
(a) (b) (c)
(d)

Easy
Intermediate
Difficult
Very difficult
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This baseball pitcher is about to accelerate the 
baseball to a high velocity by exerting a force on it.
He will be doing work on the ball as he exerts the 
force over a displacement of perhaps several meters,
from behind his head until he releases the ball with 
arm outstretched in front of him. The total work done 
on the ball will be equal to the kinetic energy 
acquired by the ball, a result known as the 
work-energy principle.

A12 mv2B

CHAPTER-OPENING QUESTION—Guess now!
A skier starts at the top of a hill. On which run does her
gravitational potential energy change the most: (a), (b),
(c), or (d); or are they (e) all the same? On which run
would her speed at the bottom be the fastest if the runs are
icy and we assume no friction or air resistance? Recogniz-
ing that there is always some friction, answer the above two
questions again. List your four answers now.

U ntil now we have been studying the translational motion of an object in
terms of Newton’s three laws of motion. In that analysis, force has played
a central role as the quantity determining the motion. In this Chapter

and the next, we discuss an alternative analysis of the translational motion of
objects in terms of the quantities energy and momentum. The significance of
energy and momentum is that they are conserved. That is, in quite general cir-
cumstances they remain constant. That conserved quantities exist gives us not only
a deeper insight into the nature of the world, but also gives us another way to
approach solving practical problems.

The conservation laws of energy and momentum are especially valuable in
dealing with systems of many objects, in which a detailed consideration of the
forces involved would be difficult or impossible. These laws apply to a wide 
range of phenomena. They even apply in the atomic and subatomic worlds, where
Newton’s laws are not sufficient.

This Chapter is devoted to the very important concept of energy and the
closely related concept of work. These two quantities are scalars and so have no
direction associated with them, which often makes them easier to work with than
vector quantities such as acceleration and force.

*
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FIGURE 6–1 A person pulling
a crate along the floor. The
work done by the force is

where is the
displacement.

d
B

W = Fd cos u,
F
B

6–1 Work Done by a Constant Force
The word work has a variety of meanings in everyday language. But in physics,
work is given a very specific meaning to describe what is accomplished when a
force acts on an object, and the object moves through a distance. We consider
only translational motion for now and, unless otherwise explained, objects are
assumed to be rigid with no complicating internal motion, and can be treated like
particles. Then the work done on an object by a constant force (constant in both
magnitude and direction) is defined to be the product of the magnitude of the
displacement times the component of the force parallel to the displacement. In
equation form, we can write

where is the component of the constant force parallel to the displacement 
We can also write

(6;1)

where F is the magnitude of the constant force, d is the magnitude of the displace-
ment of the object, and is the angle between the directions of the force and the
displacement (Fig. 6–1). The factor appears in Eq. 6–1 because 

is the component of that is parallel to Work is a scalar quantity—it
has no direction, but only magnitude, which can be positive or negative.

Let us consider the case in which the motion and the force are in the same
direction, so  and  in this case, For example, if you
push a loaded grocery cart a distance of 50 m by exerting a horizontal force of
30 N on the cart, you do  of work on the cart.

As this example shows, in SI units work is measured in newton-meters
A special name is given to this unit, the joule (J):

[In the cgs system, the unit of work is called the erg and is defined as
In British units, work is measured in foot-pounds. Their

equivalence is  ]
A force can be exerted on an object and yet do no work. If you hold a heavy

bag of groceries in your hands at rest, you do no work on it. You do exert a force
on the bag, but the displacement of the bag is zero, so the work done by you on
the bag is You need both a force and a displacement to do work. You
also do no work on the bag of groceries if you carry it as you walk horizontally
across the floor at constant velocity, as shown in Fig. 6–2. No horizontal force is
required to move the bag at a constant velocity. The person shown in Fig. 6–2
exerts an upward force on the bag equal to its weight. But this upward 
force is perpendicular to the horizontal displacement of the bag and thus is doing 
no work. This conclusion comes from our definition of work, Eq. 6–1:
because and Thus, when a particular force is perpendicu-
lar to the displacement, no work is done by that force. When you start or stop
walking, there is a horizontal acceleration and you do briefly exert a horizontal
force, and thus do work on the bag.

cos 90° = 0.u = 90°
W = 0,

F
B

P

W = 0.

1 J = 107 erg = 0.7376 ft� lb.
1 erg = 1 dyne �cm.

1 J = 1 N�m.(N�m).

30 N * 50 m = 1500 N�m

W = Fd.cos u = 1;u = 0

d
B

.F
BA= F∑∑B

F cos ucos u
u

W = Fd cos u,

d
B
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W = F∑∑ d,
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FIGURE 6–2 The person does no
work on the bag of groceries because 

is perpendicular to the 
displacement d

B

.
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Force without work



When we deal with work, as with force, it is necessary to specify whether you
are talking about work done by a specific object or done on a specific object. It is
also important to specify whether the work done is due to one particular force (and
which one), or the total (net) work done by the net force on the object.
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Negative work
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State that work is done 
on or by an object
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x
37°    (40 m)
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N
SS θ =F
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SS
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gB

xBFIGURE 6–3 Example 6–1.
A 50-kg crate is pulled 
along a floor.

Work done on a crate. A person pulls a 50-kg crate 40 m
along a horizontal floor by a constant force  which acts at a 37° angle
as shown in Fig. 6–3. The floor is rough and exerts a friction force  
Determine (a) the work done by each force acting on the crate, and (b) the net
work done on the crate.

APPROACH We choose our coordinate system so that the vector that repre-
sents the 40-m displacement is (that is, along the x axis). Four forces act on 
the crate, as shown in the free-body diagram in Fig. 6–3: the force exerted by
the person the friction force the gravitational force exerted by the
Earth, and the normal force exerted upward by the floor. The net
force on the crate is the vector sum of these four forces.

SOLUTION (a) The work done by the gravitational force and by the
normal force is zero, because they are perpendicular to the displacement 
( in Eq. 6–1):

The work done by is

The work done by the friction force is

The angle between the displacement and is 180° because they point in
opposite directions. Since the force of friction is opposing the motion (and

), the work done by friction on the crate is negative.
(b) The net work can be calculated in two equivalent ways.
(1) The net work done on an object is the algebraic sum of the work done by each
force, since work is a scalar:

(2) The net work can also be calculated by first determining the net force on the
object and then taking the component of this net force along the displacement:

Then the net work is

In the vertical (y) direction, there is no displacement and no work done.

= (100 N cos 37° - 50 N)(40 m) = 1200 J.
Wnet = AFnetBxx = AFP cos u - FfrBx

FP cos u - Ffr .AFnetBx =

=  0   +  0  + 3200 J - 2000 J = 1200 J.
Wnet = WG + WN + WP + Wfr

cos 180° = –1

F
B

frxB
= (50 N)(40 m)(–1) = –2000 J.Wfr = Ffr x cos 180°

WP = FP x cos u = (100 N)(40 m) cos 37° = 3200 J.

F
B

P

WN = FN x cos 90° = 0.
WG = mgx cos 90° = 0

u = 90°
xBAFBNB

AFBGB
F
B

NmgB;F
B

G =
F
B

fr ;F
B

P ;

xB

F
B

fr = 50 N.
FP = 100 N,

EXAMPLE 6;1

In Example 6–1 we saw that friction did negative work. In general, the work
done by a force is negative whenever the force (or the component of the force, )
acts in the direction opposite to the direction of motion.

F∑∑

EXERCISE A A box is dragged a distance d across a floor by a force which makes an
angle with the horizontal as in Fig. 6–1 or 6–3. If the magnitude of is held constant 
but the angle is increased, the work done by (a) remains the same; (b) increases;
(c) decreases; (d) first increases, then decreases.
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3. Apply Newton’s laws to determine unknown forces.
4. Find the work done by a specific force on the object by

using  for a constant force. The work
done is negative when a force opposes the displacement.

5. To find the net work done on the object, either
(a) find the work done by each force and add the
results algebraically; or (b) find the net force on the
object, and then use it to find the net work
done, which for constant net force is:

Wnet = Fnet d cos u.

Fnet ,

W = Fd cos u

P
R

O
B
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Work
1. Draw a free-body diagram showing all the forces act-

ing on the object you choose to study.

2. Choose an xy coordinate system. If the object is in
motion, it may be convenient to choose one of the
coordinate directions as the direction of one of the
forces, or as the direction of motion. [Thus, for an
object on an incline, you might choose one coordinate
axis to be parallel to the incline.]
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Work on a backpack. (a) Determine the work a hiker must
do on a 15.0-kg backpack to carry it up a hill of height  as shown in
Fig. 6–4a. Determine also (b) the work done by gravity on the backpack, and 
(c) the net work done on the backpack. For simplicity, assume the motion is
smooth and at constant velocity (i.e., acceleration is zero).

APPROACH We explicitly follow the steps of the Problem Solving Strategy above.

SOLUTION

1. Draw a free-body diagram. The forces on the backpack are shown in Fig. 6–4b:
the force of gravity, acting downward; and the force the hiker must
exert upward to support the backpack. The acceleration is zero, so horizontal
forces on the backpack are negligible.

2. Choose a coordinate system. We are interested in the vertical motion of the
backpack, so we choose the y coordinate as positive vertically upward.

3. Apply Newton’s laws. Newton’s second law applied in the vertical direction
to the backpack gives (with  )

So,

4. Work done by a specific force. (a) To calculate the work done by the hiker on
the backpack, we use Eq. 6–1, where is shown in Fig. 6–4c,

and we note from Fig. 6–4a that  So the work done by the hiker is

The work done depends only on the elevation change and not on the angle of the
hill, The hiker would do the same work to lift the pack vertically by height h.
(b) The work done by gravity on the backpack is (from Eq. 6–1 and Fig. 6–4c)

Since  (Appendix A–7), we have

NOTE The work done by gravity (which is negative here) does not depend on the
angle of the incline, only on the vertical height h of the hill.
5. Net work done. (c) The net work done on the backpack is  because the

net force on the backpack is zero (it is assumed not to accelerate significantly).
We can also get the net work done by adding the work done by each force:

NOTE Even though the net work done by all the forces on the backpack is zero,
the hiker does do work on the backpack equal to 1470 J.

Wnet = WG + WH = –1470 J + 1470 J = 0.

Wnet = 0,

= –(15.0 kg)A9.80 m�s2B(10.0 m) = –1470 J.
= –mgh

WG = mg(–d cos u)

cos(180° - u) = –cos u

WG = mg d cos(180° - u).

u.

= (147 N)(10.0 m) = 1470 J.WH = FH(d cos u) = FH h = mgh

d cos u = h.

WH = FH(d cos u),

u

FH = mg = (15.0 kg)A9.80 m�s2B = 147 N.

FH - mg = 0.
©Fy = may

ay = 0

F
B

H ,mgB,

h = 10.0 m,
EXAMPLE 6;2

P R O B L E M  S O L V I N G

Work done by gravity depends on 
height of hill (not on angle)
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FIGURE 6–4 Example 6–2.



Does the Earth do work on the Moon?

The Moon revolves around the Earth in a nearly circular orbit, kept there by the
gravitational force exerted by the Earth. Does gravity do (a) positive work,
(b) negative work, or (c) no work on the Moon?

RESPONSE The gravitational force exerted by the Earth on the Moon 
(Fig. 6–5) acts toward the Earth and provides its centripetal acceleration, inward
along the radius of the Moon’s orbit. The Moon’s displacement at any moment is
tangent to the circle, in the direction of its velocity, perpendicular to the radius and
perpendicular to the force of gravity. Hence the angle between the force 
and the instantaneous displacement of the Moon is 90°, and the work done by
gravity is therefore zero This is why the Moon, as well as artificial
satellites, can stay in orbit without expenditure of fuel: no work needs to be done
against the force of gravity.

6–2 Work Done by a Varying Force
If the force acting on an object is constant, the work done by that force can be
calculated using Eq. 6–1. But in many cases, the force varies in magnitude or
direction during a process. For example, as a rocket moves away from Earth, work
is done to overcome the force of gravity, which varies as the inverse square of 
the distance from the Earth’s center. Other examples are the force exerted by 
a spring, which increases with the amount of stretch, or the work done by a vary-
ing force that pulls a box or cart up an uneven hill.

