friction can be ignored. Then we apply conservation of momentum.

24.0 m�s
EXAMPLE 7;3



SOLUTION The initial total momentum is

because car B is at rest initially  The direction is to the right in the 
direction. After the collision, the two cars become attached, so they will have

the same speed, call it Then the total momentum after the collision is

We have assumed there are no external forces, so momentum is conserved:

Solving for we obtain

to the right. Their mutual speed after collision is half the initial speed of car A.

NOTE We kept symbols until the very end, so we have an equation we can use
in other (related) situations.

NOTE We haven’t included friction here. Why? Because we are examining
speeds just before and just after the very brief time interval of the collision, and
during that brief time friction can’t do much—it is ignorable (but not for long:
the cars will slow down because of friction).

v¿ =
mA

mA + mB
vA = a 10,000 kg

10,000 kg + 10,000 kg
b (24.0 m�s) = 12.0 m�s,

v¿,
mA vA = AmA + mBB v¿.
pinitial = pfinal

pfinal = AmA + mBB v¿.
v¿.

±x
AvB = 0B.

pinitial = mA vA + mB vB = mA vA
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EXERCISE C In Example 7–3, so in the last equation,
Hence  What result do you get if (a)  (b) is much larger than

and (c) mB V mA ?mA AmB W mAB,
mBmB = 3mA ,v¿ = 1

2 vA .
mA�AmA + mBB = 1

2 .mA = mB ,

EXERCISE D A 50-kg child runs off a dock at (horizontally) and lands in a waiting
rowboat of mass 150 kg. At what speed does the rowboat move away from the dock?

2.0 m�s

The law of conservation of momentum is particularly useful when we are
dealing with fairly simple systems such as colliding objects and certain types of
“explosions.” For example, rocket propulsion, which we saw in Chapter 4 can be
understood on the basis of action and reaction, can also be explained on the 
basis of the conservation of momentum. We can consider the rocket plus its fuel as an
isolated system if it is far out in space (no external forces). In the reference frame
of the rocket before any fuel is ejected, the total momentum of rocket plus fuel 
is zero. When the fuel burns, the total momentum remains unchanged: the back-
ward momentum of the expelled gases is just balanced by the forward momentum
gained by the rocket itself (see Fig. 7–6). Thus, a rocket can accelerate in empty
space. There is no need for the expelled gases to push against the Earth or the 
air (as is sometimes erroneously thought). Similar examples of (nearly) isolated
systems where momentum is conserved are the recoil of a gun when a bullet is fired
(Example 7–5), and the movement of a rowboat just after a package is thrown from it.

P H Y S I C S  A P P L I E D

Rocket propulsion

  rocketgas

(a)

(b)

   = 0

pB

pB

pB

FIGURE 7;6 (a) A rocket,
containing fuel, at rest in some 
reference frame. (b) In the same 
reference frame, the rocket fires and
gases are expelled at high speed out
the rear. The total vector momentum,

remains zero.pBgas + pBrocket ,Falling on or off a sled. (a) An empty sled
is sliding on frictionless ice when Susan drops vertically from a tree down onto
the sled. When she lands, does the sled speed up, slow down, or keep the same
speed? (b) Later: Susan falls sideways off the sled. When she drops off, does 
the sled speed up, slow down, or keep the same speed?

RESPONSE (a) Because Susan falls vertically onto the sled, she has no initial
horizontal momentum. Thus the total horizontal momentum afterward equals the
momentum of the sled initially. Since the mass of the system has
increased, the speed must decrease.
(b) At the instant Susan falls off, she is moving with the same horizontal speed
as she was while on the sled. At the moment she leaves the sled, she has the
same momentum she had an instant before. Because her momentum does not
change, neither does the sled’s (total momentum conserved); the sled keeps the
same speed.

(sled + person)

CONCEPTUAL EXAMPLE 7;4

C A U T I O N

A rocket does not push on the Earth;
it is propelled by pushing out the
gases it burned as fuel



EXERCISE E Return to the Chapter-Opening Questions, page 170, and answer them
again now. Try to explain why you may have answered differently the first time.
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(b) After shooting

  B

   B
   R

(a) Before shooting (at rest)

x

   R
pB

pB

vBvB

FIGURE 7;7 Example 7–5.

Rifle recoil. Calculate the recoil velocity of a 5.0-kg rifle that
shoots a 0.020-kg bullet at a speed of Fig. 7–7.

APPROACH Our system is the rifle and the bullet, both at rest initially, just
before the trigger is pulled. The trigger is pulled, an explosion occurs inside the
bullet’s shell, and we look at the rifle and bullet just as the bullet leaves the barrel
(Fig. 7–7b). The bullet moves to the right and the gun recoils to the left.
During the very short time interval of the explosion, we can assume the external
forces are small compared to the forces exerted by the exploding gunpowder.
Thus we can apply conservation of momentum, at least approximately.

SOLUTION Let subscript B represent the bullet and R the rifle; the final veloc-
ities are indicated by primes. Then momentum conservation in the x direction
gives

We solve for the unknown and find

Since the rifle has a much larger mass, its (recoil) velocity is much less than that
of the bullet. The minus sign indicates that the velocity (and momentum) of the
rifle is in the negative x direction, opposite to that of the bullet.

vR
œ = –

mB vB
œ

mR
= –

(0.020 kg)(620 m�s)
(5.0 kg)

= –2.5 m�s.

vR
œ ,

mB vB + mR vR = mB vB
œ + mR vR

œ

0 + 0 = mB vB
œ + mR vR

œ .

 momentum before = momentum after

(±x),

620 m�s,
EXAMPLE 7;5

FIGURE 7;8 Tennis racket striking
a ball. Both the ball and the racket
strings are deformed due to the large
force each exerts on the other.

Δ

Fo
rc

e,
 F

(N
)

0 Time, t (ms)

   tΔ

FIGURE 7;9 Force as a function of time 
during a typical collision. F can become 
very large; is typically milliseconds 
for macroscopic collisions.

¢t

7–3 Collisions and Impulse
Collisions are a common occurrence in everyday life: a tennis racket or a baseball
bat striking a ball, billiard balls colliding, a hammer hitting a nail. When a collision
occurs, the interaction between the objects involved is usually far stronger than
any external forces. We can then ignore the effects of any other forces during the
brief time interval of the collision.

During a collision of two ordinary objects, both objects are deformed, often
considerably, because of the large forces involved (Fig. 7–8). When the collision
occurs, the force each exerts on the other usually jumps from zero at the moment
of contact to a very large force within a very short time, and then rapidly 
returns to zero again. A graph of the magnitude of the force that one object
exerts on the other during a collision, as a function of time, is something like 
the red curve in Fig. 7–9. The time interval is usually very distinct and very
small, typically milliseconds for a macroscopic collision.

¢t
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F

F

0 ti
t

tf

tΔ

FIGURE 7;10 The average force 
acting over a very brief time 
interval gives the same impulse

as the actual force.(f ¢t)
¢t

f

From Newton’s second law, Eq. 7–2, the net force on an object is equal to the
rate of change of its momentum:

(We have written instead of for the net force, which we assume is entirely
due to the brief but large average force that acts during the collision.) This equa-
tion applies to each of the two objects in a collision. We multiply both sides of this
equation by the time interval and obtain

(7;4)

The quantity on the left, the product of the force times the time over which
the force acts, is called the impulse:

(7;5)

We see that the total change in momentum is equal to the impulse. The concept
of impulse is useful mainly when dealing with forces that act during a short time
interval, as when a bat hits a baseball. The force is generally not constant, and
often its variation in time is like that graphed in Figs. 7–9 and 7–10. We can often
approximate such a varying force as an average force acting during a time
interval as indicated by the dashed line in Fig. 7–10. is chosen so that the
area shown shaded in Fig. 7–10 (equal to ) is equal to the area under the
actual curve of F vs. t, Fig. 7–9 (which represents the actual impulse).

f * ¢t
f¢t,
f

Impulse = F
B

¢t.

¢tF
B

F
B

¢t = ¢pB.

¢t,

©F
B

F
B

F
B

=
¢pB

¢t
.

EXERCISE F Suppose Fig. 7–9 shows the force on a golf ball vs. time during the time
interval when the ball hits a wall. How would the shape of this curve change if a softer
rubber ball with the same mass and speed hit the same wall?

FIGURE 7;11 Example 7–6.
Karate blow. Estimate the impulse and the

average force delivered by a karate blow that breaks a board (Fig. 7–11).
Assume the hand moves at roughly when it hits the board.

APPROACH We use the momentum-impulse relation, Eq. 7–4. The hand’s
speed changes from to zero over a distance of perhaps one cm (roughly
how much your hand and the board compress before your hand comes to a 
stop, and the board begins to give way). The hand’s mass should probably include
part of the arm, and we take it to be roughly

SOLUTION The impulse equals the change in momentum

We can obtain the force if we know The hand is brought to rest over the dis-
tance of roughly a centimeter: The average speed during the
impact is  and equals Thus  

or 2 ms. The average force is thus (Eq. 7–4) about

f =
¢p

¢t
=

10 kg �m�s

2 * 10–3 s
L 5000 N = 5 kN.

A10–2 mB�(5 m�s) = 2 * 10–3 s
¢t = ¢x�v L¢x�¢t.v = (10 m�s + 0)�2 = 5 m�s

¢x L 1 cm.
¢t.

f ¢t = ¢p = m ¢v L (1 kg)(10 m�s - 0) = 10 kg �m�s.

F¢t
m L 1 kg.

10 m�s

10 m�s

EXAMPLE 7;6 ESTIMATE

7–4 Conservation of Energy and
Momentum in Collisions

During most collisions, we usually don’t know how the collision force varies 
over time, and so analysis using Newton’s second law becomes difficult or impos-
sible. But by making use of the conservation laws for momentum and energy,
we can still determine a lot about the motion after a collision, given the motion
before the collision. We saw in Section 7–2 that in the collision of two objects
such as billiard balls, the total momentum is conserved. If the two objects are
very hard and no heat or other energy is produced in the collision, then 
the total kinetic energy of the two objects is the same after the collision as before.
For the brief moment during which the two objects are in contact, some (or 
all) of the energy is stored momentarily in the form of elastic potential energy.
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A B

A B

  A   B
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    ′B

(a) Approach

(b) Collision
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FIGURE 7;12 Two equal-mass
objects (a) approach each other 
with equal speeds, (b) collide, and
then (c) bounce off with equal
speeds in the opposite directions if
the collision is elastic, or (d) bounce
back much less or not at all if the
collision is inelastic (some of the KE

is transformed to other forms of
energy such as sound and heat).
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   ′A    ′B

vB vB

vB vB

FIGURE 7;13 Two small objects of
masses and (a) before the
collision and (b) after the collision.

mB ,mA

†Note that Eqs. (i) and (ii), which are the conservation laws for momentum and kinetic energy, are
both satisfied by the solution  and  This is a valid solution, but not very interesting.
It corresponds to no collision at all—when the two objects miss each other.

vB
œ = vB .vA

œ = vA

But if we compare the total kinetic energy just before the collision with the 
total kinetic energy just after the collision, and they are found to be the same,
then we say that the total kinetic energy is conserved. Such a collision is called 
an elastic collision. If we use the subscripts A and B to represent the two objects,
we can write the equation for conservation of total kinetic energy as

[elastic collision] (7;6)

Primed quantities mean after the collision, and unprimed mean before the
collision, just as in Eq. 7–3 for conservation of momentum.