The work done by a varying force can be determined graphically. To do so,
we plot the component of parallel to the direction of motion 
at any point) as a function of distance d, as in Fig. 6–6a. We divide the distance
into small segments For each segment, we indicate the average of by a
horizontal dashed line. Then the work done for each segment is  
which is the area of a rectangle wide and high. The total work done to
move the object a total distance is the sum of the areas of the 
rectangles (five in the case shown in Fig. 6–6a). Usually, the average value of 
for each segment must be estimated, and a reasonable approximation of the work
done can then be made.

If we subdivide the distance into many more segments, can be made smaller
and our estimate of the work done would be more accurate. In the limit as 
approaches zero, the total area of the many narrow rectangles approaches the
area under the curve, Fig. 6–6b. That is, the work done by a variable force in
moving an object between two points is equal to the area under the vs. d curve
between those two points.

6–3 Kinetic Energy, and 
the Work-Energy Principle

Energy is one of the most important concepts in science. Yet we cannot give a
simple general definition of energy in only a few words. Nonetheless, each specific
type of energy can be defined fairly simply. In this Chapter we define translational
kinetic energy and some types of potential energy. In later Chapters, we will examine
other types of energy, such as that related to heat and electricity. The crucial
aspect of energy is that the sum of all types, the total energy, is the same after 
any process as it was before: that is, energy is a conserved quantity.

For the purposes of this Chapter, we can define energy in the traditional way
as “the ability to do work.” This simple definition is not always applicable,† but it
is valid for mechanical energy which we discuss in this Chapter. We now define
and discuss one of the basic types of energy, kinetic energy.

F∑∑
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F∑∑

d = dB - dA

F∑∑¢d
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†Energy associated with heat is often not available to do work, as we will discuss in Chapter 15.
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FIGURE 6–5 Example 6–3.
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FIGURE 6–6 Work done by a 
force F is (a) approximately equal 
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Kinetic energy
(defined)

WORK-ENERGY PRINCIPLE

WORK-ENERGY PRINCIPLE
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FIGURE 6–7 A constant net 
force accelerates a car from 
speed to speed over a 
displacement d. The net work done 
is Wnet = Fnet d.

v2v1

Fnet

C A U T I O N

Work-energy valid only for net work

A moving object can do work on another object it strikes. A flying cannonball
does work on a brick wall it knocks down; a moving hammer does work on a nail 
it drives into wood. In either case, a moving object exerts a force on a second
object which undergoes a displacement. An object in motion has the ability to 
do work and thus can be said to have energy. The energy of motion is called
kinetic energy, from the Greek word kinetikos, meaning “motion.”

To obtain a quantitative definition for kinetic energy, let us consider a simple
rigid object of mass m (treated as a particle) that is moving in a straight line with an
initial speed To accelerate it uniformly to a speed a constant net force 
is exerted on it parallel to its motion over a displacement d, Fig. 6–7. Then the net
work done on the object is  We apply Newton’s second law,
and use Eq. 2–11c  which we rewrite as

where is the initial speed and is the final speed. Substituting this into
we determine the work done:

or

(6;2)

We define the quantity to be the translational kinetic energy (KE) of the object:

(6;3)

(We call this “translational” kinetic energy to distinguish it from rotational kinetic
energy, which we will discuss in Chapter 8.) Equation 6–2, derived here for one-
dimensional motion with a constant force, is valid in general for translational
motion of an object in three dimensions and even if the force varies.

We can rewrite Eq. 6–2 as:

or

(6;4)

Equation 6–4 is a useful result known as the work-energy principle. It can be
stated in words:

The net work done on an object is equal to the change in the object’s 
kinetic energy.

Notice that we made use of Newton’s second law, where is the net
force—the sum of all forces acting on the object. Thus, the work-energy principle
is valid only if W is the net work done on the object—that is, the work done by 
all forces acting on the object.

FnetFnet = ma,

Wnet = ¢ke = 1
2 mv2

2 - 1
2 mv1

2 .

Wnet = ke2 - ke1

ke = 1
2 mv2.

1
2 mv2

Wnet = 1
2 mv2

2 - 1
2 mv1

2 .

Wnet = Fnet d = mad = m a v2
2 - v1

2

2d
bd = m a v2

2 - v1
2

2
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Fnet = ma,
v2v1

a =
v2

2 - v1
2

2d
,

Av2
2 = v1

2 + 2adB, Fnet = ma,Wnet = Fnet d.

Fnetv2 ,v1 .



The work-energy principle is a very useful reformulation of Newton’s laws.
It tells us that if (positive) net work W is done on an object, the object’s kinetic
energy increases by an amount W. The principle also holds true for the reverse
situation: if the net work W done on an object is negative, the object’s kinetic
energy decreases by an amount W. That is, a net force exerted on an object oppo-
site to the object’s direction of motion decreases its speed and its kinetic energy.
An example is a moving hammer (Fig. 6–8) striking a nail. The net force on the
hammer ( in Fig. 6–8, where is assumed constant for simplicity) acts toward
the left, whereas the displacement of the hammer is toward the right. So the net
work done on the hammer, is negative and the
hammer’s kinetic energy decreases (usually to zero).

Figure 6–8 also illustrates how energy can be considered the ability to 
do work. The hammer, as it slows down, does positive work on the nail:

and is positive. The decrease in kinetic energy of the
hammer ( by Eq. 6–4) is equal to the work the hammer can do on another
object, the nail in this case.

The translational kinetic energy is directly proportional to the mass
of the object, and it is also proportional to the square of the speed. Thus, if the
mass is doubled, the kinetic energy is doubled. But if the speed is doubled, the
object has four times as much kinetic energy and is therefore capable of doing four
times as much work.

Because of the direct connection between work and kinetic energy, energy is
measured in the same units as work: joules in SI units. [The energy unit is ergs in
the cgs, and foot-pounds in the British system.] Like work, kinetic energy is a
scalar quantity. The kinetic energy of a group of objects is the sum of the kinetic
energies of the individual objects.

The work-energy principle can be applied to a particle, and also to an object
that can be approximated as a particle, such as an object that is rigid or whose
internal motions are insignificant. It is very useful in simple situations, as we will
see in the Examples below.

A� 1
2 mv2B

= Fd
Wn = (±F)(±d) = Fd

Wh = (F)(d)(cos 180°) = –Fd,
d
B

F
B

–F
B
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(on nail)(on hammer)
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d
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−F
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FIGURE 6–8 A moving hammer
strikes a nail and comes to rest. The
hammer exerts a force F on the 
nail; the nail exerts a force on
the hammer (Newton’s third law).
The work done on the nail by the
hammer is positive
The work done on the hammer by
the nail is negative AWh = –FdB.

AWn = Fd 7 0B.

–F

v1 =  20 m/s v2 =  30 m/s

FIGURE 6–9 Example 6–4.

Work on a car, to increase its kinetic energy.

How much net work is required to accelerate a 1000-kg car from to 
(Fig. 6–9)?

APPROACH A car is a complex system. The engine turns the wheels and tires
which push against the ground, and the ground pushes back (see Example 4–4).
We aren’t interested right now in those complications. Instead, we can get a
useful result using the work-energy principle, but only if we model the car as a
particle or simple rigid object.

SOLUTION The net work needed is equal to the increase in kinetic energy:

= 2.5 * 105 J.

= 1
2 (1000 kg)(30 m�s)2 - 1

2 (1000 kg)(20 m�s)2

= 1
2 mv2

2 - 1
2 mv1

2

W = ke2 - ke1

30 m�s
20 m�s

EXAMPLE 6;4 ESTIMATE

EXERCISE B (a) Make a guess: will the work needed to accelerate the car in Example 6–4
from rest to be more than, less than, or equal to the work already calculated to
accelerate it from to (b) Make the calculation.30 m�s?20 m�s

20 m�s



Work to stop a car. A car traveling 
can brake to a stop in a distance d of 20 m (Fig. 6–10a). If the car is going 
twice as fast, what is its stopping distance (Fig. 6–10b)? Assume the
maximum braking force is approximately independent of speed.

RESPONSE Again we model the car as if it were a particle. Because the net stop-
ping force F is approximately constant, the work needed to stop the car, is
proportional to the distance traveled. We apply the work-energy principle, noting
that and are in opposite directions and that the final speed of the car is zero:

Then

Thus, since the force and mass are constant, we see that the stopping distance, d,
increases with the square of the speed:

If the car’s initial speed is doubled, the stopping distance is  times as great,
or 80 m.

(2)2 = 4

d r v2.

=  0 - 1
2 mv1

2 .

–Fd = ¢ke = 1
2 mv2

2 - 1
2 mv1

2

Wnet = Fd cos 180° = –Fd.

d
B

F
B

Fd,

120 km�h,

60 km�hCONCEPTUAL EXAMPLE 6;5
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FIGURE 6–10 Example 6–5. A moving car comes to a stop.
Initial velocity is (a) (b) 120 km�h.60 km�h,

EXERCISE C Can kinetic energy ever be negative?

EXERCISE D (a) If the kinetic energy of a baseball is doubled, by what factor has its speed
increased? (b) If its speed is doubled, by what factor does its kinetic energy increase?

6–4 Potential Energy
We have just discussed how an object is said to have energy by virtue of its motion,
which we call kinetic energy. But it is also possible to have potential energy, which is
the energy associated with forces that depend on the position or configuration of an
object (or objects) relative to the surroundings. Various types of potential energy
(PE) can be defined, and each type is associated with a particular force.

The spring of a wind-up toy is an example of an object with potential energy.
The spring acquired its potential energy because work was done on it by the person
winding the toy. As the spring unwinds, it exerts a force and does work to make
the toy move.

Gravitational Potential Energy
Perhaps the most common example of potential energy is gravitational potential
energy. A heavy brick held high above the ground has potential energy because
of its position relative to the Earth. The raised brick has the ability to do work,
for if it is released, it will fall to the ground due to the gravitational force, and can
do work on, say, a stake, driving it into the ground.



Let us seek the form for the gravitational potential energy of an object near
the surface of the Earth. For an object of mass m to be lifted vertically, an upward
force at least equal to its weight, mg, must be exerted on it, say by a person’s
hand. To lift the object without acceleration, the person exerts an “external
force” If it is raised a vertical height h, from position to in 
Fig. 6–11 (upward direction chosen positive), a person does work equal to the
product of the “external” force she exerts, upward, multiplied by the
vertical displacement h. That is,

(6;5a)

Gravity is also acting on the object as it moves from to and does work on the
object equal to

where  because and point in opposite directions. So

(6;5b)

Next, if we allow the object to start from rest at and fall freely under the
action of gravity, it acquires a velocity given by  (Eq. 2–11c) after falling a
height h. It then has kinetic energy  and if it strikes a
stake, it can do work on the stake equal to mgh (Section 6–3).

Thus, to raise an object of mass m to a height h requires an amount of work
equal to mgh (Eq. 6–5a). And once at height h, the object has the ability to do an
amount of work equal to mgh. We can say that the work done in lifting the object
has been stored as gravitational potential energy.

We therefore define the gravitational potential energy of an object, due to
Earth’s gravity, as the product of the object’s weight mg and its height y above
some reference level (such as the ground):

(6;6)

The higher an object is above the ground, the more gravitational potential energy
it has. We combine Eq. 6–5a with Eq. 6–6:

(6;7a)

That is, the change in potential energy when an object moves from a height to a
height is equal to the work done by a net external force to move the object
from position 1 to position 2 without acceleration.

Equivalently, we can define the change in gravitational potential energy,
in terms of the work done by gravity itself. Starting from Eq. 6–5b, we obtain

or
(6;7b)

That is, the change in gravitational potential energy as the object moves from
position 1 to position 2 is equal to the negative of the work done by gravity itself.

Gravitational potential energy depends on the vertical height of the object
above some reference level (Eq. 6–6). In some situations, you may wonder from
what point to measure the height y. The gravitational potential energy of a book
held high above a table, for example, depends on whether we measure y from
the top of the table, from the floor, or from some other reference point. What 
is physically important in any situation is the change in potential energy,
because that is what is related to the work done, Eqs. 6–7; and it is that 
can be measured. We can thus choose to measure y from any reference level 
that is convenient, but we must choose the reference level at the start and be
consistent throughout. The change in potential energy between any two points
does not depend on this choice.

¢pe
¢pe,

¢peG = –WG .

WG = – Ape2 - pe1B = –¢peG

WG = –mgAy2 - y1B
¢peG ,

y2

y1

Wext = pe2 - pe1 = ¢peG .

Wext = mgAy2 - y1B

peG = mgy.

1
2 mv2 = 1

2 m(2gh) = mgh,
v2 = 2gh

y2

= –mgAy2 - y1B.
WG = –mgh

d
B

F
B

Gu = 180°

WG = FG d cos u = mgh cos 180°,

y2 ,y1

= mgAy2 - y1B.
Wext = Fext d cos 0° = mgh

Fext = mg

y2y1Fext = mg.
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Change in PE is what is 
physically meaningful

(exerted
by hand)

y1

y2

h

=

m

ext

mGF
B

F
B

d
B

gB

FIGURE 6–11 A person exerts an
upward force  to lift a
brick from to y2 .y1

Fext = mg

C A U T I O N

work done
by net external force
¢peG =

C A U T I O N

¢peG = –WG
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2

10 m

3

1

15 m

y

FIGURE 6–12 Example 6–6.

Potential energy changes for a roller coaster. A 1000-kg
roller-coaster car moves from point 1, Fig. 6–12, to point 2 and then to point 3.
(a) What is the gravitational potential energy at points 2 and 3 relative to 
point 1? That is, take  at point 1. (b) What is the change in potential 
energy when the car goes from point 2 to point 3? (c) Repeat parts (a) and (b),
but take the reference point  to be at point 3.

APPROACH We are interested in the potential energy of the car–Earth system.
We take upward as the positive y direction, and use the definition of gravitational
potential energy to calculate the potential energy.

SOLUTION (a) We measure heights from point 1 which means initially
that the gravitational potential energy is zero. At point 2, where  

At point 3, since point 3 is below point 1. Therefore,

(b) In going from point 2 to point 3, the potential energy change is

The gravitational potential energy decreases by 
(c) Now we set  Then  at point 1, so the potential energy initially
is

At point 2, so the potential energy is

At point 3, so the potential energy is zero. The change in potential energy
going from point 2 to point 3 is

which is the same as in part (b).

NOTE Work done by gravity depends only on the vertical height, so changes in
gravitational potential energy do not depend on the path taken.

pe3 - pe2 = 0 - 2.5 * 105 J = –2.5 * 105 J,

y3 = 0,

pe2 = 2.5 * 105 J.

y2 = 25 m,

pe1 = (1000 kg)A9.8 m�s2)(15 m) = 1.5 * 105 J.

y1 = ±15 my3 = 0.
2.5 * 105 J.

= –2.5 * 105 J.pe3 - pe2 = A–1.5 * 105 JB - A9.8 * 104 JB
Apefinal - peinitialB

pe3 = mgy3 = (1000 kg)A9.8 m�s2B(–15 m) = –1.5 * 105 J.

y3 = –15 m,

pe2 = mgy2 = (1000 kg)A9.8 m�s2B(10 m) = 9.8 * 104 J.

y2 = 10 m,
Ay1 = 0B,

(y = 0)

y = 0

EXAMPLE 6;6

C A U T I O N

Potential energy belongs to a system,
not to a single object

An important result we discussed earlier (see Example 6–2 and Fig. 6–4)
concerns the gravity force, which does work only in the vertical direction: the
work done by gravity depends only on the vertical height h, and not on the path
taken, whether it be purely vertical motion or, say, motion along an incline. Thus,
from Eqs. 6–7 we see that changes in gravitational potential energy depend only
on the change in vertical height and not on the path taken.

Potential energy belongs to a system, and not to a single object alone. Poten-
tial energy is associated with a force, and a force on one object is always exerted
by some other object. Thus potential energy is a property of the system as a
whole. For an object raised to a height y above the Earth’s surface, the change in
gravitational potential energy is mgy. The system here is the object plus the
Earth, and properties of both are involved: object (m) and Earth (g).

Potential Energy Defined in General
There are other kinds of potential energy besides gravitational. Each form of
potential energy is associated with a particular force, and can be defined analo-
gously to gravitational potential energy. In general, the change in potential energy
associated with a particular force is equal to the negative of the work done by 
that force when the object is moved from one point to a second point (as in Eq. 6–7b
for gravity). Alternatively, we can define the change in potential energy as the
work required of an external force to move the object without acceleration between
the two points, as in Eq. 6–7a.



Potential Energy of Elastic Spring
We now consider potential energy associated with elastic materials, which includes
a great variety of practical applications. Consider the simple coil spring shown 
in Fig. 6–13. The spring has potential energy when compressed (or stretched),
because when it is released, it can do work on a ball as shown. To hold a spring either
stretched or compressed an amount x from its natural (unstretched) length requires
the hand to exert an external force on the spring of magnitude which is
directly proportional to x. That is,

where k is a constant, called the spring stiffness constant (or simply spring constant),
and is a measure of the stiffness of the particular spring. The stretched or compressed
spring itself exerts a force in the opposite direction on the hand, as shown in
Fig. 6–14:

[spring force] (6;8)

This force is sometimes called a “restoring force” because the spring exerts its
force in the direction opposite the displacement (hence the minus sign), acting to
return it to its natural length. Equation 6–8 is known as the spring equation and
also as Hooke’s law, and is accurate for springs as long as x is not too great.

To calculate the potential energy of a stretched spring, let us calculate the
work required to stretch it (Fig. 6–14b). We might hope to use Eq. 6–1 for the
work done on it, where x is the amount it is stretched from its natural
length. But this would be incorrect since the force is not constant but
varies over the distance x, becoming greater the more the spring is stretched, as
shown graphically in Fig. 6–15. So let us use the average force, Since varies
linearly, from zero at the unstretched position to kx when stretched to x, the
average force is  where x here is the final amount stretched
(shown as in Fig. 6–15 for clarity). The work done is then

Hence the elastic potential energy, is proportional to the square of the amount
stretched:

[elastic spring] (6;9)

If a spring is compressed a distance x from its natural (“equilibrium”) length, the
average force again has magnitude and again the potential energy is
given by Eq. 6–9. Thus x can be either the amount compressed or amount stretched
from the spring’s natural length.† Note that for a spring, we choose the reference
point for zero PE at the spring’s natural position.

Potential Energy as Stored Energy
In the above examples of potential energy—from a brick held at a height y, to a
stretched or compressed spring—an object has the capacity or potential to do work
even though it is not yet actually doing it. These examples show that energy can be
stored, for later use, in the form of potential energy (as in Fig. 6–13, for a spring).

Note that there is a single universal formula for the translational kinetic energy
of an object, but there is no single formula for potential energy. Instead,
the mathematical form of the potential energy depends on the force involved.

1
2 mv2,

f = 1
2 kx,

peel = 1
2 kx2.

peel ,

Wext = fx = A12 kxB(x) = 1
2 kx2.

xf

f = 1
2 [0 + kx] = 1

2 kx,

Fextf.

Fext (= kx)
W = Fx,

FS = –kx.

FS

Fext = kx,

Fext
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†We can also obtain Eq. 6–9 using Section 6–2. The work done, and hence equals the area 
under the F vs. x graph of Fig. 6–15. This area is a triangle (colored in Fig. 6–15) of altitude kx and
base x, and hence of area (for a triangle) equal to  1

2 (kx)(x) = 1
2 kx2.

¢pe,

(a) Unstretched

(b) Stretched

(c) Compressed

x

x = 0

x

S

S
ext

F
B

F
B

F
B

extF
B

FIGURE 6–14 (a) Spring in natural
(unstretched) position. (b) Spring is
stretched by a person exerting a
force to the right (positive 
direction). The spring pulls back
with a force where  
(c) Person compresses the spring

by exerting an external
force to the left; the spring
pushes back with a force
where  because  x 6 0.FS 7 0

FS = –kx,
F
B

ext

Ax 6 0B
FS = –kx.F

B

S ,

F
B

ext

xf

F—=   kxf

F ex
t
=

kx

F

0 x

1
2

FIGURE 6–15 As a spring is
stretched (or compressed), the 
magnitude of the force needed 
increases linearly as x increases:
graph of  vs. x from

to x = xf .x = 0
F = kx

(a) (b) (c)

FIGURE 6–13 A spring (a) can store
energy (elastic PE) when compressed as in
(b) and can do work when released (c).



6–5 Conservative and
Nonconservative Forces

The work done against gravity in moving an object from one point to another
does not depend on the path taken. For example, it takes the same work

to lift an object of mass m vertically a height h as to carry it up an 
incline of the same vertical height, as in Fig. 6–4 (see Example 6–2). Forces 
such as gravity, for which the work done does not depend on the path taken but
only on the initial and final positions, are called conservative forces. The elastic
force of a spring (or other elastic material), in which  is also a conser-
vative force. An object that starts at a given point and returns to that same point
under the action of a conservative force has no net work done on it because the
potential energy is the same at the start and the finish of such a round trip.

Many forces, such as friction and a push or pull exerted by a person, are 
nonconservative forces since any work they do depends on the path. For example,
if you push a crate across a floor from one point to another, the work you do
depends on whether the path taken is straight or is curved. As shown in Fig. 6–16,
if a crate is pushed slowly from point 1 to point 2 along the longer semicircular
path, you do more work against friction than if you push it along the straight path.

F = –kx,

(= mgh)
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TABLE 6–1 Conservative and
Nonconservative Forces

Conservative Nonconservative
Forces Forces

Gravitational Friction
Elastic Air resistance
Electric Tension in cord

Motor or rocket 
propulsion

Push or pull by 
a person

1 2

frF
B frF

B

frF
B

PF
B

PF
B

PF
B

FIGURE 6–16 A crate is pushed slowly at 
constant speed across a rough floor from 
position 1 to position 2 via two paths, one
straight and one curved. The pushing 
force is in the direction of motion at 
each point. (The friction force opposes the 
motion.) Hence for a constant magnitude 
pushing force, the work it does is  
so if the distance traveled d is greater (as for
the curved path), then W is greater. The work
done does not depend only on points 1 and 2;
it also depends on the path taken.

W = FP d,

F
B

P

You do more work on the curved path because the distance is greater and, unlike
the gravitational force, the pushing force is in the direction of motion at 
each point. Thus the work done by the person in Fig. 6–16 does not depend only on
points 1 and 2; it depends also on the path taken. The force of kinetic friction, also
shown in Fig. 6–16, always opposes the motion; it too is a nonconservative force,
and we discuss how to treat it later in this Chapter (Section 6–9). Table 6–1 lists a
few conservative and nonconservative forces.

Because potential energy is energy associated with the position or configura-
tion of objects, potential energy can only make sense if it can be stated uniquely
for a given point. This cannot be done with nonconservative forces because the
work done depends on the path taken (as in Fig. 6–16). Hence, potential energy
can be defined only for a conservative force. Thus, although potential energy is
always associated with a force, not all forces have a potential energy. For example,
there is no potential energy for friction.

F
B

P

EXERCISE E An object acted on by a constant force F moves from point 1 to point 2
and back again. The work done by the force F in this round trip is 60 J. Can you deter-
mine from this information if F is a conservative or nonconservative force?
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CONSERVATION OF
MECHANICAL ENERGY

Work-Energy Extended
We can extend the work-energy principle (discussed in Section 6–3) to include
potential energy. Suppose several forces act on an object which can undergo
translational motion. And suppose only some of these forces are conservative.
We write the total (net) work as a sum of the work done by conservative
forces, and the work done by nonconservative forces,

Then, from the work-energy principle, Eq. 6–4, we have

where  Then

Work done by a conservative force can be written in terms of potential energy,
as we saw in Eq. 6–7b for gravitational potential energy:

We combine these last two equations:

(6;10)

Thus, the work done by the nonconservative forces acting on an object is
equal to the total change in kinetic and potential energies.

It must be emphasized that all the forces acting on an object must be included
in Eq. 6–10, either in the potential energy term on the right (if it is a conserva-
tive force), or in the work term on the left (but not in both!).

6–6 Mechanical Energy and 
Its Conservation

If we can ignore friction and other nonconservative forces, or if only conservative
forces do work on a system, we arrive at a particularly simple and beautiful rela-
tion involving energy.