At the atomic level the collisions of atoms and molecules are often elastic.
But in the “macroscopic” world of ordinary objects, an elastic collision is an ideal
that is never quite reached, since at least a little thermal energy is always produced
during a collision (also perhaps sound and other forms of energy). The col-
lision of two hard elastic balls, such as billiard balls, however, is very close to
being perfectly elastic, and we often treat it as such.

We do need to remember that even when kinetic energy is not conserved,
the total energy is always conserved.

Collisions in which kinetic energy is not conserved are said to be inelastic
collisions. The kinetic energy that is lost is changed into other forms of energy,
often thermal energy, so that the total energy (as always) is conserved. In this case,

See Fig. 7–12, and the details in its caption.

7–5 Elastic Collisions in One Dimension
We now apply the conservation laws for momentum and kinetic energy to an elastic
collision between two small objects that collide head-on, so all the motion is along a
line. To be general, we assume that the two objects are moving, and their velocities
are and along the x axis before the collision, Fig. 7–13a. After the collision,
their velocities are and Fig. 7–13b. For any the object is moving to the
right (increasing x), whereas for the object is moving to the left (toward
decreasing values of x).

From conservation of momentum, we have

Because the collision is assumed to be elastic, kinetic energy is also conserved:

We have two equations, so we can solve for two unknowns. If we know the masses
and velocities before the collision, then we can solve these two equations for the
velocities after the collision, and We derive a helpful result by rewriting the
momentum equation as

(i)

and we rewrite the kinetic energy equation as

Noting that algebraically  we write this last equation as

(ii)

We divide Eq. (ii) by Eq. (i), and (assuming and )† obtain

vA + vA
œ = vB

œ + vB .

vB Z vB
œvA Z vA

œ

mAAvA - vA
œ B AvA + vA

œ B = mBAvB
œ - vBB AvB

œ + vBB.
Aa2 - b2B = (a - b)(a + b),

mAAvA
2 - vA

œ2B = mBAvB
œ2 - vB

2 B.

mAAvA - vA
œ B = mBAvB

œ - vBB,
vB
œ .vA

œ

1
2 mA vA

2 + 1
2 mB vB

2 = 1
2 mA vA

œ2 + 1
2 mB vB

œ2 .

mA vA + mB vB = mA vA
œ + mB vB

œ .

v 6 0,
v 7 0,vB

œ ,vA
œ

vBvA

keA + keB = keA
œ + keB

œ + thermal and other forms of energy.

(¿)

1
2 mA vA

2 + 1
2 mB vB

2 = 1
2 mA vA

œ2 + 1
2 mB vB

œ2 .

 total ke before = total ke after
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C A U T I O N

Relative speeds (one dimension only)

We can rewrite this equation as

or
[head-on (1-D) elastic collision] (7;7)

This is an interesting result: it tells us that for any elastic head-on collision, the
relative speed of the two objects after the collision  has the same magnitude
(but opposite direction) as before the collision, no matter what the masses are.

Equation 7–7 was derived from conservation of kinetic energy for elastic 
collisions, and can be used in place of it. Because the v’s are not squared in
Eq. 7–7, it is simpler to use in calculations than the conservation of kinetic 
energy equation (Eq. 7–6) directly.

AvA
œ - vB

œ B
vA - vB = – AvA

œ - vB
œ B.

vA - vB = vB
œ - vA

œ

Equal masses. Billiard ball A of mass m moving with
speed collides head-on with ball B of equal mass. What are the speeds of the two
balls after the collision, assuming it is elastic? Assume (a) both balls are moving
initially ( and ), (b) ball B is initially at rest

APPROACH There are two unknowns, and so we need two indepen-
dent equations. We focus on the time interval from just before the collision 
until just after. No net external force acts on our system of two balls (mg and
the normal force cancel), so momentum is conserved. Conservation of kinetic
energy applies as well because we are told the collision is elastic.

SOLUTION (a) The masses are equal  so conservation of
momentum gives

We need a second equation, because there are two unknowns. We could use the
conservation of kinetic energy equation, or the simpler Eq. 7–7 derived from it:

We add these two equations and obtain

and then subtract the two equations to obtain

That is, the balls exchange velocities as a result of the collision: ball B acquires
the velocity that ball A had before the collision, and vice versa.
(b) If ball B is at rest initially, so that  we have

and

That is, ball A is brought to rest by the collision, whereas ball B acquires the
original velocity of ball A. See Fig. 7–14.

NOTE Our result in part (b) is often observed by billiard and pool players, and
is valid only if the two balls have equal masses (and no spin is given to the balls).

vA
œ = 0.

vB
œ = vA

vB = 0,

vA
œ = vB .

vB
œ = vA

vA - vB = vœB - vA
œ .

vA + vB = vA
œ + vB

œ .

AmA = mB = mB

vB
œ ,vA

œ

AvB = 0B.vBvA

vA

EXAMPLE 7;7

FIGURE 7;14 In this multiflash photo of a head-on
collision between two balls of equal mass, the white
cue ball is accelerated from rest by the cue stick and
then strikes the red ball, initially at rest. The white 
ball stops in its tracks, and the (equal-mass) red ball
moves off with the same speed as the white ball had
before the collision. See Example 7–7, part (b).
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A nuclear collision. A proton (p) of mass (unified
atomic mass units) traveling with a speed of has an elastic 
head-on collision with a helium (He) nucleus  initially at rest.
What are the velocities of the proton and helium nucleus after the collision?
(As mentioned in Chapter 1, but we won’t need this 
fact.) Assume the collision takes place in nearly empty space.

APPROACH Like Example 7–7, this is an elastic head-on collision, but now the
masses of our two particles are not equal. The only external force could be 
Earth’s gravity, but it is insignificant compared to the powerful forces between the 
two particles at the moment of collision. So again we use the conservation laws of
momentum and of kinetic energy, and apply them to our system of two particles.

SOLUTION We use the subscripts p for the proton and He for the helium
nucleus. We are given  and  We want to find the
velocities and after the collision. From conservation of momentum,

Because the collision is elastic, the kinetic energy of our system of two particles is
conserved and we can use Eq. 7–7, which becomes

Thus

and substituting this into our momentum equation displayed above, we get

Solving for we obtain

The other unknown is which we can now obtain from

The minus sign for tells us that the proton reverses direction upon collision,
and we see that its speed is less than its initial speed (see Fig. 7–15).

NOTE This result makes sense: the lighter proton would be expected to “bounce
back” from the more massive helium nucleus, but not with its full original velocity
as from a rigid wall (which corresponds to extremely large, or infinite, mass).

vp
œ

= –2.15 * 104 m�s.vp
œ = vHe

œ - vp = A1.45 * 104 m�sB - A3.60 * 104 m�sB
vp
œ ,

= 1.45 * 104 m�s.vHe
œ =

2mp vp

mp + mHe
=

2(1.01 u)A3.60 * 104 m�sB
(4.00 u + 1.01 u)

vHe
œ ,

mp vp = mp vHe
œ - mp vp + mHe vHe

œ .

vp
œ = vHe

œ - vp ,

vp - 0 = vHe
œ - vp

œ .

mp vp + 0 = mp vp
œ + mHe vHe

œ .

vHe
œvp

œ
vp = 3.60 * 104 m�s.vHe = 0

1 u = 1.66 * 10–27 kg,

AmHe = 4.00 uB3.60 * 104 m�s
1.01 uEXAMPLE 7;8

He

(a)

  ′

(b)

  ′He

p

  p

pvB vB

vB

FIGURE 7;15 Example 7–8:
(a) before collision, (b) after collision.

7–6 Inelastic Collisions
Collisions in which kinetic energy is not conserved are called inelastic collisions.
Some of the initial kinetic energy is transformed into other types of energy, such
as thermal or potential energy, so the total kinetic energy after the collision is less
than the total kinetic energy before the collision. The inverse can also happen
when potential energy (such as chemical or nuclear) is released, in which case the
total kinetic energy after the interaction can be greater than the initial kinetic
energy. Explosions are examples of this type.

Typical macroscopic collisions are inelastic, at least to some extent, and often to
a large extent. If two objects stick together as a result of a collision, the collision
is said to be completely inelastic. Two colliding balls of putty that stick together
or two railroad cars that couple together when they collide are examples of com-
pletely inelastic collisions. The kinetic energy in some cases is all transformed to
other forms of energy in an inelastic collision, but in other cases only part of it is.
In Example 7–3, for instance, we saw that when a traveling railroad car collided
with a stationary one, the coupled cars traveled off with some kinetic energy. In a
completely inelastic collision, the maximum amount of kinetic energy is transformed
to other forms consistent with conservation of momentum. Even though kinetic
energy is not conserved in inelastic collisions, the total energy is always conserved,
and the total vector momentum is also conserved.
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Ballistic pendulum. The ballistic pendulum is a device used
to measure the speed of a projectile, such as a bullet. The projectile, of mass m,
is fired into a large block (of wood or other material) of mass M, which is
suspended like a pendulum. (Usually, M is somewhat greater than m.) As a result
of the collision, the pendulum and projectile together swing up to a maximum
height h, Fig. 7–16. Determine the relationship between the initial horizontal
speed of the projectile, v, and the maximum height h.

APPROACH We can analyze the process by dividing it into two parts or two
time intervals: (1) the time interval from just before to just after the collision
itself, and (2) the subsequent time interval in which the pendulum moves from
the vertical hanging position to the maximum height h.

In part (1), Fig. 7–16a, we assume the collision time is very short, so that the
projectile is embedded in the block before the block has moved significantly from its
rest position directly below its support. Thus there is effectively no net external force,
and we can apply conservation of momentum to this completely inelastic collision.

In part (2), Fig. 7–16b, the pendulum begins to move, subject to a net 
external force (gravity, tending to pull it back to the vertical position); so for
part (2), we cannot use conservation of momentum. But we can use conservation
of mechanical energy because gravity is a conservative force (Chapter 6). The
kinetic energy immediately after the collision is changed entirely to gravitational
potential energy when the pendulum reaches its maximum height, h.

SOLUTION In part (1) momentum is conserved:

(i)

where is the speed of the block and embedded projectile just after the colli-
sion, before they have moved significantly.

In part (2), mechanical energy is conserved. We choose when the
pendulum hangs vertically, and then when the pendulum–projectile
system reaches its maximum height. Thus we write

or

(ii)

We solve for 

Inserting this result for into Eq. (i) above, and solving for v, gives 

which is our final result.

NOTE The separation of the process into two parts was crucial. Such an analysis is
a powerful problem-solving tool. But how do you decide how to make such a
division? Think about the conservation laws. They are your tools. Start a problem
by asking yourself whether the conservation laws apply in the given situation.
Here, we determined that momentum is conserved only during the brief colli-
sion, which we called part (1). But in part (1), because the collision is inelastic, the
conservation of mechanical energy is not valid. Then in part (2), conservation 
of mechanical energy is valid, but not conservation of momentum.

Note, however, that if there had been significant motion of the pendulum
during the deceleration of the projectile in the block, then there would have
been an external force (gravity) during the collision, so conservation of momen-
tum would not have been valid in part (1).

v =
m + M

m
v¿ =

m + M
m 22gh ,

v¿

v¿ = 22gh .

v¿:

1
2 (m + M)v¿2 +   0 = 0 +   (m + M)gh.

 (ke + pe) just after collision = (ke + pe) at pendulum’s maximum height

y = h
y = 0

v¿

mv = (m + M)v¿,
 total p before = total p after

EXAMPLE 7;9 P H Y S I C S  A P P L I E D

Ballistic pendulum

l

M + m
h

l

vM = 0
M

m

(a)

(b)

vB

′vB

FIGURE 7;16 Ballistic pendulum.
Example 7–9.

P R O B L E M  S O L V I N G

Use the conservation laws to 
analyze a problem



Railroad cars again. For the completely inelastic collision
of the two railroad cars that we considered in Example 7–3, calculate how much
of the initial kinetic energy is transformed to thermal or other forms of energy.

APPROACH The railroad cars stick together after the collision, so this is a 
completely inelastic collision. By subtracting the total kinetic energy after the
collision from the total initial kinetic energy, we can find how much energy is
transformed to other types of energy.

SOLUTION Before the collision, only car A is moving, so the total initial
kinetic energy is  After the
collision, both cars are moving with half the speed, by conserva-
tion of momentum (Example 7–3). So the total kinetic energy afterward is 

Hence the
energy transformed to other forms is

which is half the original kinetic energy.

A2.88 * 106 JB - A1.44 * 106 JB = 1.44 * 106 J,

1
2 (20,000 kg)(12.0 m�s)2 = 1.44 * 106 J.ke¿ = 1

2 AmA + mBBv¿2 =
v¿ = 12.0 m�s,

1
2 mA vA

2 = 1
2 (10,000 kg)(24.0 m�s)2 = 2.88 * 106 J.

EXAMPLE 7;10
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†The objects may begin to deflect even before they touch if electric, magnetic, or nuclear forces act
between them. You might think, for example, of two magnets oriented so that they repel each other:
when one moves toward the other, the second moves away before the first one touches it.

FIGURE 7;17 A recent color-
enhanced version of a cloud-chamber
photograph made in the early days
(1920s) of nuclear physics. Green
lines are paths of helium nuclei (He)
coming from the left. One He,
highlighted in yellow, strikes a proton
of the hydrogen gas in the chamber,
and both scatter at an angle; the 
scattered proton’s path is shown in red.
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′Aθ

mB

mB

mA   ′ApB

   ′BpB

   ApB
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x
FIGURE 7;18 Object A, the projectile,
collides with object B, the target. After
the collision, they move off with
momenta and at angles and uB

œ .uA
œpBB

œpBA
œ

Let us apply the law of conservation of momentum to a collision like that of
Fig. 7–18. We choose the xy plane to be the plane in which the initial and final
momenta lie. Momentum is a vector, and because the total momentum is 
conserved, its components in the x and y directions also are conserved. The
x component of momentum conservation gives

or, with  

(7;8a)

where primes refer to quantities after the collision. There is no motion in the y direc-
tion initially, so the y component of the total momentum is zero before the collision.

(¿)
mA vA = mA vA

œ cos uA
œ + mB vB

œ cos uB
œ ,

pBx = mB vBx = 0,

pAx + pBx = pAx
œ + pBx

œ

7–7 Collisions in Two Dimensions
Conservation of momentum and energy can also be applied to collisions in two or
three dimensions, where the vector nature of momentum is especially important.
One common type of non-head-on collision is that in which a moving object (called
the “projectile”) strikes a second object initially at rest (the “target”). This is the
common situation in games such as billiards and pool, and for experiments in
atomic and nuclear physics (the projectiles, from radioactive decay or a high-
energy accelerator, strike a stationary target nucleus, Fig. 7–17).

Figure 7–18 shows the incoming projectile, heading along the x axis
toward the target object, which is initially at rest. If these are billiard balls,

strikes not quite head-on and they go off at the angles and 
respectively, which are measured relative to ’s initial direction (the x axis).†mA

uB
œ ,uA

œmBmA

mB ,
mA ,

*
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FIGURE 7;19 Example 7–11.

C A U T I O N

Equation 7–7 applies only in 1-D

The y component equation of momentum conservation is then

or
(7;8b)

When we have two independent equations, we can solve for two unknowns at most.

 0 = mA vA
œ sin uA

œ + mB vB
œ sin uB

œ .

pAy + pBy = pAy
œ + pBy

œ

Billiard ball collision in 2-D. Billiard ball A moving with
speed  in the direction (Fig. 7–19) strikes an equal-mass ball B
initially at rest. The two balls are observed to move off at 45° to the x axis,
ball A above the x axis and ball B below. That is, and  in
Fig. 7–19. What are the speeds of the two balls after the collision?

APPROACH There is no net external force on our system of two balls, assuming
the table is level (the normal force balances gravity). Thus momentum con-
servation applies, and we apply it to both the x and y components using the 
xy coordinate system shown in Fig. 7–19. We get two equations, and we have
two unknowns, and From symmetry we might guess that the two balls
have the same speed. But let us not assume that now. Even though we are not
told whether the collision is elastic or inelastic, we can still use conservation of
momentum.

SOLUTION We apply conservation of momentum for the x and y components,
Eqs. 7–8a and b, and we solve for and We are given  
so

(for x)
and

(for y)

The m’s cancel out in both equations (the masses are equal). The second equation
yields [recall from trigonometry that ]:

So they do have equal speeds as we guessed at first. The x component equation
gives [recall that  ]:

solving for (which also equals ) gives

vA
œ =

vA

2 cos(45°)
=

3.0 m�s
2(0.707)

= 2.1 m�s.

vB
œvA

œ

vA = vA
œ cos(45°) + vB

œ cos(45°) = 2vA
œ cos(45°);

cos(–u) = cos u

vB
œ = –vA

œ sin(45°)
sin(–45°)

= –vA
œ a sin 45°

–sin 45°
b = vA

œ .

sin(–u) = –sin u

 0 = mvA
œ sin(45°) + mvB

œ sin(–45°).

mvA = mvA
œ cos(45°) + mvB

œ cos(–45°)

mA = mB A= mB,vB
œ .vA

œ

vB
œ .vA

œ

uB
œ = –45°uA

œ = 45°

±xvA = 3.0 m�s
EXAMPLE 7;11

If we know that a collision is elastic, we can also apply conservation of
kinetic energy and obtain a third equation in addition to Eqs. 7–8a and b:

or, for the collision shown in Fig. 7–18 or 7–19 (where ),

[elastic collision] (7;8c)

If the collision is elastic, we have three independent equations and can solve for
three unknowns. If we are given (and if it is not zero), we can-
not, for example, predict the final variables, and because there
are four of them. However, if we measure one of these variables, say then the
other three variables ( and ) are uniquely determined, and we can
determine them using Eqs. 7–8a, b, c.

A note of caution: Eq. 7–7 (page 179) does not apply for two-dimensional
collisions. It works only when a collision occurs along a line.

uB
œvA

œ , vB
œ ,

uA
œ ,

uB
œ ,vA

œ , vB
œ , uA

œ ,
vB ,mA , mB , vA

1
2 mA vA

2 = 1
2 mA vA

œ2 + 1
2 mB vB

œ2 .

keB = 0

keA + keB = keA
œ + keB

œ



(a)

(b)

FIGURE 7;20 The motion of the diver is pure translation
in (a), but is translation plus rotation in (b). The black dot
represents the diver’s CM at each moment.

7–8 Center of Mass (CM)
Momentum is a powerful concept not only for analyzing collisions but also for
analyzing the translational motion of real extended objects. Until now, when-
ever we have dealt with the motion of an extended object (that is, an object that
has size), we have assumed that it could be approximated as a point particle or
that it undergoes only translational motion. Real extended objects, however, can
undergo rotational and other types of motion as well. For example, the diver 
in Fig. 7–20a undergoes only translational motion (all parts of the object follow
the same path), whereas the diver in Fig. 7–20b undergoes both translational 
and rotational motion. We will refer to motion that is not pure translation as 
general motion.

Observations indicate that even if an object rotates, or several parts of a
system of objects move relative to one another, there is one point that moves in
the same path that a particle would move if subjected to the same net force.
This point is called the center of mass (abbreviated CM). The general motion of
an extended object (or system of objects) can be considered as the sum of the
translational motion of the CM, plus rotational, vibrational, or other types of motion
about the CM.

As an example, consider the motion of the center of mass of the diver in 
Fig. 7–20; the CM follows a parabolic path even when the diver rotates, as shown
in Fig. 7–20b. This is the same parabolic path that a projected particle follows
when acted on only by the force of gravity (projectile motion, Chapter 3).
Other points in the rotating diver’s body, such as her feet or head, follow more
complicated paths.
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only an x axis.) It is often convenient to choose the
axis in the direction of one object’s initial velocity.

5. Apply the momentum conservation equation(s):

You have one equation for each component (x, y, z):
only one equation for a head-on collision. [Don’t for-
get that it is the total momentum of the system that
is conserved, not the momenta of individual objects.]

6. If the collision is elastic, you can also write down a
conservation of kinetic energy equation:

[Alternatively, you could use Eq. 7–7:

if the collision is one dimensional (head-on).]

7. Solve for the unknown(s).

8. Check your work, check the units, and ask yourself
whether the results are reasonable.

vB
œ - vA

œ ,vA - vB =

total initial ke = total final ke.

total initial momentum = total final momentum.

±x

P
R

O
B

L
E

M

S O LV I N G

Momentum Conservation 
and Collisions
1. Choose your system. If the situation is complex,

think about how you might break it up into separate
parts when one or more conservation laws apply.

2. Consider whether a significant net external force
acts on your chosen system; if it does, be sure the time
interval is so short that the effect on momentum
is negligible. That is, the forces that act between the
interacting objects must be the only significant ones
if momentum conservation is to be used. [Note: If
this is valid for a portion of the problem, you can
use momentum conservation only for that portion.]

3. Draw a diagram of the initial situation, just before
the interaction (collision, explosion) takes place, and
represent the momentum of each object with an arrow
and a label. Do the same for the final situation, just
after the interaction.

4. Choose a coordinate system and “ ” and “ ”
directions. (For a head-on collision, you will need

–±

¢t
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FIGURE 7;21 Translation plus 
rotation: a wrench moving over a
smooth horizontal surface. The CM,
marked with a red cross, moves in 
a straight line because no net 
force acts on the wrench.