When no nonconservative forces do work, then  in the general form
of the work-energy principle (Eq. 6–10). Then we have

(6;11a)

or

(6;11b)

We now define a quantity E, called the total mechanical energy of our system, as
the sum of the kinetic and potential energies at any moment:

Now we can rewrite Eq. 6–11b as

(6;12a)

or
(6;12b)

Equations 6–12 express a useful and profound principle regarding the total
mechanical energy of a system—namely, that it is a conserved quantity. The total
mechanical energy E remains constant as long as no nonconservative forces do
work: at some initial time 1 is equal to the at any later time 2.ke + peke + pe

c conservative
forces only dE2 = E1 = constant.

c conservative
forces only dke2 + pe2 = ke1 + pe1

E = ke + pe.

c conservative
forces only dAke2 - ke1B + Ape2 - pe1B = 0.

c conservative
forces only d¢ke + ¢pe = 0

WNC = 0

WNC

WNC = ¢ke + ¢pe.

WC = –¢pe.

WNC = ¢ke - WC .

¢ke = ke2 - ke1 .

WC + WNC = ¢ke

Wnet = ¢ke

Wnet = WC + WNC .

WNC :WC ,
Wnet



6–7 Problem Solving Using 
Conservation of Mechanical Energy
A simple example of the conservation of mechanical energy (neglecting air resis-
tance) is a rock allowed to fall due to Earth’s gravity from a height h above the
ground, as shown in Fig. 6–17. If the rock starts from rest, all of the initial energy
is potential energy. As the rock falls, the potential energy mgy decreases (because
the rock’s height above the ground y decreases), but the rock’s kinetic energy
increases to compensate, so that the sum of the two remains constant. At any point
along the path, the total mechanical energy is given by

where v is its speed at that point. If we let the subscript 1 represent the rock at one
point along its path (for example, the initial point), and the subscript 2 represent
it at some other point, then we can write

or (see also Eq. 6–12a)

(6;13)

Just before the rock hits the ground, where we chose all of the initial poten-
tial energy will have been transformed into kinetic energy.

y = 0,

[gravity only]1
2 mv1

2 + mgy1 = 1
2 mv2

2 + mgy2 .

total mechanical energy at point 1 = total mechanical energy at point 2

E = ke + pe = 1
2 mv2 + mgy

h
half pe,
half ke

all kinetic
energy

y1 = h

y2 = 0

y

all potential
energy

pe ke

pe ke

pe ke

FIGURE 6–17 The rock’s potential
energy changes to kinetic energy as
it falls. Note bar graphs representing
potential energy pe and kinetic
energy ke for the three different
positions.
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CONSERVATION OF
MECHANICAL ENERGY

Falling rock. If the initial height of the rock in Fig. 6–17 is
calculate the rock’s velocity when it has fallen to 1.0 m above

the ground.

APPROACH We apply the principle of conservation of mechanical energy,
Eq. 6–13, with only gravity acting on the rock. We choose the ground as our 
reference level

SOLUTION At the moment of release (point 1) the rock’s position is
and it is at rest: We want to find when the rock is at posi-

tion  Equation 6–13 gives

The m’s cancel out and , so

Solving for we find

The rock’s velocity 1.0 m above the ground is downward.

NOTE The velocity of the rock is independent of the rock’s mass.

6.3 m�s

v2 = 32gAy1 - y2B = 32A9.8 m�s2B C(3.0 m) - (1.0 m) D = 6.3 m�s.

v2

gy1 = 1
2 v2

2 + gy2 .

v1 = 0

1
2 mv1

2 + mgy1 = 1
2 mv2

2 + mgy2 .

y2 = 1.0 m.
v2v1 = 0.y1 = 3.0 m

(y = 0).

y1 = h = 3.0 m,
EXAMPLE 6;7

To say it another way, consider Eq. 6–11a which tells us that is,
if the kinetic energy KE of a system increases, then the potential energy PE must
decrease by an equivalent amount to compensate. Thus, the total,
remains constant:

If only conservative forces do work, the total mechanical energy of a system
neither increases nor decreases in any process. It stays constant—it is conserved.

This is the principle of conservation of mechanical energy for conservative forces.
In the next Section we shall see the great usefulness of the conservation of

mechanical energy principle in a variety of situations, and how it is often easier to
use than the kinematic equations or Newton’s laws. After that we will discuss
how other forms of energy can be included in the general conservation of energy
law, such as energy associated with friction.

ke + pe,

¢pe = –¢ke;



Roller-coaster car speed using energy conservation.

Assuming the height of the hill in Fig. 6–18 is 40 m, and the roller-coaster car
starts from rest at the top, calculate (a) the speed of the roller-coaster car at 
the bottom of the hill, and (b) at what height it will have half this speed. Take

at the bottom of the hill.

APPROACH We use conservation of mechanical energy. We choose point 1 to
be where the car starts from rest  at the top of the hill  In
part (a), point 2 is the bottom of the hill, which we choose as our reference level,
so  In part (b) we let be the unknown.

SOLUTION (a) We use Eq. 6–13 with and which gives

or

(b) Now will be an unknown. We again use conservation of energy,

but now and Solving for the unknown gives 

That is, the car has a speed of when it is 30 vertical meters above the lowest
point, both when descending the left-hand hill and when ascending the right-hand
hill.

14 m�s

(14 m�s)2

2(9.8 m�s2)
= 30 m.y2 = y1 -

v2
2

2g
= 40 m -

y2v1 = 0.v2 = 1
2 (28 m�s) = 14 m�s

1
2 mv1

2 + mgy1 = 1
2 mv2

2 + mgy2 ,

y2

= 32A9.8 m�s2B(40 m) = 28 m�s.

v2 = 22gy1

mgy1 = 1
2 mv2

2

y2 = 0,v1 = 0

y2y2 = 0.

Ay1 = 40 mB.Av1 = 0B
y = 0

EXAMPLE 6;8
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The mathematics of the roller-coaster Example 6–8 is almost the same as in
Example 6–7. But there is an important difference between them. In Example 6–7
the motion is all vertical and could have been solved using force, acceleration,
and the kinematic equations (Eqs. 2–11). For the roller coaster, where the motion is
not vertical, we could not have used Eqs. 2–11 because a is not constant on the
curved track of Example 6–8. But energy conservation readily gives us the answer.

y

FIGURE 6–18 A roller-coaster car
moving without friction illustrates
the conservation of mechanical
energy.

Equation 6–13 can be applied to any object moving without friction under
the action of gravity. For example, Fig. 6–18 shows a roller-coaster car starting
from rest at the top of a hill and coasting without friction to the bottom and up
the hill on the other side. True, there is another force besides gravity acting 
on the car, the normal force exerted by the tracks. But the normal force
acts perpendicular to the direction of motion at each point and so does zero
work. We ignore rotational motion of the car’s wheels and treat the car as a 
particle undergoing simple translation. Initially, the car has only potential energy.
As it coasts down the hill, it loses potential energy and gains in kinetic energy,
but the sum of the two remains constant. At the bottom of the hill it has 
its maximum kinetic energy, and as it climbs up the other side the kinetic 
energy changes back to potential energy. When the car comes to rest again at 
the same height from which it started, all of its energy will be potential energy.
Given that the gravitational potential energy is proportional to the vertical height,
energy conservation tells us that (in the absence of friction) the car comes to rest
at a height equal to its original height. If the two hills are the same height, the car
will just barely reach the top of the second hill when it stops. If the second hill is
lower than the first, not all of the car’s kinetic energy will be transformed to poten-
tial energy and the car can continue over the top and down the other side. If the
second hill is higher, the car will reach a maximum height on it equal to its original
height on the first hill. This is true (in the absence of friction) no matter how steep
the hill is, since potential energy depends only on the vertical height (Eq. 6–6).



There are many interesting examples of the conservation of energy in sports,
such as the pole vault illustrated in Fig. 6–20. We often have to make approxima-
tions, but the sequence of events in broad outline for the pole vault is as follows.
The initial kinetic energy of the running athlete is transformed into elastic 
potential energy of the bending pole and, as the athlete leaves the ground, into
gravitational potential energy. When the vaulter reaches the top and the pole 
has straightened out again, the energy has all been transformed into gravitational
potential energy (if we ignore the vaulter’s low horizontal speed over the bar). The
pole does not supply any energy, but it acts as a device to store energy and thus aid
in the transformation of kinetic energy into gravitational potential energy, which 
is the net result. The energy required to pass over the bar depends on how high the
center of mass (CM) of the vaulter must be raised. By bending their bodies, pole
vaulters keep their CM so low that it can actually pass slightly beneath the bar 
(Fig. 6–21), thus enabling them to cross over a higher bar than would otherwise 
be possible. (Center of mass is covered in Chapter 7.)

As another example of the conservation of mechanical energy, let us consider
an object of mass m connected to a compressed horizontal spring (Fig. 6–13b) whose
own mass can be neglected and whose spring stiffness constant is k. When the spring
is released, the mass m has speed v at any moment. The potential energy of the
system (object plus spring) is where x is the displacement of the spring from
its unstretched length (Eq. 6–9). If neither friction nor any other force is acting,
conservation of mechanical energy tells us that

[elastic PE only] (6;14)

where the subscripts 1 and 2 refer to the velocity and displacement at two differ-
ent moments.

1
2 mv1

2 + 1
2 kx1

2 = 1
2 mv2

2 + 1
2 kx2

2 ,

1
2 kx2,
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FIGURE 6–20 Transformation of
energy during a pole vault:
ke S peel S peG .

FIGURE 6–21 By bending her body,
a pole vaulter can keep her center of
mass so low that it may even pass
below the bar.

pe

pe

ke

pe ke
Paul

Corinne

h

ke

FIGURE 6–19 Example 6–9.

Speeds on two water slides. Two water
slides at a pool are shaped differently, but start at the same height h (Fig. 6–19).
Two riders start from rest at the same time on different slides. (a) Which rider, Paul
or Corinne, is traveling faster at the bottom? (b) Which rider makes it to the
bottom first? Ignore friction and assume both slides have the same path length.

RESPONSE (a) Each rider’s initial potential energy mgh gets transformed to
kinetic energy, so the speed v at the bottom is obtained from  The
mass cancels and so the speed will be the same, regardless of the mass of the rider.
Since they descend the same vertical height, they will finish with the same speed.
(b) Note that Corinne is consistently at a lower elevation than Paul at any instant,
until the end. This means she has converted her potential energy to kinetic energy
earlier. Consequently, she is traveling faster than Paul for the whole trip, and
because the distance is the same, Corinne gets to the bottom first.

1
2 mv2 = mgh.

CONCEPTUAL EXAMPLE 6;9



Two kinds of potential energy. A ball of mass
starting from rest, falls a vertical distance before striking a 
vertical coiled spring, which it compresses an amount  (Fig. 6–23).
Determine the spring stiffness constant k of the spring. Assume the spring has
negligible mass, and ignore air resistance. Measure all distances from the point
where the ball first touches the uncompressed spring ( at this point).

APPROACH The forces acting on the ball are the gravitational pull of the
Earth and the elastic force exerted by the spring. Both forces are conservative,
so we can use conservation of mechanical energy, including both types of poten-
tial energy. We must be careful, however: gravity acts throughout the fall 
(Fig. 6–23), whereas the elastic force does not act until the ball touches the spring
(Fig. 6–23b). We choose y positive upward, and at the end of the spring in
its natural (uncompressed) state.

SOLUTION We divide this solution into two parts. (An alternate solution follows.)
Part 1: Let us first consider the energy changes as the ball falls from a height

Fig. 6–23a, to just as it touches the spring, Fig. 6–23b.
Our system is the ball acted on by gravity plus the spring (which up to this point
doesn’t do anything). Thus

We solve for
This is the speed of the ball just as it touches the top of the spring, Fig. 6–23b.
Part 2: As the ball compresses the spring, Figs. 6–23b to c, there are two conser-
vative forces on the ball—gravity and the spring force. So our conservation of
energy equation is

Substituting  (the ball comes to rest for an
instant), and  we have

We know m, and Y, so we can solve for k:

=
(2.60 kg)

(0.150 m)2
C(3.283 m�s)2 + 2A9.80 m�s2B(0.150 m) D = 1590 N�m.

k =
2

Y2
C 12 mv2

2 + mgY D =
m

Y2
Cv2

2 + 2gY D

v2 ,

1
2 mv2

2 + 0 + 0 = 0 - mgY + 1
2 k(–Y)2.

y3 = –Y = –0.150 m,
v3 = 0v2 = 3.283 m�s,y2 = 0,

1
2 mv2

2 + mgy2 + 1
2 ky2

2 = 1
2 mv3

2 + mgy3 + 1
2 ky3

2 .