Figure 7–21 shows a wrench acted on by zero net force, translating and rotating
along a horizontal surface. Note that its CM, marked by a red cross, moves in a
straight line, as shown by the dashed white line.

We will show in Section 7–10 that the important properties of the CM follow from
Newton’s laws if the CM is defined in the following way. We can consider any extended
object as being made up of many tiny particles. But first we consider a system made
up of only two particles (or small objects), of masses and We choose a coor-
dinate system so that both particles lie on the x axis at positions and Fig. 7–22.
The center of mass of this system is defined to be at the position given by

where is the total mass of the system. The center of mass lies on
the line joining and If the two masses are equal then

is midway between them, because in this case

If one mass is greater than the other, then the CM is closer to the larger mass.
If there are more than two particles along a line, there will be additional terms:

(7;9a)

where M is the total mass of all the particles.

CM of three guys on a raft. On a lightweight (air-filled)
“banana boat,” three people of roughly equal mass m sit along the x axis at posi-
tions and measured from the left-hand
end as shown in Fig. 7–23. Find the position of the CM. Ignore the mass of the boat.

APPROACH We are given the mass and location of the three people, so we 
use three terms in Eq. 7–9a. We approximate each person as a point particle.
Equivalently, the location of each person is the position of that person’s own CM.

SOLUTION We use Eq. 7–9a with three terms:

The CM is 4.0 m from the left-hand end of the boat.

EXERCISE G Calculate the CM of the three people in Example 7–12, taking the origin
at the driver on the right. Is the physical location of the CM the same?

Note that the coordinates of the CM depend on the reference frame or coordinate
system chosen. But the physical location of the CM is independent of that choice.

If the particles are spread out in two or three dimensions, then we must specify
not only the x coordinate of the CM but also the y and z coordinates, which will
be given by formulas like Eq. 7–9a. For example, the y coordinate of the CM will be

(7;9b)

where M is the total mass of all the particles.

ycm =
mA yA + mB yB + p

mA + mB + p
=

mA yA + mB yB + p

M

AxcmB,

AxC = 0B

=
(1.0 m + 5.0 m + 6.0 m)

3
=

12.0 m
3

= 4.0 m.

xcm =
mxA + mxB + mxC

m + m + m
=

mAxA + xB + xCB
3m

xC = 6.0 m,xB = 5.0 m,xA = 1.0 m,

EXAMPLE 7;12

xcm =
mA xA + mB xB + mC xC + p

mA + mB + mC + p
=

mA xA + mB xB + mC xC + p

M
,

xcm =
mAxA + xBB

2m
=
AxA + xBB

2
.

xcm

AmA = mB = mB,mB .mA

M = mA + mB

xcm =
mA xA + mB xB

mA + mB
=

mA xA + mB xB

M
,

xcm ,
xB ,xA

mB .mA

y

x
mA

xA
xB

xCM

mB

FIGURE 7;22 The center of mass 
of a two-particle system lies on the 
line joining the two masses. Here

so the CM is closer to 
than to mB .

mAmA 7 mB ,

0 5.0 mx = 0 6.0 m1.0 m
x

5.0 m 6.0 m x

y

0 1.0 m

FIGURE 7;23 Example 7–12.



A concept similar to center of mass is center of gravity (CG). An object’s CG is
that point at which the force of gravity can be considered to act. The force of gravity
actually acts on all the different parts or particles of an object, but for purposes of
determining the translational motion of an object as a whole, we can assume that 
the entire weight of the object (which is the sum of the weights of all its parts) acts 
at the CG. There is a conceptual difference between the center of gravity and the
center of mass, but for nearly all practical purposes, they are at the same point.†

It is often easier to determine the CM or CG of an extended object experimen-
tally rather than analytically. If an object is suspended from any point, it will swing
(Fig. 7–24) due to the force of gravity on it, unless it is placed so its CG lies on 
a vertical line directly below the point from which it is suspended. If the object is
two dimensional, or has a plane of symmetry, it need only be hung from two 
different pivot points and the respective vertical (plumb) lines drawn. Then the
center of gravity will be at the intersection of the two lines, as in Fig. 7–25. If 
the object doesn’t have a plane of symmetry, the CG with respect to the third dimen-
sion is found by suspending the object from at least three points whose plumb
lines do not lie in the same plane.

For symmetrically shaped objects such as uniform cylinders (wheels), spheres,
and rectangular solids, the CM is located at the geometric center of the object.

To locate the center of mass of a group of extended objects, we can use
Eqs. 7–9, where the m’s are the masses of these objects and the x’s, y’s, and z’s 
are the coordinates of the CM of each of the objects.
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†There would be a difference between the CM and CG only in the unusual case of an object so large
that the acceleration due to gravity, g, was different at different parts of the object.

Pivot point

m

CG

gB

FIGURE 7;24 The force of gravity,
considered to act at the CG, causes
this object to rotate about the pivot
point; if the CG were on a vertical
line directly below the pivot, the
object would remain at rest.

CG

FIGURE 7;25 Finding the CG.

7–9 CM for the Human Body
For a group of extended objects, each of whose CM is known, we can find the 
CM of the group using Eqs. 7–9a and b. As an example, we consider the human 
body. Table 7–1 indicates the CM and hinge points (joints) for the different compo-
nents of a “representative” person. Of course, there are wide variations among
people, so these data represent only a very rough average. The numbers represent
a percentage of the total height, which is regarded as 100 units; similarly, the total
mass is 100 units. For example, if a person is 1.70 m tall, his or her shoulder joint
would be above the floor.(1.70 m)(81.2�100) = 1.38 m

*

TABLE 7;1 Center of Mass of Parts of Typical Human Body, given as 
(full height and )

Distance of Hinge Hinge Points (•) Center of Mass ( ) Percent 
Points from Floor ( ) (Joints) ( Height Above Floor) Mass%%%%

�

mass � 100 units

%%

elbow 62.2%‡

wrist 46.2%‡

Head 93.5% 6.9%
Trunk and neck 71.1% 46.1%

Upper arms 71.7% 6.6%

Lower arms 55.3% 4.2%

Hands 43.1% 1.7%

Upper legs (thighs) 42.5% 21.5%

Lower legs 18.2% 9.6%

Feet 1.8% 3.4%

91.2% Base of skull on spine
81.2% Shoulder joint

52.1% Hip joint

28.5% Knee joint

4.0% Ankle joint

Body CM 58.0% 100.0%

‡ For arm hanging vertically.

=
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A leg’s CM. Determine the position of the CM of a whole leg
(a) when stretched out, and (b) when bent at 90°. See Fig. 7–26. Assume the
person is 1.70 m tall.

APPROACH Our system consists of three objects: upper leg, lower leg, and foot.
The location of the CM of each object, as well as the mass of each, is given in
Table 7–1, where they are expressed in percentage units. To express the results
in meters, these percentage values need to be multiplied by 
When the leg is stretched out, the problem is one dimensional and we can 
solve for the x coordinate of the CM. When the leg is bent, the problem is two
dimensional and we need to find both the x and y coordinates.

SOLUTION (a) We determine the distances from the hip joint using Table 7–1
and obtain the numbers (%) shown in Fig. 7–26a. Using Eq. 7–9a, we obtain
(u upper leg, etc.)

Thus, the center of mass of the leg and foot is 20.4 units from the hip joint, or
from the base of the foot. Since the person is 1.70 m

tall, this is above the bottom of the foot.
(b) We use an xy coordinate system, as shown in Fig. 7–26b. First, we calculate
how far to the right of the hip joint the CM lies, accounting for all three parts:

For our 1.70-m-tall person, this is from the hip joint.
Next, we calculate the distance, of the CM above the floor:

or Thus, the CM is located 39 cm above the floor
and 25 cm to the right of the hip joint.

NOTE The CM lies outside the body in (b).

(1.70 m)(23.0�100) = 0.39 m.

ycm =
(3.4)(1.8) + (9.6)(18.2) + (21.5)(28.5)

3.4 + 9.6 + 21.5
= 23.0 units,

ycm ,
(1.70 m)(14.9�100) = 0.25 m

xcm =
(21.5)(9.6) + (9.6)(23.6) + (3.4)(23.6)

21.5 + 9.6 + 3.4
= 14.9 units.

(1.70 m)(31.7�100) = 0.54 m
52.1 - 20.4 = 31.7 units

=
(21.5)(9.6) + (9.6)(33.9) + (3.4)(50.3)

21.5 + 9.6 + 3.4
= 20.4 units.

xcm =
mulxul + mllxll + mfxf

mul + mll + mf

=l

(1.70 m�100).

EXAMPLE 7;13

Knowing the CM of the body when it is in various positions is of great use in
studying body mechanics. One simple example from athletics is shown in Fig. 7–27.
If high jumpers can get into the position shown, their CM can pass below the 
bar which their bodies go over, meaning that for a particular takeoff speed, they
can clear a higher bar. This is indeed what they try to do.

50.3
33.9

9.6

23.6
9.6

28.5

18.2

1.8

(a)

(b)

y

x

FIGURE 7;26 Example 7–13:
finding the CM of a leg in two 
different positions using percentages
from Table 7–1. ( represents the
calculated CM.)

�

CM

FIGURE 7;27 A high jumper’s CM

may actually pass beneath the bar.

P H Y S I C S  A P P L I E D

The high jump

7–10 CM and Translational Motion
As mentioned in Section 7–8, a major reason for the importance of the concept
of center of mass is that the motion of the CM for a system of particles (or an
extended object) is directly related to the net force acting on the system as a
whole. We now show this, taking the simple case of one-dimensional motion
(x direction) and only three particles, but the extension to more objects and to
three dimensions follows the same reasoning.

*
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Suppose the three particles lie on the x axis and have masses 
and positions From Eq. 7–9a for the center of mass, we can write

where is the total mass of the system. If these particles
are in motion (say, along the x axis with velocities and respectively),
then in a short time interval each particle and the CM will have traveled a dis-
tance  so that

We cancel and get

(7;10)

Since is the sum of the momenta of the particles 
of the system, it represents the total momentum of the system. Thus we see from
Eq. 7–10 that the total (linear) momentum of a system of particles is equal to the
product of the total mass M and the velocity of the center of mass of the system.
Or, the linear momentum of an extended object is the product of the object’s mass
and the velocity of its CM.

If forces are acting on the particles, then the particles may be accelerating. In 
a short time interval each particle’s velocity will change by an amount  
If we use the same reasoning as we did to obtain Eq. 7–10, we find

According to Newton’s second law, and 
where and are the net forces on the three particles, respectively. Thus
we get for the system as a whole or

(7;11)

That is, the sum of all the forces acting on the system is equal to the total mass of
the system times the acceleration of its center of mass. This is Newton’s second 
law for a system of particles. It also applies to an extended object (which can be
thought of as a collection of particles). Thus the center of mass of a system of 
particles (or of an object) with total mass M moves as if all its mass were concen-
trated at the center of mass and all the external forces acted at that point. We can
thus treat the translational motion of any object or system of objects as the
motion of a particle (see Figs. 7–20 and 7–21). This result simplifies our analysis
of the motion of complex systems and extended objects. Although the motion of
various parts of the system may be complicated, we may often be satisfied with
knowing the motion of the center of mass. This result also allows us to solve
certain types of problems very easily, as illustrated by the following Example.

Macm = Fnet .

Macm = FA + FB + FC ,
FCFB,FA,

mC aC = FC ,mB aB = FB,mA aA = FA,

Macm = mA aA + mB aB + mC aC .

¢v = a ¢t.¢t,

mA vA + mB vB + mC vC

Mvcm = mA vA + mB vB + mC vC .

¢t

Mvcm ¢t = mA vA ¢t + mB vB ¢t + mC vC ¢t.

¢x = v¢t,
¢t

vC ,vA , vB ,
M = mA + mB + mC

Mxcm = mA xA + mB xB + mC xC ,

xC .xA , xB ,
mC ,mA , mB ,

NEWTON’S SECOND LAW
(for a system)

d

I II

II Pa
th

of
 I

II

d

I

I

Path
of

CM

Path of II

FIGURE 7;28 Example 7–14.

A two-stage rocket. A rocket is shot into
the air as shown in Fig. 7–28. At the moment the rocket reaches its highest point,
a horizontal distance d from its starting point, a prearranged explosion separates
it into two parts of equal mass. Part I is stopped in midair by the explosion, and
it falls vertically to Earth. Where does part II land? Assume gB = constant.

CONCEPTUAL EXAMPLE 7;14
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P H Y S I C S  A P P L I E D

Distant planets discovered

The linear momentum, of an object is defined as the product
of its mass times its velocity,

(7;1)

In terms of momentum, Newton’s second law can be written
as

(7;2)

That is, the rate of change of momentum of an object equals
the net force exerted on it.

When the net external force on a system of objects is 
zero, the total momentum remains constant. This is the law of
conservation of momentum. Stated another way, the total
momentum of an isolated system of objects remains constant.

The law of conservation of momentum is very useful in
dealing with collisions. In a collision, two (or more) objects
interact with each other over a very short time interval, and the
force each exerts on the other during this time interval is very
large compared to any other forces acting.

The impulse delivered by a force on an object is defined as 

(7;5)

where is the average force acting during the (usually very
short) time interval The impulse is equal to the change in
momentum of the object:

(7;4)

Total momentum is conserved in any collision as long as
any net external force is zero or negligible. If and 
are the momenta of two objects before the collision and mA vBA

œ
mB vBBmA vBA

Impulse = F
B

¢t = ¢pB.

¢t.
F
B

Impulse = F
B

¢t,

©F
B

=
¢pB

¢t
.

pB = mvB.

pB,

Summary

EXERCISE H A woman stands up in a rowboat and walks from one end of the boat to
the other. How does the boat move, as seen from the shore?

An interesting application is the discovery of nearby stars (see Section 5–8)
that seem to “wobble.”What could cause such a wobble? It could be that a planet
orbits the star, and each exerts a gravitational force on the other. The planets are
too small and too far away to be observed directly by telescopes. But the slight
wobble in the motion of the star suggests that both the planet and the star (its sun)
orbit about their mutual center of mass, and hence the star appears to have a wobble.
Irregularities in the star’s motion can be measured to high accuracy, yielding
information on the size of the planets’ orbits and their masses. See Fig. 5–30 in
Chapter 5.

and are their momenta after, then momentum conserva-
tion tells us that 

(7;3)

for this two-object system.
Total energy is also conserved. But this may not be helpful

unless kinetic energy is conserved, in which case the collision is
called an elastic collision and we can write

(7;6)

If kinetic energy is not conserved, the collision is called
inelastic. Macroscopic collisions are generally inelastic.
A completely inelastic collision is one in which the colliding
objects stick together after the collision.

The center of mass (CM) of an extended object (or group of
objects) is that point at which the net force can be considered
to act, for purposes of determining the translational motion of
the object as a whole. The x component of the CM for objects
with mass is given by

(7;9a)

[*The center of mass of a system of total mass M moves in
the same path that a particle of mass M would move if subjected
to the same net external force. In equation form, this is Newton’s
second law for a system of particles (or extended objects):

(7;11)

where M is the total mass of the system, is the acceleration
of the CM of the system, and is the total (net) external 
force acting on all parts of the system.]

Fnet

aCM

MaCM = Fnet

xCM =
mA xA + mB xB + p

mA + mB + p
.

p ,mB ,mA ,

1
2 mA vA

2 + 1
2 mB vB

2 = 1
2 mA vA

œ2 + 1
2 mB vB

œ2 .

mA vBA + mB vBB = mA vBA
œ + mB vBB

œ

mB vBB
œ

RESPONSE After the rocket is fired, the path of the CM of the system contin-
ues to follow the parabolic trajectory of a projectile acted on by only a constant
gravitational force. The CM will thus land at a point 2d from the starting 
point. Since the masses of I and II are equal, the CM must be midway between
them at any time. Therefore, part II lands a distance 3d from the starting point.

NOTE If part I had been given a kick up or down, instead of merely falling, the
solution would have been more complicated.
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1. We claim that momentum is conserved. Yet most moving
objects eventually slow down and stop. Explain.

2. A light object and a heavy object have the same kinetic
energy. Which has the greater momentum? Explain.

3. When a person jumps from a tree to the ground, what happens
to the momentum of the person upon striking the ground?

4. When you release an inflated but untied balloon, why does
it fly across the room?

5. Explain, on the basis of conservation of momentum, how a
fish propels itself forward by swishing its tail back and forth.

6. Two children float motionlessly in a space station. The 
20-kg girl pushes on the 40-kg boy and he sails away at

The girl (a) remains motionless; (b) moves in the
same direction at (c) moves in the opposite direc-
tion at (d) moves in the opposite direction at

(e) none of these.

7. According to Eq. 7–4, the longer the impact time of an
impulse, the smaller the force can be for the same momentum
change, and hence the smaller the deformation of the object
on which the force acts. On this basis, explain the value of
air bags, which are intended to inflate during an automobile
collision and reduce the possibility of fracture or death.

8. If a falling ball were to make a perfectly elastic collision with
the floor, would it rebound to its original height? Explain.

9. A boy stands on the back of a rowboat and dives into the
water. What happens to the boat as he leaves it? Explain.

10. It is said that in ancient times a rich man with a bag of 
gold coins was stranded on the surface of a frozen lake.
Because the ice was frictionless, he could not push himself
to shore and froze to death. What could he have done to
save himself had he not been so miserly?

11. The speed of a tennis ball on the return of a serve can be
just as fast as the serve, even though the racket isn’t swung
very fast. How can this be?

12. Is it possible for an object to receive a larger impulse from a
small force than from a large force? Explain.

13. In a collision between two cars, which would you expect to
be more damaging to the occupants: if the cars collide and
remain together, or if the two cars collide and rebound
backward? Explain.

14. A very elastic “superball” is dropped from a height h onto a
hard steel plate (fixed to the Earth), from which it rebounds
at very nearly its original speed. (a) Is the momentum of the
ball conserved during any part of this process? (b) If we
consider the ball and the Earth as our system, during what
parts of the process is momentum conserved? (c) Answer
part (b) for a piece of putty that falls and sticks to the steel
plate.

15. Cars used to be built as rigid as possible to withstand col-
lisions. Today, though, cars are designed to have “crumple
zones” that collapse upon impact. What is the advantage
of this new design?

2.0 m�s;
1.0 m�s;

1.0 m�s;
1.0 m�s.

Questions
16. At a hydroelectric power plant, water is directed at high

speed against turbine blades on an axle that turns an elec-
tric generator. For maximum power generation, should
the turbine blades be designed so that the water is brought
to a dead stop, or so that the water rebounds?

17. A squash ball hits a wall at a 45° angle as shown in Fig. 7–29.
What is the direction (a) of the change in momentum of
the ball, (b) of the force on the wall?

18. Why can a batter hit a pitched baseball farther than a ball
he himself has tossed up in the air?

19. Describe a collision in which all kinetic energy is lost.

20. If a 20-passenger plane is not full, sometimes passengers
are told they must sit in certain seats and may not move to
empty seats. Why might this be?

21. Why do you tend to lean backward when carrying a heavy
load in your arms?

22. Why is the CM of a 1-m length of pipe at its midpoint,
whereas this is not true for your arm or leg?

23. How can a rocket change direction when it is far out in
space and essentially in a vacuum?

24. Bob and Jim decide to play tug-of-war on a frictionless
(icy) surface. Jim is considerably stronger than Bob, but
Bob weighs 160 lb whereas Jim weighs 145 lb. Who loses
by crossing over the midline first? Explain.

25. In one type of nuclear radioactive decay, an electron and a
recoil nucleus are emitted but often do not separate along
the same line. Use conservation of momentum in two
dimensions to explain why this implies the emission of at
least one other particle (it came to be called a “neutrino”).

26. Show on a diagram how your CM shifts when you move
from a lying position to a sitting position.

27. If only an external force can change the momentum of the
center of mass of an object, how can the internal force 
of the engine accelerate a car?

28. A rocket following a parabolic path through the air sud-
denly explodes into many pieces. What can you say about
the motion of this system of pieces?

*

*

*

*

FIGURE 7;29 Question 17.
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1. A truck going has a head-on collision with a small
car going Which statement best describes the
situation?
(a) The truck has the greater change of momentum

because it has the greater mass.
(b) The car has the greater change of momentum because

it has the greater speed.
(c) Neither the car nor the truck changes its momentum in

the collision because momentum is conserved.
(d) They both have the same change in magnitude of

momentum because momentum is conserved.
(e) None of the above is necessarily true.

2. A small boat coasts at constant speed under a bridge.
A heavy sack of sand is dropped from the bridge onto the
boat. The speed of the boat 
(a) increases.
(b) decreases.
(c) does not change.
(d) Without knowing the mass of the boat and the sand,

we can’t tell.

3. Two identical billiard balls traveling at the same speed have a
head-on collision and rebound. If the balls had twice the
mass, but maintained the same size and speed, how would
the rebound be different?
(a) At a higher speed.
(b) At slower speed.
(c) No difference.

4. An astronaut is a short distance away from her space station
without a tether rope. She has a large wrench. What should
she do with the wrench to move toward the space station? 
(a) Throw it directly away from the space station.
(b) Throw it directly toward the space station.
(c) Throw it toward the station without letting go of it.
(d) Throw it parallel to the direction of the station’s orbit.
(e) Throw it opposite to the direction of the station’s orbit.

5. The space shuttle, in circular orbit around the Earth,
collides with a small asteroid which ends up in the shuttle’s
storage bay. For this collision,
(a) only momentum is conserved.
(b) only kinetic energy is conserved.
(c) both momentum and kinetic energy are conserved.
(d) neither momentum nor kinetic energy is conserved.