E2 (ball touches spring) = E3 (spring compressed)

v2 = 12gh = 32A9.80 m�s2B(0.550 m) = 3.283 m�s L 3.28 m�s.

= 1
2 mv2

2 + 0. 0 + mgh

= 1
2 mv2

2 + mgy2
1
2 mv1

2 + mgy1

y2 = 0,y1 = h = 0.550 m,

y = 0

y = 0

Y = 15.0 cm
h = 55.0 cm

m = 2.60 kg,EXAMPLE 6;11
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h

Y

y = y2 = 0

y = y3 = −Y

y = y1 = h

h

m

m

m

(a) (c)(b)

FIGURE 6–23 Example 6–11.
A falling ball compresses a spring.

pe ke

pe ke

6.0
cm

(a)

= 0

2

1

kx1
2E = 1

2

(b) mv2
2

v

v

E = 1
2

FIGURE 6–22 Example 6–10.
(a) A dart is pushed against a 
spring, compressing it 6.0 cm. The
dart is then released, and in (b) it
leaves the spring at velocity v2 .

Toy dart gun. A dart of mass 0.100 kg is pressed against
the spring of a toy dart gun as shown in Fig. 6–22a. The spring, with spring 
stiffness constant  and ignorable mass, is compressed 6.0 cm 
and released. If the dart detaches from the spring when the spring reaches its
natural length what speed does the dart acquire?

APPROACH The dart is initially at rest (point 1), so We ignore friction
and use conservation of mechanical energy; the only potential energy is elastic.

SOLUTION We use Eq. 6–14 with point 1 being at the maximum compression
of the spring, so  (dart not yet released) and  Point 2 we
choose to be the instant the dart flies off the end of the spring (Fig. 6–22b), so

and we want to find Thus Eq. 6–14 can be written

Then

and v2 = 2v2
2 = 3.0 m�s.

=
(250 N�m)(–0.060 m)2

(0.100 kg)
= 9.0 m2�s2,v2

2 =
kx1

2

m

0 + 1
2 kx1

2 = 1
2 mv2

2 + 0.

v2 .x2 = 0

x1 = –0.060 m.v1 = 0

ke1 = 0.

(x = 0),

k = 250 N�m

EXAMPLE 6;10



6–8 Other Forms of Energy and 
Energy Transformations;
The Law of Conservation of Energy

Besides the kinetic energy and potential energy of mechanical systems, other
forms of energy can be defined as well. These include electric energy, nuclear
energy, thermal energy, and the chemical energy stored in food and fuels.
These other forms of energy are considered to be kinetic or potential energy 
at the atomic or molecular level. For example, according to atomic theory,
thermal energy is the kinetic energy of rapidly moving molecules—when an
object is heated, the molecules that make up the object move faster. On the
other hand, the energy stored in food or in a fuel such as gasoline is regarded 
as potential energy stored by virtue of the relative positions of the atoms within
a molecule due to electric forces between the atoms (chemical bonds). The
energy in chemical bonds can be released through chemical reactions. This is
analogous to a compressed spring which, when released, can do work. Electric,
magnetic, and nuclear energies also can be considered examples of kinetic and
potential (or stored) energies. We will deal with these other forms of energy 
in later Chapters.

Energy can be transformed from one form to another. For example, a rock
held high in the air has potential energy; as it falls, it loses potential energy and
gains in kinetic energy. Potential energy is being transformed into kinetic energy.

Often the transformation of energy involves a transfer of energy from one
object to another. The potential energy stored in the spring of Fig. 6–13b is 
transformed into the kinetic energy of the ball, Fig. 6–13c. Water at the top of a
waterfall (Fig. 6–24) or a dam has potential energy, which is transformed into
kinetic energy as the water falls. At the base of a dam, the kinetic energy of the
water can be transferred to turbine blades and further transformed into electric
energy, as discussed later. The potential energy stored in a bent bow can be 
transformed into kinetic energy of the arrow (Fig. 6–25).

In each of these examples, the transfer of energy is accompanied by the 
performance of work. The spring of Fig. 6–13 does work on the ball. Water does
work on turbine blades. A bow does work on an arrow. This observation gives us
a further insight into the relation between work and energy: work is done when
energy is transferred from one object to another.†
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†If the objects are at different temperatures, heat can flow between them instead, or in addition. See
Chapters 14 and 15.

FIGURE 6–24 Gravitational
potential energy of water at the top
of Yosemite Falls gets transformed
into kinetic energy as the water 
falls. (Some of the energy is 
transformed into heat by air 
resistance, and some into sound.)

FIGURE 6–25 Potential energy of a
bent bow about to be transformed
into kinetic energy of an arrow.

P R O B L E M  S O L V I N G

Quicker Solution
Alternate Solution Instead of dividing the solution into two parts, we can do it
all at once. After all, we get to choose what two points are used on the left and
right of the energy equation. Let us write the energy equation for points 1 and 3 in
Fig. 6–23. Point 1 is the initial point just before the ball starts to fall (Fig. 6–23a),
so  and  Point 3 is when the spring is fully compressed
(Fig. 6–23c), so  The forces on the ball in this
process are gravity and (at least part of the time) the spring. So conservation of
energy tells us

where we have set for the spring at point 1 because it is not acting and is
not compressed or stretched. We solve for k:

just as in our first method of solution.

k =
2mg(h + Y)

Y2
=

2(2.60 kg)A9.80 m�s2B(0.550 m + 0.150 m)

(0.150 m)2
= 1590 N�m

y = 0

 0 + mgh +  0 =  0 - mgY + 1
2 kY2

1
2 mv1

2 + mgy1 + 1
2 k(0)2 = 1

2 mv3
2 + mgy3 + 1

2 ky3
2

y3 = –Y = –0.150 m.v3 = 0,
y1 = h = 0.550 m.v1 = 0,



6–9 Energy Conservation with
Dissipative Forces: Solving Problems
In our applications of energy conservation in Section 6–7, we neglected friction
and other nonconservative forces. But in many situations they cannot be ignored.
In a real situation, the roller-coaster car in Fig. 6–18, for example, will not in fact
reach the same height on the second hill as it had on the first hill because of fric-
tion. In this, and in other natural processes, the mechanical energy (sum of the
kinetic and potential energies) does not remain constant but decreases. Because
frictional forces reduce the mechanical energy (but not the total energy), they are
called dissipative forces. Historically, the presence of dissipative forces hindered
the formulation of a comprehensive conservation of energy law until well into 
the nineteenth century. It was only then that heat, which is always produced
when there is friction (try rubbing your hands together), was interpreted in terms
of energy. Quantitative studies by nineteenth-century scientists (discussed in
Chapters 14 and 15) demonstrated that if heat is considered as a transfer of
energy (thermal energy), then the total energy is conserved in any process. For
example, if the roller-coaster car in Fig. 6–18 is subject to frictional forces,
then the initial total energy of the car will be equal to the kinetic plus potential
energy of the car at any subsequent point along its path plus the amount of 
thermal energy produced in the process (equal to the work done by friction).

Let us recall the general form of the work-energy principle, Eq. 6–10:

where is the work done by nonconservative forces such as friction. Consider
an object, such as a roller-coaster car, as a particle moving under gravity with 
nonconservative forces like friction acting on it. When the object moves from some
point 1 to another point 2, then

We can rewrite this as

(6;15)

For the case of friction, where d is the distance over which the friction
(assumed constant) acts as the object moves from point 1 to point 2. ( and are
in opposite directions, hence the minus sign from  in Eq. 6–1.)cos 180° = –1

d
B

F
B

WNC = –Ffr d,

ke1 + pe1 + WNC = ke2 + pe2 .

WNC = ke2 - ke1 + pe2 - pe1 .

WNC

WNC = ¢ke + ¢pe,
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One of the great results of physics is that whenever energy is transferred or
transformed, it is found that no energy is gained or lost in the process.

This is the law of conservation of energy, one of the most important princi-
ples in physics; it can be stated as:

The total energy is neither increased nor decreased in any process. Energy
can be transformed from one form to another, and transferred from one
object to another, but the total amount remains constant.

We have already discussed the conservation of energy for mechanical systems
involving conservative forces, and we saw how it could be derived from Newton’s
laws and thus is equivalent to them. But in its full generality, the validity of the
law of conservation of energy, encompassing all forms of energy including those
associated with nonconservative forces like friction, rests on experimental obser-
vation. Even though Newton’s laws are found to fail in the submicroscopic world
of the atom, the law of conservation of energy has been found to hold in every
experimental situation so far tested.

LAW OF 
CONSERVATION 

OF ENERGY



Work-Energy versus Energy Conservation
The law of conservation of energy is more general and more powerful than the
work-energy principle. Indeed, the work-energy principle should not be viewed
as a statement of conservation of energy. It is nonetheless useful for mechanical
problems; and whether you use it, or use the more powerful conservation of
energy, can depend on your choice of the system under study. If you choose as
your system a particle or rigid object on which external forces do work, then you
can use the work-energy principle: the work done by the external forces on your
object equals the change in its kinetic energy.

On the other hand, if you choose a system on which no external forces do
work, then you need to apply conservation of energy to that system directly.

Consider, for example, a spring connected to a block on a frictionless table
(Fig. 6–26). If you choose the block as your system, then the work done on the
block by the spring equals the change in kinetic energy of the block: the work-
energy principle. (Energy conservation does not apply to this system—the block’s
energy changes.) If instead you choose the block plus the spring as your system,
no external forces do work (since the spring is part of the chosen system).
To this system you need to apply conservation of energy: if you compress the spring
and then release it, the spring still exerts a force† on the block, but the subsequent
motion can be discussed in terms of kinetic energy plus potential energy

whose total remains constant.
You may also wonder sometimes whether to approach a problem using work

and energy, or instead to use Newton’s laws. As a rough guideline, if the force(s)
involved are constant, either approach may succeed. If the forces are not constant,
and/or the path is not simple, energy may be the better approach because it is 
a scalar.

Problem solving is not a process that can be done by simply following a set 
of rules. The Problem Solving Strategy on the next page, like all others, is thus
not a prescription, but is a summary to help you get started solving problems involv-
ing energy.

A12 kx2B, A12 mv2B
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m
k

FIGURE 6–26 A spring connected
to a block on a frictionless table.
If you choose your system to be the
block plus spring, then

is conserved.

E = 1
2 mv2 + 1

2 kx2

P R O B L E M  S O L V I N G

Use energy, or Newton’s laws?

EXERCISE F Return to the Chapter-Opening Question, page 138, and answer it again
now. Try to explain why you may have answered differently the first time.

With and Eq. 6–15 with becomes

(6;16a)

That is, the initial mechanical energy is reduced by the amount We could
also write this equation as

(6;16b)

and state equally well that the initial mechanical energy of the car (point 1) equals
the (reduced) final mechanical energy of the car plus the energy transformed by
friction into thermal energy.

Equations 6–16 can be seen to be Eq. 6–13 modified to include nonconserva-
tive forces such as friction. As such, they are statements of conservation of
energy. When other forms of energy are involved, such as chemical or electrical
energy, the total amount of energy is always found to be conserved. Hence the
law of conservation of energy is believed to be universally valid.

£
gravity and

friction
acting

§

1
2 mv1

2

or
ke1

+

+

mgy1

pe1

=

=

1
2 mv2

2

ke2

+

+

mgy2

pe2

+

+

Ffr d

Ffr d,

Ffr d.

c gravity and
friction acting d

1
2 mv1

2 + mgy1 - Ffr d = 1
2 mv2

2 + mgy2 .

WNC = –Ffr dpe = mgy,ke = 1
2 mv2

P R O B L E M  S O L V I N G

Choosing the system

†The force the spring exerts on the block, and the force the block exerts back on the spring, are not
“external” forces—they are within the system.



Friction on the roller-coaster car. The 
roller-coaster car in Example 6–8 reaches a vertical height of only on the
second hill, where it slows to a momentary stop, Fig. 6–27. It traveled a total
distance of 400 m. Determine the thermal energy produced and estimate the
average friction force (assume it is roughly constant) on the car, whose mass is
1000 kg.