6. A golf ball and an equal-mass bean bag are dropped from the
same height and hit the ground. The bean bag stays on the 
ground while the golf ball rebounds. Which experiences
the greater impulse from the ground? 
(a) The golf ball.
(b) The bean bag.
(c) Both the same.
(d) Not enough information.

7. You are lying in bed and want to shut your bedroom door.
You have a bouncy “superball” and a blob of clay, both with
the same mass. Which one would be more effective to throw
at your door to close it? 
(a) The superball.
(b) The blob of clay.
(c) Both the same.
(d) Neither will work.

30 km�h.
15 km�h

MisConceptual Questions
8. A baseball is pitched horizontally toward home plate with a

velocity of 110 km h. In which of the following scenarios
does the baseball have the largest change in momentum?
(a) The catcher catches the ball.
(b) The ball is popped straight up at a speed of 110 km h.
(c) The baseball is hit straight back to the pitcher at a

speed of 110 km h.
(d) Scenarios (a) and (b) have the same change in

momentum.
(e) Scenarios (a), (b), and (c) have the same change in

momentum.

9. A small car and a heavy pickup truck are both out of gas.
The truck has twice the mass of the car. After you push both
the car and the truck for the same amount of time with the
same force, what can you say about the momentum and
kinetic energy (KE) of the car and the truck? Ignore friction.
(a) They have the same momentum and the same KE.
(b) The car has more momentum and more KE than the truck.
(c) The truck has more momentum and more KE than the car.
(d) They have the same momentum, but the car has more

kinetic energy than the truck.
(e) They have the same kinetic energy, but the truck has

more momentum than the car.

10. Choose the best answer in the previous Question (# 9) but 
now assume that you push both the car and the truck for the
same distance with the same force. [Hint: See also Chapter 6.]

11. A railroad tank car contains milk and rolls at a constant speed
along a level track. The milk begins to leak out the bottom.
The car then 
(a) slows down.
(b) speeds up.
(c) maintains a constant speed.
(d) Need more information about the rate of the leak.

12. A bowling ball hangs from a 1.0-m-long cord, Fig. 7–30:
(i) A 200-gram putty ball moving hits the bowling
ball and sticks to it, causing the bowling ball to swing up;
(ii) a 200-gram rubber ball moving hits the bowling
ball and bounces straight back at nearly causing the
bowling ball to swing up. Describe what happens.
(a) The bowling ball swings up by the same amount in

both (i) and (ii).
(b) The ball swings up farther in (i) than in (ii).
(c) The ball swings up farther in (ii) than in (i).
(d) Not enough information is given; we need the contact

time between the rubber ball and the bowling ball.

5.0 m�s,
5.0 m�s

5.0 m�s

�

�

�

FIGURE 7;30 MisConceptual Question 12.

(i) (ii)



192 CHAPTER 7 Linear Momentum

7;1 and 7;2 Momentum and Its Conservation

1. (I) What is the magnitude of the momentum of a 28-g
sparrow flying with a speed of 

2. (I) A constant friction force of 25 N acts on a 65-kg skier
for 15 s on level snow. What is the skier’s change in velocity?

3. (I) A 7150-kg railroad car travels alone on a level friction-
less track with a constant speed of A 3350-kg
load, initially at rest, is dropped onto the car. What will be
the car’s new speed?

4. (I) A 110-kg tackler moving at meets head-on (and
holds on to) an 82-kg halfback moving at What will
be their mutual speed immediately after the collision?

5. (II) Calculate the force exerted on a rocket when the propel-
ling gases are being expelled at a rate of with a
speed of

6. (II) A 7700-kg boxcar traveling strikes a second car
at rest. The two stick together and move off with a speed of

What is the mass of the second car?
7. (II) A child in a boat throws a 5.30-kg package out horizon-

tally with a speed of Fig. 7–31. Calculate the
velocity of the boat immediately after, assuming it was initially
at rest. The mass of the child is 24.0 kg and the mass of the
boat is 35.0 kg.

10.0 m�s,

5.0 m�s.

14 m�s
4.5 * 104 m�s.

1300 kg�s

5.0 m�s.
2.5 m�s

15.0 m�s.

8.4 m�s?

8. (II) An atomic nucleus at rest decays radioactively into an
alpha particle and a different nucleus. What will be the speed
of this recoiling nucleus if the speed of the alpha particle 
is Assume the recoiling nucleus has a mass
57 times greater than that of the alpha particle.

9. (II) An atomic nucleus initially moving at emits an
alpha particle in the direction of its velocity, and the remain-
ing nucleus slows to If the alpha particle has a
mass of 4.0 u and the original nucleus has a mass of 222 u,
what speed does the alpha particle have when it is emitted?

10. (II) An object at rest is suddenly broken apart into two
fragments by an explosion. One fragment acquires twice the
kinetic energy of the other. What is the ratio of their masses?

11. (II) A 22-g bullet traveling penetrates a 2.0-kg
block of wood and emerges going If the block is
stationary on a frictionless surface when hit, how fast does
it move after the bullet emerges?

12. (III) A 0.145-kg baseball pitched horizontally at 
strikes a bat and pops straight up to a height of 31.5 m. If
the contact time between bat and ball is 2.5 ms, calculate
the average force between the ball and bat during contact.

13. (III) Air in a 120-km/h wind strikes head-on the face of a
building 45 m wide by 75 m high and is brought to rest. If
air has a mass of 1.3 kg per cubic meter, determine the
average force of the wind on the building.

27.0 m�s

150 m�s.
240 m�s

280 m�s.

320 m�s

2.8 * 105 m�s?

Problems
14. (III) A 725-kg two-stage rocket is traveling at a speed of

away from Earth when a predesigned
explosion separates the rocket into two sections of equal
mass that then move with a speed of relative
to each other along the original line of motion. (a) What is
the speed and direction of each section (relative to Earth)
after the explosion? (b) How much energy was supplied by
the explosion? [Hint: What is the change in kinetic energy
as a result of the explosion?]

7;3 Collisions and Impulse

15. (I) A 0.145-kg baseball pitched at is hit on a hori-
zontal line drive straight back at the pitcher at 
If the contact time between bat and ball is 
calculate the force (assumed to be constant) between the
ball and bat.

16. (II) A golf ball of mass 0.045 kg is hit off the tee at a speed
of The golf club was in contact with the ball for

Find (a) the impulse imparted to the golf ball,
and (b) the average force exerted on the ball by the golf club.

17. (II) A 12-kg hammer strikes a nail at a velocity of 
and comes to rest in a time interval of 8.0 ms. (a) What is
the impulse given to the nail? (b) What is the average
force acting on the nail?

18. (II) A tennis ball of mass 
and speed  strikes a wall at a
45° angle and rebounds with the same
speed at 45° (Fig. 7–32). What is the
impulse (magnitude and direction) given
to the ball?

v = 28 m�s
m = 0.060 kg

7.5 m�s

3.5 * 10–3 s.
38 m�s.

5.00 * 10–3 s,
46.0 m�s.

31.0 m�s

2.80 * 103 m�s

6.60 * 103 m�s

v = 10.0 m/s

FIGURE 7;31

Problem 7.

19. (II) A 125-kg astronaut (including space suit) acquires a
speed of by pushing off with her legs from a 
1900-kg space capsule. (a) What is the change in speed of
the space capsule? (b) If the push lasts 0.600 s, what is the
average force exerted by each on the other? As the refer-
ence frame, use the position of the capsule before the push.
(c) What is the kinetic energy of each after the push?

20. (II) Rain is falling at the rate of and accumu-
lates in a pan. If the raindrops hit at estimate the
force on the bottom of a pan due to the impacting
rain which we assume does not rebound. Water has a mass of

21. (II) A 95-kg fullback is running at to the east and is
stopped in 0.85 s by a head-on tackle by a tackler running
due west. Calculate (a) the original momentum of the 
fullback, (b) the impulse exerted on the fullback, (c) the
impulse exerted on the tackler, and (d) the average force
exerted on the tackler.

22. (II) With what impulse does a 0.50-kg newspaper have to
be thrown to give it a velocity of 3.0 m�s?

3.0 m�s
1.00 * 103 kg per m3.

1.0-m2
8.0 m�s,

2.5 cm�h

2.50 m�s

45°

45°

FIGURE 7;32

Problem 18.

For assigned homework and other learning materials, go to the MasteringPhysics website.
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FIGURE 7;34

Problem 24.

*23. (III) Suppose the force acting on a tennis ball (mass
0.060 kg) points in the direction and is given by the
graph of Fig. 7–33 as a function of time. (a) Use graphical
methods (count squares) to estimate the total impulse given
the ball. (b) Estimate the
velocity of the ball after
being struck, assuming
the ball is being served
so it is nearly at rest
initially. [Hint: See
Section 6–2.]

±x

0 0.05 0.10
t (s)

300

200

100

0

F
 (

N
)

FIGURE 7;33

Problem 23.

24. (III) (a) Calculate the impulse experienced when a 55-kg
person lands on firm ground after jumping from a height
of 2.8 m. (b) Estimate the average force exerted on the
person’s feet by the ground if the landing is stiff-legged,
and again (c) with bent legs. With stiff legs, assume the
body moves 1.0 cm during impact, and
when the legs are bent, about 50 cm.
[Hint: The average net force on
him, which is related to impulse,
is the vector sum of gravity and
the force exerted by the ground.
See Fig. 7–34.] We will see in
Chapter 9 that the force in (b)
exceeds the ultimate strength of
bone (Table 9–2).

7;4 and 7;5 Elastic Collisions

25. (II) A ball of mass 0.440 kg moving east ( direction)
with a speed of collides head-on with a 0.220-kg
ball at rest. If the collision is perfectly elastic, what will be
the speed and direction of each ball after the collision?

26. (II) A 0.450-kg hockey puck, moving east with a speed of
has a head-on collision with a 0.900-kg puck ini-

tially at rest. Assuming a perfectly elastic collision, what will
be the speed and direction of each puck after the collision?

27. (II) A 0.060-kg tennis ball, moving with a speed of
has a head-on collision with a 0.090-kg ball ini-

tially moving in the same direction at a speed of 
Assuming a perfectly elastic collision, determine the speed
and direction of each ball after the collision.

28. (II) Two billiard balls of equal mass undergo a perfectly
elastic head-on collision. If one ball’s initial speed was

and the other’s was in the opposite
direction, what will be their speeds and directions after the
collision?

29. (II) A 0.280-kg croquet ball makes an elastic head-on 
collision with a second ball initially at rest. The second 
ball moves off with half the original speed of the first ball.
(a) What is the mass of the second ball? (b) What fraction
of the original kinetic energy gets transferred 
to the second ball?

30. (II) A ball of mass m makes a head-on elastic collision with
a second ball (at rest) and rebounds with a speed equal 
to 0.450 its original speed. What is the mass of the 
second ball?