APPROACH We explicitly follow the Problem Solving Strategy above.

SOLUTION

1. Draw a picture. See Fig. 6–27.
2. The system. The system is the roller-coaster car and the Earth (which exerts

the gravitational force). The forces acting on the car are gravity and friction.
(The normal force also acts on the car, but does no work, so it does not affect
the energy.) Gravity is accounted for as potential energy, and friction as 
a term 

3. Choose initial and final positions. We take point 1 to be the instant when the
car started coasting (at the top of the first hill), and point 2 to be the instant 
it stopped at a height of up the second hill.

4. Choose a reference frame. We choose the lowest point in the motion to be
for the gravitational potential energy.

5. Is mechanical energy conserved? No. Friction is present.
6. Apply conservation of energy. There is friction acting on the car, so we use

conservation of energy in the form of Eq. 6–16b, with  
and Thus

7. Solve. We solve the above equation for the energy dissipated to thermal
energy:

The friction force, which acts over a distance of 400 m, averages out to be  

NOTE This result is only a rough average: the friction force at various points
depends on the normal force, which varies with slope.

Ffr = A1.47 * 105 JB�400 m = 370 N.

Ffr d = mg ¢h = (1000 kg)A9.8 m�s2B(40 m - 25 m) = 147,000 J.

Ffr d,

0 + (1000 kg)A9.8 m�s2B(40 m) = 0 + (1000 kg)A9.8 m�s2B(25 m) + Ffr d.

d = 400 m.y2 = 25 m,v2 = 0,
v1 = 0,   y1 = 40 m,

y = 0

25 m

Ffr d.

25 m
EXAMPLE 6;12 ESTIMATE
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40
 m

1

2

25
 m

y = 0

FIGURE 6–27 Example 6–12.
Because of friction, a roller-coaster
car does not reach the original height
on the second hill. (Not to scale.)

5. Is mechanical energy conserved? If no friction or
other nonconservative forces act, then conservation
of mechanical energy holds:

(6;12a)

6. Apply conservation of energy. If friction (or other
nonconservative forces) are present, then an addi-
tional term will be needed:

(6;10)
For a constant friction force acting over a distance d

(6;16b)
For other nonconservative forces use your intuition
for the sign of is the total mechanical energy
increased or decreased in the process?

7. Use the equation(s) you develop to solve for the
unknown quantity.

WNC :

ke1 + pe1 = ke2 + pe2 + Ffr d.

WNC = ¢ke + ¢pe.
AWNCB

ke1 + pe1 = ke2 + pe2 .

P
R

O
B

L
E

M

S O LV I N G

Conservation of Energy
1. Draw a picture of the physical situation.

2. Determine the system for which you will apply energy
conservation: the object or objects and the forces
acting.

3. Ask yourself what quantity you are looking for, and
choose initial (point 1) and final (point 2) positions.

4. If the object under investigation changes its height
during the problem, then choose a reference frame
with a convenient level for gravitational
potential energy; the lowest point in the situation is
often a good choice.

If springs are involved, choose the unstretched
spring position to be x (or y) = 0.

y = 0



6–10 Power
Power is defined as the rate at which work is done. Average power equals the
work done divided by the time to do it. Power can also be defined as the rate at
which energy is transformed. Thus

(6;17)

The power rating of an engine refers to how much chemical or electrical energy
can be transformed into mechanical energy per unit time. In SI units, power is meas-
ured in joules per second, and this unit is given a special name, the watt (W):

We are most familiar with the watt for electrical devices, such as 
the rate at which an electric lightbulb or heater changes electric energy into light
or thermal energy. But the watt is used for other types of energy transformations
as well.

In the British system, the unit of power is the foot-pound per second
For practical purposes, a larger unit is often used, the horsepower. One horsepower†

(hp) is defined as which equals 746 W. An engine’s power is usually
specified in hp or in kW ‡.

To see the distinction between energy and power, consider the following
example. A person is limited in the work he or she can do, not only by the total
energy required, but also by how fast this energy is transformed: that is, by power.
For example, a person may be able to walk a long distance or climb many flights
of stairs before having to stop because so much energy has been expended.
On the other hand, a person who runs very quickly up stairs may feel exhausted
after only a flight or two. He or she is limited in this case by power, the rate at
which his or her body can transform chemical energy into mechanical energy.

A1 kW L 1 1
3 hpB550 ft� lb�s,

(ft� lb�s).

1 W = 1 J�s.

g = average power =
work
time

=
energy transformed

time
.
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C A U T I O N

Distinguish between
power and energy

†The unit was chosen by James Watt (1736–1819), who needed a way to specify the power of his
newly developed steam engines. He found by experiment that a good horse can work all day at an
average rate of about So as not to be accused of exaggeration in the sale of his steam
engines, he multiplied this by when he defined the hp.

‡1 kW = A1000 WB�A746 W�hpB L 1 1
3 hp.

1 1
2

360 ft� lb�s.

P H Y S I C S  A P P L I E D

Power needs of a car

FIGURE 6–28 Example 6–13.Stair-climbing power. A 60-kg jogger runs up a long 
flight of stairs in 4.0 s (Fig. 6–28). The vertical height of the stairs is 4.5 m.
(a) Estimate the jogger’s power output in watts and horsepower. (b) How 
much energy did this require?

APPROACH The work done by the jogger is against gravity, and equals
To get her average power output, we divide W by the time it took.

SOLUTION (a) The average power output was

Since there are 746 W in 1 hp, the jogger is doing work at a rate of just under 1 hp.
A human cannot do work at this rate for very long.
(b) The energy required is  This result equals

NOTE The person had to transform more energy than this 2600 J. The total
energy transformed by a person or an engine always includes some thermal
energy (recall how hot you get running up stairs).

W = mgy.
E = gt = (660 J�s)(4.0 s) = 2600 J.

g =
W
t

=
mgy

t
=

(60 kg)(9.8 m�s2)(4.5 m)

4.0 s
= 660 W.

W = mgy.

EXAMPLE 6;13

Automobiles do work to overcome the force of friction and air resistance,
to climb hills, and to accelerate. A car is limited by the rate at which it can do
work, which is why automobile engines are rated in horsepower or kilowatts.



A car needs power most when climbing hills and when accelerating. In the next
Example, we will calculate how much power is needed in these situations for a
car of reasonable size. Even when a car travels on a level road at constant 
speed, it needs some power just to do work to overcome the retarding forces of
internal friction and air resistance. These forces depend on the conditions and
speed of the car, but are typically in the range 400 N to 1000 N.

It is often convenient to write power in terms of the net force F applied to an
object and its speed v. This is readily done because  and  where
d is the distance traveled. Then

(6;18)

where  is the average speed of the object.v = d�t

g =
W
t

=
Fd
t

= Fv,

W = Fd,g = W�t
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FIGURE 6–29 Example 6–14.
Calculation of power needed for a
car to climb a hill.

Power needs of a car. Calculate the power required of a
1400-kg car under the following circumstances: (a) the car climbs a 10° hill 
(a fairly steep hill) at a steady and (b) the car accelerates along a level
road from 90 to in 6.0 s to pass another car. Assume the average
retarding force on the car is  throughout. See Fig. 6–29.

APPROACH First we must be careful not to confuse which is due to air
resistance and friction that retards the motion, with the force needed to accel-
erate the car, which is the frictional force exerted by the road on the tires—the
reaction to the motor-driven tires pushing against the road. We must determine
the magnitude of the force F before calculating the power.

SOLUTION (a) To move at a steady speed up the hill, the car must, by New-
ton’s second law, exert a force F equal to the sum of the retarding force, 700 N,
and the component of gravity parallel to the hill, mg sin 10°, Fig. 6–29. Thus

Since † and is parallel to then (Eq. 6–18) the power is

(b) The car accelerates from to (90 to ) on the flat.
The car must exert a force that overcomes the 700-N retarding force plus that
required to give it the acceleration

We apply Newton’s second law with x being the horizontal direction of motion
(no component of gravity):

We solve for the force required,

Since  the required power increases with speed and the motor must be
able to provide a maximum power output in this case of

NOTE Even taking into account the fact that only 60 to 80% of the engine’s
power output reaches the wheels, it is clear from these calculations that an engine
of 75 to 100 kW (100 to 130 hp) is adequate from a practical point of view.

g = (2000 N)(30.6 m�s) = 6.1 * 104 W = 61 kW = 82 hp.

g = Fv,

= 1300 N + 700 N = 2000 N.= (1400 kg)A0.93 m�s2B + 700 N

F = max + FR

F:

max = ©Fx = F - FR .

ax =
(30.6 m�s - 25.0 m�s)

6.0 s
= 0.93 m�s2.

110 km�h30.6 m�s25.0 m�s

g = Fv = (3100 N)(22 m�s) = 6.8 * 104 W = 68 kW = 91 hp.

F
B

,v = 80 km�h = 22 m�s

= 700 N + (1400 kg)A9.80 m�s2B(0.174) = 3100 N.

F = 700 N + mg sin 10°

F
B

F
B

R ,

FR = 700 N
110 km�h

80 km�h;

EXAMPLE 6;14

†Recall 1 km�h = 1000 m�3600 s = 0.278 m�s.



We mentioned in Example 6–14 that only part of the energy output of a car
engine reaches the wheels. Not only is some energy wasted in getting from the
engine to the wheels, in the engine itself most of the input energy (from the burning
of gasoline or other fuel) does not do useful work. An important characteristic of
all engines is their overall efficiency e, defined as the ratio of the useful power
output of the engine, to the power input, (provided by burning of gaso-
line, for example):

The efficiency is always less than 1.0 because no engine can create energy, and 
no engine can even transform energy from one form to another without some
energy going to friction, thermal energy, and other nonuseful forms of energy.
For example, an automobile engine converts chemical energy released in the burn-
ing of gasoline into mechanical energy that moves the pistons and eventually the
wheels. But nearly 85% of the input energy is “wasted” as thermal energy that
goes into the cooling system or out the exhaust pipe, plus friction in the moving
parts. Thus car engines are roughly only about 15% efficient. We will discuss 
efficiency in more detail in Chapter 15.

e =
Pout

Pin

.

PinPout ,
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Work is done on an object by a force when the object moves
through a distance d. If the direction of a constant force 
makes an angle with the direction of motion, the work done
by this force is

(6;1)

Energy can be defined as the ability to do work. In SI units,
work and energy are measured in joules

Kinetic energy (KE) is energy of motion. An object of
mass m and speed v has translational kinetic energy

(6;3)

The work-energy principle states that the net work done on
an object (by the net force) equals the change in kinetic energy
of that object:

(6;4)

Potential energy (PE) is energy associated with forces that
depend on the position or configuration of objects. Gravitational
potential energy is

(6;6)

where y is the height of the object of mass m above an arbitrary
reference point. Elastic potential energy is given by

(6;9)

for a stretched or compressed spring, where x is the displacement

peel = 1
2 kx2

peG = mgy,

Wnet = ¢ke = 1
2 mv2

2 - 1
2 mv1

2.

ke = 1
2 mv2.

(1 J = 1 N�m).

W = Fd cos u.

u

F
B

from the unstretched position and k is the spring stiffness con-
stant. Other potential energies include chemical, electrical, and
nuclear energy. The change in potential energy when an object
changes position is equal to the external work needed to take
the object from one position to the other.

Potential energy is associated only with conservative forces,
for which the work done by the force in moving an object from
one position to another depends only on the two positions and
not on the path taken. Nonconservative forces like friction are
different—work done by them does depend on the path taken
and potential energy cannot be defined for them.

The law of conservation of energy states that energy can
be transformed from one type to another, but the total energy
remains constant. It is valid even when friction is present,
because the heat generated can be considered a form of energy
transfer. When only conservative forces act, the total mechanical
energy is conserved:

(6;12)

When nonconservative forces such as friction act, then

(6;10, 6;15)

where is the work done by nonconservative forces.
Power is defined as the rate at which work is done, or the

rate at which energy is transformed. The SI unit of power is 
the watt (1 W = 1 J�s).

WNC

WNC = ¢ke + ¢pe,

ke + pe = constant.

Summary

1. In what ways is the word “work” as used in everyday lan-
guage the same as it is defined in physics? In what ways is
it different? Give examples of both.