(¢ke�ke)

3.60 m�s2.00 m�s,

3.00 m�s.
5.50 m�s,

5.80 m�s,

3.80 m�s
±x

31. (II) A ball of mass 0.220 kg that is moving with a speed 
of collides head-on and elastically with another
ball initially at rest. Immediately after the collision, the
incoming ball bounces backward with a speed of 
Calculate (a) the velocity of the target ball after the colli-
sion, and (b) the mass of the target ball.

32. (II) Determine the fraction of kinetic energy lost by 
a neutron when it collides head-on and
elastically with a target particle at rest which is (a)

(b) (heavy hydrogen, );
(c) (d) (lead, ).

7;6 Inelastic Collisions

33. (I) In a ballistic pendulum experiment, projectile 1 results 
in a maximum height h of the pendulum equal to 2.6 cm.
A second projectile (of the same mass) causes the pendulum
to swing twice as high, The second projectile
was how many times faster than the first?

34. (II) (a) Derive a formula for the fraction of kinetic energy
lost, in terms of m and M for the ballistic pendu-
lum collision of Example 7–9. (b) Evaluate for
and

35. (II) A 28-g rifle bullet traveling embeds itself in a
3.1-kg pendulum hanging on a 2.8-m-long string, which
makes the pendulum swing upward in an arc. Determine
the vertical and horizontal components of the pendulum’s
maximum displacement.

36. (II) An internal explosion breaks an object, initially at
rest, into two pieces, one of which has 1.5 times the mass of
the other. If 5500 J is released in the explosion, how much
kinetic energy does each piece acquire?

37. (II) A 980-kg sports car collides into the rear end of a 2300-kg
SUV stopped at a red light. The bumpers lock, the brakes
are locked, and the two cars skid forward 2.6 m before stop-
ping. The police officer, estimating the coefficient of kinetic
friction between tires and road to be 0.80, calculates the
speed of the sports car at impact. What was that speed?

38. (II) You drop a 14-g ball from a height of 1.5 m and it only
bounces back to a height of 0.85 m. What was the total impulse
on the ball when it hit the floor? (Ignore air resistance.)

39. (II) Car A hits car B (initially at rest and of equal mass)
from behind while going Immediately after the colli-
sion, car B moves forward at and car A is at rest. What
fraction of the initial kinetic energy is lost in the collision?

40. (II) A wooden block is cut into two pieces, one with three
times the mass of the other. A depression is made in both
faces of the cut, so that a firecracker can be placed in it with
the block reassembled. The reassembled block is set on a
rough-surfaced table, and the fuse is lit. When the firecracker
explodes inside, the two blocks separate and slide apart.
What is the ratio of distances each block travels?

41. (II) A 144-g baseball moving strikes a stationary
5.25-kg brick resting on small rollers so it moves without
significant friction. After hitting the brick, the baseball
bounces straight back, and the brick moves forward at

(a) What is the baseball’s speed after the collision?
(b) Find the total kinetic energy before and after the collision.
1.10 m�s.

28.0 m�s

15 m�s
38 m�s.

190 m�s

M = 380 g.
m = 18.0 g

¢ke�ke,

h2 = 5.2 cm.

m = 208 u 82
208Pb 6

12C (m = 12.00 u);
m = 2.01 u1

2H(m = 1.01 u);
1
1H

Am1 = 1.01 uB

3.8 m�s.

5.5 m�s
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M
m vB

l

42. (III) A pendulum consists of a mass M hanging at the bottom
end of a massless rod of length which has a frictionless
pivot at its top end. A mass m,
moving as shown in Fig. 7–35
with velocity v, impacts M
and becomes embedded. What
is the smallest value of v
sufficient to cause the pendulum
(with embedded mass m) to
swing clear over the top of its
arc?

l,

FIGURE 7;35

Problem 42.

*47. (III) An atomic nucleus of mass m traveling with speed v
collides elastically with a target particle of mass 2m (ini-
tially at rest) and is scattered at 90°. (a) At what angle does
the target particle move after the collision? (b) What are
the final speeds of the two particles? (c) What fraction of the
initial kinetic energy is transferred to the target particle?

*48. (III) A neon atom  makes a perfectly elastic
collision with another atom at rest. After the impact, the
neon atom travels away at a 55.6° angle from its original
direction and the unknown atom travels away at a 
angle. What is the mass (in u) of the unknown atom?
[Hint: You could use the law of sines.]

7;8 Center of Mass (CM)

49. (I) The distance between a carbon atom  and
an oxygen atom  in the CO molecule is

How far from the carbon atom is the
center of mass of the molecule?

50. (I) Find the center of mass of the three-mass system shown
in Fig. 7–37 relative to the 1.00-kg mass.

1.13 * 10–10 m.
(m = 16 u)

(m = 12 u)

–50.0°

(m = 20.0 u)

vB = 3.7 m/s
0

A

B

B

vA = 2.0 m/s

v′B

+y

+x

51. (II) The CM of an empty 1250-kg car is 2.40 m behind the
front of the car. How far from the front of the car will the
CM be when two people sit in the front seat 2.80 m from 
the front of the car, and three people sit in the back seat
3.90 m from the front? Assume that each person has a mass
of 65.0 kg.

52. (II) Three cubes, of side and are placed next to
one another (in contact) with their centers along a straight
line as shown in Fig. 7–38. What is the position, along this
line, of the CM of this system? Assume the cubes are made of
the same uniform material.

3l0 ,l0 ,  2l0 ,

0.50 m 0.25 m

1.00 kg 1.50 kg 1.10 kg

FIGURE 7;37 Problem 50.

l0 2l0

x  = 0

3l0

x

FIGURE 7;38

Problem 52.

53. (II) A (lightweight) pallet has a load of ten identical cases of
tomato paste (see Fig. 7–39),
each of which is a cube of
length Find the center of
gravity in the horizontal plane,
so that the crane operator can
pick up the load without tip-
ping it.

l. l

FIGURE 7;39

Problem 53.

FIGURE 7;36

Problem 46.
(Ball A after 
the collision is 
not shown.)

43. (III) A bullet of mass embeds itself in a
wooden block with mass which then com-
presses a spring by a distance 
before coming to rest. The coefficient of kinetic friction
between the block and table is  (a) What is the
initial velocity (assumed horizontal) of the bullet? (b) What
fraction of the bullet’s initial kinetic energy is dissipated
(in damage to the wooden block, rising temperature, etc.)
in the collision between the bullet and the block?

*7;7 Collisions in Two Dimensions

*44. (II) Billiard ball A of mass  moving with
speed  strikes ball B, initially at rest, of
mass  As a result of the collision, ball A 
is deflected off at an angle of 30.0° with a speed

(a) Taking the x axis to be the original
direction of motion of ball A, write down the equations
expressing the conservation of momentum for the compo-
nents in the x and y directions separately. (b) Solve these
equations for the speed, and angle, of ball B after
the collision. Do not assume the collision is elastic.

*45. (II) A radioactive nucleus at rest decays into a second
nucleus, an electron, and a neutrino. The electron and 
neutrino are emitted at right angles and have momenta of

and respectively.
Determine the magnitude and the direction of the momen-
tum of the second (recoiling) nucleus.

*46. (III) Billiard balls A and B, of equal mass, move at right
angles and meet at the origin of an xy coordinate system 
as shown in Fig. 7–36. Initially ball A is moving along 
the y axis at and ball B is moving to the right
along the x axis with speed After the collision
(assumed elastic), ball B is moving along the positive y axis
(Fig. 7–36) with velocity

What is the final direc-
tion of ball A, and what
are the speeds of the two
balls?

vB
œ .

±3.7 m�s.
±2.0 m�s,

6.2 * 10–23 kg �m�s,9.6 * 10–23 kg �m�s

uB
œ ,vB

œ ,

vA
œ = 2.10 m�s.

mB = 0.140 kg.
vA = 2.80 m�s

mA = 0.120 kg

m = 0.50.

x = 0.050 m(k = 140 N�m)
M = 0.999 kg,

m = 0.0010 kg



8.00 cm

24.0 cm

FIGURE 7;42

Problem 62.

*63. (II) A 52-kg woman and a 72-kg man stand 10.0 m apart on
nearly frictionless ice. (a) How far from the woman is their CM?
(b) If each holds one end of a rope, and the man pulls on 
the rope so that he moves 2.5 m, how far from the woman
will he be now? (c) How far will the man have moved when
he collides with the woman?

*64. (II) Suppose that in Example 7–14 (Fig. 7–28),
(a) Where then would land? (b) What if  

*65. (II) Two people, one of mass 85 kg and the other of mass
55 kg, sit in a rowboat of mass 58 kg. With the boat 
initially at rest, the two people, who have been sitting at
opposite ends of the boat, 3.0 m apart from each other,
now exchange seats. How far and in what direction will 
the boat move?

*66. (III) A huge balloon and its gondola, of mass M, are in the
air and stationary with respect to the ground. A passenger,
of mass m, then climbs out and slides down a rope with
speed v, measured with respect to the balloon. With what
speed and direction (relative to Earth) does the balloon
then move? What happens if the passenger stops?

mI = 3mII?mII

mII = 3mI .
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y

x0

CM

2.06 m

0.20 m

0.20 m

1.48 m

B

A

CMA

CMBFIGURE 7;40 Problem 54.
This L-shaped object has uniform 
thickness d (not shown).

54. (III) Determine the CM of the uniform thin L-shaped con-
struction brace shown in Fig. 7–40.

R0.80R

2R

C C′

55. (III) A uniform circular plate of radius 2R has a circular
hole of radius R cut out of it. The center of the smaller
circle is a distance 0.80R from
the center C of the larger
circle, Fig. 7–41. What is
the position of the center
of mass of the plate?
[Hint: Try subtraction.]

C¿

FIGURE 7;41

Problem 55.

*7;9 CM for the Human Body

*56. (I) Assume that your proportions are the same as those in
Table 7–1, and calculate the mass of one of your legs.

*57. (I) Determine the CM of an outstretched arm using Table 7–1.
*58. (II) Use Table 7–1 to calculate the position of the CM of an arm

bent at a right angle. Assume that the person is 155 cm tall.
*59. (II) When a high jumper is in a position such that his arms

and lower legs are hanging vertically, and his thighs, trunk,
and head are horizontal just above the bar, estimate how far
below the torso’s median line the CM will be. Will this CM be
outside the body? Use Table 7–1.

*60. (III) Repeat Problem 59 assuming the body bends at the
hip joint by about 15°. Estimate, using Fig. 7–27 as a model.

*7;10 CM and Translational Motion

*61. (II) The masses of the Earth and Moon are
and respectively, and their centers are sepa-
rated by (a) Where is the CM of the Earth–Moon
system located? (b) What can you say about the motion of
the Earth–Moon system about the Sun, and of the Earth and
Moon separately about the Sun?

*62. (II) A mallet consists of a uniform cylindrical head of mass
2.30 kg and a diameter 0.0800 m mounted on a uniform
cylindrical handle of mass 0.500 kg and length 0.240 m, as
shown in Fig. 7–42. If this mallet is tossed, spinning, into
the air, how far above the bottom of the handle is the point
that will follow a parabolic trajectory?