2. Can a centripetal force ever do work on an object?
Explain.

3. Why is it tiring to push hard against a solid wall even though
you are doing no work?

4. Can the normal force on an object ever do work? Explain.

5. You have two springs that are identical except that spring 1
is stiffer than spring 2 On which spring is more
work done: (a) if they are stretched using the same force;
(b) if they are stretched the same distance?

6. If the speed of a particle triples, by what factor does its
kinetic energy increase?

7. List some everyday forces that are not conservative, and
explain why they aren’t.

(k1 7 k2).

Questions



16. Describe precisely what is “wrong” physically in the famous
Escher drawing shown in Fig. 6–32.

8. A hand exerts a constant horizontal force on a block that is
free to slide on a frictionless surface (Fig. 6–30). The block
starts from rest at point A, and by the time it has traveled
a distance d to point B it is traveling with speed When
the block has traveled another distance d to point C, will its
speed be greater than, less than, or equal to Explain
your reasoning.

2vB?

vB .
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d d
A B C

FIGURE 6–30 Question 8.

9. You lift a heavy book from a table to a high shelf. List the
forces on the book during this process, and state whether
each is conservative or nonconservative.

10. A hill has a height h. A child on a sled (total mass m) slides
down starting from rest at the top. Does the speed at the
bottom depend on the angle of the hill if (a) it is icy and
there is no friction, and (b) there is friction (deep snow)?
Explain your answers.

11. Analyze the motion of a simple swinging pendulum in
terms of energy, (a) ignoring friction, and (b) taking fric-
tion into account. Explain why a grandfather clock has to
be wound up.

12. In Fig. 6–31, water balloons are tossed from the roof of 
a building, all with the same speed but with different
launch angles. Which one has the highest speed when it
hits the ground? Ignore air resistance. Explain your answer.

FIGURE 6–31

Question 12.

13. What happens to the gravitational potential energy when
water at the top of a waterfall falls to the pool below?

14. Experienced hikers prefer to step over a fallen log in their
path rather than stepping on top and stepping down on the
other side. Explain.

15. The energy transformations in pole vaulting and archery
are discussed in this Chapter. In a similar fashion, discuss
the energy transformations related to: (a) hitting a golf
ball; (b) serving a tennis ball; and (c) shooting a basket in
basketball.

FIGURE 6–32

Question 16.

17. Two identical arrows, one with twice the speed of the other,
are fired into a bale of hay. Assuming the hay exerts a 
constant “frictional” force on the arrows, the faster arrow
will penetrate how much farther than the slower arrow?
Explain.

18. A heavy ball is hung from the ceiling by a steel wire. The
instructor pulls the ball back and stands against the wall
with the ball against his chin. To avoid injury the instructor
is supposed to release the ball without pushing it (Fig. 6–33).
Why?

19. Describe the energy transformations when a child hops
around on a pogo stick (there is a spring inside).

20. Describe the energy transformations that take place when a
skier starts skiing down a hill, but after a time is brought 
to rest by striking a snowdrift.

21. Suppose you lift a suitcase from the floor to a table. The work
you do on the suitcase depends on which of the following:
(a) whether you lift it straight up or along a more complicated
path, (b) the time the lifting takes, (c) the height of the table,
and (d) the weight of the suitcase?

22. Repeat Question 21 for the power needed instead of the
work.

23. Why is it easier to climb a mountain via a zigzag trail rather
than to climb straight up?

FIGURE 6–33 Question 18.
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(a) (b) (c) (d)

FIGURE 6–34

MisConceptual Questions 10 and 11.

1. You push very hard on a heavy desk, trying to move it. You
do work on the desk:
(a) whether or not it moves, as long as you are exerting a

force.
(b) only if it starts moving.
(c) only if it doesn’t move.
(d) never—it does work on you.
(e) None of the above.

2. A satellite in circular orbit around the Earth moves at con-
stant speed. This orbit is maintained by the force of gravity
between the Earth and the satellite, yet no work is done on
the satellite. How is this possible?
(a) No work is done if there is no contact between objects.
(b) No work is done because there is no gravity in space.
(c) No work is done if the direction of motion is 

perpendicular to the force.
(d) No work is done if objects move in a circle.

3. When the speed of your car is doubled, by what factor does
its kinetic energy increase?
(a) . (b) 2. (c) 4. (d) 8.

4. A car traveling at a velocity v can stop in a minimum
distance d. What would be the car’s minimum stopping
distance if it were traveling at a velocity of 2v?
(a) d. (b) . (c) 2d. (d) 4d. (e) 8d.

5. A bowling ball is dropped from a height h onto the center
of a trampoline, which launches the ball back up into the air.
How high will the ball rise?
(a) Significantly less than h.
(b) More than h. The exact amount depends on the mass of

the ball and the springiness of the trampoline.
(c) No more than h—probably a little less.
(d) Cannot tell without knowing the characteristics of the

trampoline.

6. A ball is thrown straight up. At what point does the ball
have the most energy? Ignore air resistance.
(a) At the highest point of its path.
(b) When it is first thrown.
(c) Just before it hits the ground.
(d) When the ball is halfway to the highest point of its

path.
(e) Everywhere; the energy of the ball is the same at all of

these points.

7. A car accelerates from rest to Later, on a high-
way it accelerates from to Which takes
more energy, going from 0 to 30, or from 30 to 60?
(a) 0 to 
(b) 30 to 
(c) Both are the same.

8. Engines, including car engines, are rated in horsepower.
What is horsepower?
(a) The force needed to start the engine.
(b) The force needed to keep the engine running at a

steady rate.
(c) The energy the engine needs to obtain from gasoline

or some other source.
(d) The rate at which the engine can do work.
(e) The amount of work the engine can perform.

60 km�h.
30 km�h.

60 km�h.30 km�h
30 km�h.

12 d

12

9. Two balls are thrown off a building with the same speed,
one straight up and one at a 45° angle. Which statement is
true if air resistance can be ignored?
(a) Both hit the ground at the same time.
(b) Both hit the ground with the same speed.
(c) The one thrown at an angle hits the ground with a

lower speed.
(d) The one thrown at an angle hits the ground with a

higher speed.
(e) Both (a) and (b).

10. A skier starts from rest at the top of each of the hills shown
in Fig. 6–34. On which hill will the skier have the highest
speed at the bottom if we ignore friction:
(a), (b), (c), (d), or (e) c and d equally?

MisConceptual Questions

11. Answer MisConceptual Question 10 assuming a small
amount of friction.

12. A man pushes a block up an incline at a constant speed. As
the block moves up the incline,
(a) its kinetic energy and potential energy both increase.
(b) its kinetic energy increases and its potential energy

remains the same.
(c) its potential energy increases and its kinetic energy

remains the same.
(d) its potential energy increases and its kinetic energy

decreases by the same amount.

13. You push a heavy crate down a ramp at a constant velocity.
Only four forces act on the crate. Which force does the great-
est magnitude of work on the crate?
(a) The force of friction.
(b) The force of gravity.
(c) The normal force.
(d) The force of you pushing.
(e) The net force.

14. A ball is thrown straight up. Neglecting air resistance, which
statement is not true regarding the energy of the ball?
(a) The potential energy decreases while the ball is going

up.
(b) The kinetic energy decreases while the ball is going 

up.
(c) The sum of the kinetic energy and potential energy is

constant.
(d) The potential energy decreases when the ball is 

coming down.
(e) The kinetic energy increases when the ball is coming

down.



11. (II) Recall from Chapter 4, Example 4–14, that you can use
a pulley and ropes to decrease the force needed to raise 
a heavy load (see Fig. 6–37). But for
every meter the load is raised, how much
rope must be pulled up? Account for
this, using energy concepts.
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FIGURE 6–38 Problem 13.

6–1 Work, Constant Force

1. (I) A 75.0-kg firefighter climbs a flight of stairs 28.0 m high.
How much work does he do?

2. (I) The head of a hammer with a mass of 1.2 kg is allowed to
fall onto a nail from a height of 0.50 m. What is the maxi-
mum amount of work it could do on the nail? Why do people
not just “let it fall” but add their own force to the hammer
as it falls?

3. (II) How much work did the movers do (horizontally) push-
ing a 46.0-kg crate 10.3 m across a rough floor without
acceleration, if the effective coefficient of friction was
0.50?

4. (II) A 1200-N crate rests on the floor. How much work is
required to move it at constant speed (a) 5.0 m along 
the floor against a friction force of 230 N, and (b) 5.0 m
vertically?

5. (II) What is the minimum work needed to push a 950-kg
car 710 m up along a 9.0° incline? Ignore friction.

6. (II) Estimate the work you do to mow a lawn 10 m by 20 m
with a 50-cm-wide mower. Assume you push with a force
of about 15 N.

7. (II) In a certain library the first shelf is 15.0 cm off the ground,
and the remaining four shelves are each spaced 38.0 cm
above the previous one. If the average book has a mass of
1.40 kg with a height of 22.0 cm, and an average shelf holds
28 books (standing vertically), how much work is required
to fill all the shelves, assuming the books are all laying flat
on the floor to start?

8. (II) A lever such as that shown in Fig. 6–35 can be used to
lift objects we might not otherwise be able to lift. Show
that the ratio of output force, to input force,
is related to the lengths and from the pivot by

Ignore friction and the mass of the lever,
and assume the work output equals the work input.
FO�FI = lI�lO .

lOlI

FI ,FO ,

10. (II) A 380-kg piano slides 2.9 m down a 25° incline and is
kept from accelerating by a man who is pushing back on 
it parallel to the incline (Fig. 6–36). Determine: (a) the
force exerted by the man, (b) the work done on the piano
by the man, (c) the work done on the piano by the force of
gravity, and (d) the net work done on the piano. Ignore
friction.

Problems

(a)

(b)FI

FO

lO

lI

FIGURE 6–35

A lever. Problem 8.

9. (II) A box of mass 4.0 kg is accelerated from rest by a force
across a floor at a rate of for 7.0 s. Find the net
work done on the box.

2.0 m�s2

FIGURE 6–36

Problem 10.
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gBFIGURE 6–37

Problem 11.

12. (III) A grocery cart with mass of 16 kg is being pushed at
constant speed up a 12° ramp by a force which acts 
at an angle of 17° below the horizontal. Find the work done
by each of the forces on the cart if the ramp 
is 7.5 m long.

*6–2 Work, Varying Force

*13. (II) The force on a particle, acting along the x axis, varies as
shown in Fig. 6–38. Determine the work done by this force
to move the particle along the x axis: (a) from to

(b) from to  x = 15.0 m.x = 0.0x = 10.0 m;
x = 0.0

F
B

PBF
B

N ,AmgB,

FP

For assigned homework and other learning materials, go to the MasteringPhysics website.
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6–4 and 6–5 Potential Energy

26. (I) By how much does the gravitational potential energy of
a 54-kg pole vaulter change if her center of mass rises
about 4.0 m during the jump?

27. (I) A spring has a spring constant k of How much
must this spring be compressed to store 45.0 J of potential
energy?

28. (II) If it requires 6.0 J of work to stretch a particular 
spring by 2.0 cm from its equilibrium length, how much more
work will be required to stretch it an additional 4.0 cm?

29. (II) A 66.5-kg hiker starts at an elevation of 1270 m and
climbs to the top of a peak 2660 m high. (a) What is the hiker’s
change in potential energy? (b) What is the minimum work
required of the hiker? (c) Can the actual work done be
greater than this? Explain.

30. (II) A 1.60-m-tall person lifts a 1.65-kg book off the ground
so it is 2.20 m above the ground. What is the potential
energy of the book relative to (a) the ground, and (b) the
top of the person’s head? (c) How is the work done by the
person related to the answers in parts (a) and (b)?

6–6 and 6–7 Conservation of Mechanical Energy

31. (I) A novice skier, starting from rest, slides down an icy fric-
tionless 8.0° incline whose vertical height is 105 m. How
fast is she going when she reaches the bottom?

32. (I) Jane, looking for Tarzan, is running at top speed
and grabs a vine hanging vertically from a tall

tree in the jungle. How high can she swing upward? Does
the length of the vine affect your answer?

33. (II) A sled is initially given a shove up a frictionless 23.0°
incline. It reaches a maximum vertical height 1.22 m higher
than where it started at the bottom. What was its initial speed?