3.84 * 108 m.
7.35 * 1022 kg,

5.98 * 1024 kg

67. Two astronauts, one of mass 55 kg and the other 85 kg, are
initially at rest together in outer space. They then push each
other apart. How far apart are they when the lighter astronaut
has moved 12 m?

68. Two asteroids strike head-on: before the collision, asteroid A
has velocity and asteroid B
has velocity in the opposite

direction. If the asteroids stick together, what is the veloc-
ity (magnitude and direction) of the new asteroid after the
collision?

69. A ball is dropped from a height of 1.60 m and rebounds to a
height of 1.20 m. Approximately how many rebounds will
the ball make before losing 90% of its energy?

70. A 4800-kg open railroad car coasts at a constant speed of
on a level track. Snow begins to fall vertically and fills

the car at a rate of Ignoring friction with the
tracks, what is the car’s speed after 60.0 min? (See Section 7–2.)

3.80 kg�min.
7.60 m�s

1.4 km�sAmB = 1.45 * 1013 kgB
3.3 km�sAmA = 7.5 * 1012 kgB

General Problems

mA =
 435 kg

vA =
 4.50 m/s

mB =
 495 kg

vB =
 3.70 m/s

(b) v ′A v ′B

(a)

A B

A B

FIGURE 7;43 Problem 71:
(a) before collision, (b) after collision.

71. Two bumper cars in an amusement park ride collide elas-
tically as one approaches the other directly from the rear
(Fig. 7–43). Car A has a mass of 435 kg and car B 495 kg,
owing to differences in passenger mass. If car A approaches
at and car B is moving at calculate 
(a) their velocities after the collision, and (b) the change 
in momentum of each.

3.70 m�s,4.50 m�s
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73. You have been hired as an expert witness in a court case
involving an automobile accident. The accident involved
car A of mass 1500 kg which crashed into stationary car B
of mass 1100 kg. The driver of car A applied his brakes
15 m before he skidded and crashed into car B. After the
collision, car A slid 18 m while car B slid 30 m. The coeffi-
cient of kinetic friction between the locked wheels and the
road was measured to be 0.60. Show that the driver of car A
was exceeding the speed limit before
applying the brakes.

74. A meteor whose mass was about struck the
Earth  with a speed of about 
and came to rest in the Earth. (a) What was the Earth’s
recoil speed (relative to Earth at rest before the collision)?
(b) What fraction of the meteor’s kinetic energy was trans-
formed to kinetic energy of the Earth? (c) By how much did
the Earth’s kinetic energy change as a result of this collision?

75. A 28-g bullet strikes and becomes embedded in a 1.35-kg
block of wood placed on a horizontal surface just in front
of the gun. If the coefficient of kinetic friction between the
block and the surface is 0.28, and the impact drives the
block a distance of 8.5 m before it comes to rest, what was
the muzzle speed of the bullet?

76. You are the design engineer in charge of the crashworthiness
of new automobile models. Cars are tested by smashing them
into fixed, massive barriers at A new model of mass
1500 kg takes 0.15 s from the time of impact until it is brought
to rest. (a) Calculate the average force exerted on the car by
the barrier. (b) Calculate the average deceleration of the car
in g’s.

77. A 0.25-kg skeet (clay target) is fired at an angle of 28° to
the horizontal with a speed of (Fig. 7–45). When it
reaches the maximum height, h, it is hit from below by a
15-g pellet traveling vertically upward at a speed of 
The pellet is embedded in the skeet. (a) How much higher,
does the skeet go up? (b) How much extra distance, does 
the skeet travel because of the collision?

¢x,
h¿,

230 m�s.

25 m�s

45 km�h.

25 km�sAmE = 6.0 * 1024 kgB
1.5 * 108 kg

55-mi�h (90-km�h)

72. A gun fires a bullet vertically into a 1.40-kg block of 
wood at rest on a thin horizontal
sheet, Fig. 7–44. If the bullet
has a mass of 25.0 g and a speed
of how high will the
block rise into the air after 
the bullet becomes embedded
in it?

230 m�s,

1.40 kg

= 230 m/s

FIGURE 7;44

Problem 72.

28
v0 = 25 m/s

v = 230 m/s
y

x

Skeet

Skeet

h

h’

Pellet

�x

FIGURE 7;45 Problem 77.

35 cm

66�

mA

mA mB

A B

A

FIGURE 7;46

Problem 78.

79. A block of mass  slides down a 30.0° incline
which is 3.60 m high. At the bottom, it strikes a block of
mass  which is at rest on a horizontal surface,
Fig. 7–47. (Assume a smooth transition at the bottom of the
incline.) If the collision is elastic, and friction can be ignored,
determine (a) the speeds of the two blocks after the collision,
and (b) how far back up the incline the smaller mass will go.

M = 7.00 kg

m = 2.50 kg

3.60 m
M30.0°

m

FIGURE 7;47

Problem 79.

78. Two balls, of masses  and  are sus-
pended as shown in Fig. 7–46. The lighter ball is pulled away
to a 66° angle with the vertical and released. (a) What is
the velocity of the lighter ball before impact? (b) What is
the velocity of each ball after the elastic collision? (c) What
will be the maximum
height of each ball after
the elastic collision?

mB = 65 g,mA = 45 g

80. The space shuttle launches an 850-kg satellite by ejecting it
from the cargo bay. The ejection mechanism is activated
and is in contact with the satellite for 4.8 s to give it a velocity
of in the x direction relative to the shuttle. The mass
of the shuttle is 92,000 kg. (a) Determine the component of
velocity of the shuttle in the minus x direction resulting
from the ejection. (b) Find the average force that the 
shuttle exerts on the satellite during the ejection.

81. Astronomers estimate that a 2.0-km-diameter asteroid collides
with the Earth once every million years. The collision could
pose a threat to life on Earth. (a) Assume a spherical asteroid
has a mass of 3200 kg for each cubic meter of volume and
moves toward the Earth at How much destructive
energy could be released when it embeds itself in the Earth?
(b) For comparison, a nuclear bomb could release about

How many such bombs would have to explode
simultaneously to release the destructive energy of the
asteroid collision with the Earth?

82. An astronaut of mass 210 kg including his suit and jet pack
wants to acquire a velocity of to move back toward
his space shuttle. Assuming the jet pack can eject gas with a
velocity of what mass of gas will need to be ejected?35 m�s,

2.0 m�s

4.0 * 1016 J.

15 km�s.

vf

0.30 m�s
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83. Two blocks of mass and resting on a frictionless
table, are connected by a stretched spring and then released
(Fig. 7–48). (a) Is there a net external force on the system
before release? (b) Determine the ratio of their speeds,
(c) What is the ratio of their kinetic energies? (d) Describe
the motion of the CM of this system. Ignore mass of spring.

vA�vB .

mB ,mA 85. A massless spring with spring constant k is placed between
a block of mass m and a block of mass 3m. Initially the
blocks are at rest on a frictionless surface and they are held
together so that the spring between them is compressed by
an amount D from its equilibrium length. The blocks are
then released and the spring pushes them off in opposite
directions. Find the speeds of the two blocks when they
detach from the spring.

*86. A novice pool player is faced with the corner pocket shot
shown in Fig. 7–49. Relative dimensions are also shown.
Should the player worry that this might be a “scratch shot,”
in which the cue ball will
also fall into a pocket?
Give details. Assume
equal-mass balls and an
elastic collision.Ignore spin.

1. Consider the Examples in this Chapter involving
Provide some general guidelines as to

when it is best to solve the problem using  so
and when to use the principle of impulse

instead so that
2. A 6.0-kg object moving in the direction at 

collides head-on with an 8.0-kg object moving in the 
direction at Determine the final velocity of each

object if: (a) the objects stick together; (b) the collision is
elastic; (c) the 6.0-kg object is at rest after the collision;
(d) the 8.0-kg object is at rest after the collision; (e) the
6.0-kg object has a velocity of in the direction
after the collision. Finally, (f) are the results in (c), (d), and (e)
“reasonable”? Explain.

3. In a physics lab, a cube slides down a frictionless incline as
shown in Fig. 7–50 and elas-
tically strikes another cube 
at the bottom that is only
one-half its mass. If the
incline is 35 cm high and the
table is 95 cm off the floor,
where does each cube land?
[Hint: Both leave the incline
moving horizontally.]

–x4.0 m�s

4.0 m�s.–x

6.5 m�s±x
©F

B

ext ¢t = ¢pB.
©pB i = ©pBf ,

©F
B

ext = 0
©F

B

ext = ¢pB�¢t.
4. The gravitational slingshot effect. Figure 7–51 shows the

planet Saturn moving in the negative x direction at its
orbital speed (with respect to the Sun) of The
mass of Saturn is A spacecraft with mass
825 kg approaches Saturn. When far from Saturn, it moves
in the direction at The gravitational attrac-
tion of Saturn (a conservative force) acting on the spacecraft
causes it to swing around the planet (orbit shown as dashed
line) and head off in the opposite direction. Estimate the
final speed of the spacecraft after it is far enough away to
be considered free of Saturn’s gravitational pull.

10.4 km�s.±x

5.69 * 1026 kg.
9.6 km�s.

Search and Learn

A: Yes, if the sports car’s speed is three times greater.
B: Larger ( is greater).
C: (a) (b) almost zero; (c) almost 
D: 0.50 m�s.

24.0 m�s.6.0 m�s;
¢p

E: (b); (d).
F: The curve would be wider and less high.
G: yes.
H: The boat moves in the opposite direction.

xCM = –2.0 m;

A N S W E R S  TO  E X E R C I S E S

M

m

35 cm

95 cm

FIGURE 7;50

Search and Learn 3.

x

vsp = 10.4 km/s

vSaturn = −9.6 km/s

v′sp = ?
FIGURE 7;51

Search and Learn 4.

5. Take the general case of an object of mass and
velocity elastically striking a stationary  object
of mass head-on. (a) Show that the final velocities 
and are given by

(b) What happens in the extreme case when is much
smaller than Cite a common example of this. (c) What
happens in the extreme case when is much larger than

Cite a common example of this. (d) What happens in
the case when  Cite a common example.mA = mB?
mB?

mA

mB?
mA

vB
œ = a 2mA

mA + mB
bvA .vA

œ = amA - mB

mA + mB
bvA ,

vB
œ

vA
œmB

AvB = 0BvA

mA

84. A golf ball rolls off the top of a flight of concrete steps of
total vertical height 4.00 m. The ball hits four times on the
way down, each time striking the horizontal part of a differ-
ent step 1.00 m lower. If all collisions are perfectly elastic,
what is the bounce height on the fourth bounce when the
ball reaches the bottom of the stairs?

vA
B vB

B

mA mB

FIGURE 7;48 Problem 83. 4.0

1.0

Cue ball

3.0√

FIGURE 7;49

Problem 86.