34. (II) In the high jump, the kinetic energy of an athlete is
transformed into gravitational potential energy without the
aid of a pole. With what minimum speed must the athlete
leave the ground in order to lift his center of mass 2.10 m
and cross the bar with a speed of 

35. (II) A spring with  hangs vertically next to a
ruler. The end of the spring is next to the 15-cm mark on
the ruler. If a 2.5-kg mass is now attached to the end of the
spring, and the mass is allowed to fall, where will the end
of the spring line up with the ruler marks when the mass is
at its lowest position?

36. (II) A 0.48-kg ball is thrown with a speed of at an
upward angle of 36°. (a) What is its speed at its highest point,
and (b) how high does it go? (Use conservation of energy.)

37. (II) A 1200-kg car moving on a horizontal surface has speed
when it strikes a horizontal coiled spring and

is brought to rest in a distance of 2.2 m. What is the spring
stiffness constant of the spring?

38. (II) A 62-kg trampoline artist jumps
upward from the top of a platform 
with a vertical speed of 
(a) How fast is he going as he lands on
the trampoline, 2.0 m below (Fig.6–40)?
(b) If the trampoline behaves
like a spring of spring con-
stant how
far down does he depress it?

5.8 * 104 N�m,

4.5 m�s.

v = 85 km�h

8.8 m�s

k = 83 N�m
0.50 m�s?

(5.0 m�s)

88.0 N�m.

6–3 Kinetic Energy; Work-Energy Principle

15. (I) At room temperature, an oxygen molecule, with mass
of typically has a kinetic energy of about

How fast is it moving?
16. (I) (a) If the kinetic energy of a particle is tripled, by what

factor has its speed increased? (b) If the speed of a particle
is halved, by what factor does its kinetic energy change?

17. (I) How much work is required to stop an electron
which is moving with a speed of

18. (I) How much work must be done to stop a 925-kg car
traveling at 

19. (II) Two bullets are fired at the same time with the same
kinetic energy. If one bullet has twice the mass of the other,
which has the greater speed and by what factor? Which can
do the most work?

20. (II) A baseball  traveling moves a
fielder’s glove backward 25 cm when the ball is caught. What
was the average force exerted by the ball on the glove?

21. (II) An 85-g arrow is fired from a bow whose string exerts
an average force of 105 N on the arrow over a distance of
75 cm. What is the speed of the arrow as it leaves the bow?

22. (II) If the speed of a car is increased by 50%, by what factor
will its minimum braking distance be increased, assuming
all else is the same? Ignore the driver’s reaction time.

23. (II) At an accident scene on a level road, investigators
measure a car’s skid mark to be 78 m long. It was a rainy
day and the coefficient of friction was estimated to be 0.30.
Use these data to determine the speed of the car when the
driver slammed on (and locked) the brakes. (Why does the
car’s mass not matter?)

24. (III) One car has twice the mass of a second car, but only
half as much kinetic energy. When both cars increase their
speed by they then have the same kinetic energy.
What were the original speeds of the two cars?

25. (III) A 265-kg load is lifted 18.0 m vertically with an accel-
eration  by a single cable. Determine (a) the
tension in the cable; (b) the net work done on the load;
(c) the work done by the cable on the load; (d) the work
done by gravity on the load; (e) the final speed of the load
assuming it started from rest.

a = 0.160 g

8.0 m�s,

32 m�s(m = 145 g)

95 km�h?

1.10 * 106 m�s?
Am = 9.11 * 10–31 kgB

6.21 * 10–21 J.
5.31 * 10–26 kg,
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FIGURE 6–39 Problem 14.

*14. (III) A 17,000-kg jet takes off from an aircraft carrier via 
a catapult (Fig. 6–39a). The gases thrust out from the 
jet’s engines exert a constant force of 130 kN on the jet;
the force exerted on the jet by the catapult is plotted in 
Fig. 6–39b. Determine the work done on the jet: (a) by 
the gases expelled by its engines during launch of the jet;
and (b) by the catapult during launch of the jet.

FIGURE 6–40

Problem 38.
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39. (II) A vertical spring (ignore its mass), whose spring con-
stant is is attached to a table and is compressed
down by 0.160 m. (a) What upward speed can it give to a
0.380-kg ball when released? (b) How high above its original
position (spring compressed) will the ball fly?

40. (II) A roller-coaster car shown in Fig. 6–41 is pulled up to
point 1 where it is released from rest. Assuming no friction,
calculate the speed at points 2, 3, and 4.

875 N�m,

32 m 26 m

1

2

3

4

14 m

FIGURE 6–41 Problems 40 and 50.

42. (II) What should be the spring constant k of a spring
designed to bring a 1200-kg car to rest from a speed of

so that the occupants undergo a maximum accel-
eration of 4.0 g?

43. (III) An engineer is designing a spring to be placed at the
bottom of an elevator shaft. If the elevator cable breaks
when the elevator is at a height h above the top of the
spring, calculate the value that the spring constant k should
have so that passengers undergo an acceleration of no more
than 5.0 g when brought to rest. Let M be the total mass 
of the elevator and passengers.

44. (III) A block of mass m is attached to the end of a spring
(spring stiffness constant k), Fig. 6–43. The mass is given
an initial displacement from equilibrium, and an initial
speed Ignoring friction and the mass of the spring, use
energy methods to find (a) its maximum speed, and (b) its
maximum stretch from equilibrium, in terms of the given
quantities.

v0 .
x0

95 km�h

FIGURE 6–43

Problem 44.

45. (III) A cyclist intends to cycle up a 7.50° hill whose vertical
height is 125 m. The pedals turn in a circle of diameter
36.0 cm. Assuming the mass of bicycle plus person is
75.0 kg, (a) calculate how much work must be done against
gravity. (b) If each complete revolution of the pedals
moves the bike 5.10 m along its path, calculate the average
force that must be exerted on the pedals tangent to their
circular path. Neglect work done by friction and other
losses.

6–8 and 6–9 Law of Conservation of Energy

46. (I) Two railroad cars, each of mass 66,000 kg, are traveling
toward each other. They collide head-on and come

to rest. How much thermal energy is produced in this 
collision?

47. (I) A 16.0-kg child descends a slide 2.20 m high and, starting
from rest, reaches the bottom with a speed of 
How much thermal energy due to friction was generated in
this process?

48. (II) A ski starts from rest and slides down a 28° incline 85 m
long. (a) If the coefficient of friction is 0.090, what is the
ski’s speed at the base of the incline? (b) If the snow is
level at the foot of the incline and has the same coefficient
of friction, how far will the ski travel along the level? Use
energy methods.

49. (II) A 145-g baseball is dropped from a tree 12.0 m above
the ground. (a) With what speed would it hit the ground 
if air resistance could be ignored? (b) If it actually hits the
ground with a speed of what is the average force
of air resistance exerted on it?

50. (II) Suppose the roller-coaster car in Fig. 6–41 passes point 1
with a speed of If the average force of friction is
equal to 0.23 of its weight, with what speed will it reach
point 2? The distance traveled is 45.0 m.

51. (II) A skier traveling reaches the foot of a steady
upward 19° incline and glides 15 m up along this slope
before coming to rest. What was the average coefficient of
friction?

52. (II) You drop a ball from a height of 2.0 m, and it bounces
back to a height of 1.6 m. (a) What fraction of its initial
energy is lost during the bounce? (b) What is the ball’s speed
just before and just after the bounce? (c) Where did the
energy go?

53. (II) A 66-kg skier starts from rest at the top of a 1200-m-
long trail which drops a total of 230 m from top to bottom.
At the bottom, the skier is moving How much
energy was dissipated by friction?

54. (II) A projectile is fired at an upward angle of 38.0° from
the top of a 135-m-high cliff with a speed of What
will be its speed when it strikes the ground below? (Use
conservation of energy.)

55. (II) The Lunar Module could make a safe landing if its 
vertical velocity at impact is or less. Suppose that
you want to determine the greatest height h at which the
pilot could shut off the engine if the velocity of the lander
relative to the surface at that moment is (a) zero; (b)
downward; (c) upward. Use conservation of energy
to determine h in each case. The acceleration due to gravity
at the surface of the Moon is 1.62 m�s2.

2.0 m�s
2.0 m�s

3.0 m�s

165 m�s.

11.0 m�s.

11.0 m�s

1.30 m�s.

8.00 m�s,

1.25 m�s.

85 km�h

(a) (c)
15 m

y = 0

(b)

�y = ?

y

d
FIGURE 6–42

Problem 41. (a) Bungee 
jumper about to jump.
(b) Bungee cord at its 
unstretched length.
(c) Maximum stretch 
of cord.

41. (II) Chris jumps off a bridge with a bungee cord (a heavy
stretchable cord) tied around his ankle, Fig. 6–42. He falls
for 15 m before the bungee cord begins to stretch. Chris’s
mass is 75 kg and we assume the cord obeys Hooke’s law,

with  If we neglect air resistance,
estimate what distance d below the bridge Chris’s foot will
be before coming to a stop. Ignore the mass of the cord
(not realistic, however) and treat Chris as a particle.

k = 55 N�m.F = –kx,



FIGURE 6–44

Problem 72.

56. (III) Early test flights for the space shuttle used a “glider”
(mass of 980 kg including pilot). After a horizontal launch
at at a height of 3500 m, the glider eventually
landed at a speed of (a) What would its landing
speed have been in the absence of air resistance? (b) What
was the average force of air resistance exerted on it if it
came in at a constant glide angle of 12° to the Earth’s surface?

6–10 Power

57. (I) How long will it take a 2750-W motor to lift a 385-kg
piano to a sixth-story window 16.0 m above?

58. (I) (a) Show that one British horsepower is
equal to 746 W. (b) What is the horsepower rating of a 
75-W lightbulb?

59. (I) An 85-kg football player traveling is stopped 
in 1.0 s by a tackler. (a) What is the original kinetic energy
of the player? (b) What average power is required to stop
him?

60. (II) If a car generates 18 hp when traveling at a steady
what must be the average force exerted on the

car due to friction and air resistance?
61. (II) An outboard motor for a boat is rated at 35 hp. If it

can move a particular boat at a steady speed of 
what is the total force resisting the motion of the boat?

62. (II) A shot-putter accelerates a 7.3-kg shot from rest to
in 1.5 s. What average power was developed?

63. (II) A driver notices that her 1080-kg car, when in neutral,
slows down from to in about 7.0 s on a flat
horizontal road. Approximately what power (watts and hp)
is needed to keep the car traveling at a constant 80 km�h?

65 km�h95 km�h

14 m�s

35 km�h,

95 km�h,

5.0 m�s

(550 ft� lb�s)

210 km�h.
480 km�h

64. (II) How much work can a 2.0-hp motor do in 1.0 h?

65. (II) A 975-kg sports car accelerates from rest to in
6.4 s. What is the average power delivered by the engine?

66. (II) During a workout, football players ran up the stadium
stairs in 75 s. The distance along the stairs is 83 m and they
are inclined at a  33° angle. If a player has a mass of 82 kg,
estimate his average power output on the way up. Ignore
friction and air resistance.

67. (II) A pump lifts 27.0 kg of water per minute through a
height of 3.50 m. What minimum output rating (watts) must
the pump motor have?

68. (II) A ski area claims that its lifts can move 47,000 people
per hour. If the average lift carries people about 200 m (ver-
tically) higher, estimate the maximum total power needed.

69. (II) A 65-kg skier grips a moving rope that is powered by
an engine and is pulled at constant speed to the top of a 23°
hill. The skier is pulled a distance along the
incline and it takes 2.0 min to reach the top of the hill. If
the coefficient of kinetic friction between the snow and skis
is  what horsepower engine is required if 30 such
skiers (max) are on the rope at one time?

70. (II) What minimum horsepower must a motor have to be
able to drag a 370-kg box along a level floor at a speed of

if the coefficient of friction is 0.45?

71. (III) A bicyclist coasts down a 6.0° hill at a steady speed 
of Assuming a total mass of 75 kg (bicycle plus
rider), what must be the cyclist’s power output to climb the
same hill at the same speed?

4.0 m�s.

1.20 m�s

mk = 0.10,

x = 320 m

95 km�h

72. Spiderman uses his spider webs to save a runaway train
moving about Fig. 6–44. His web stretches a few
city blocks (500 m) before the train comes to a stop.
Assuming the web acts like a spring, estimate the effective
spring constant.

104-kg
60 km�h,

75. A mass m is attached to a spring which is held stretched a
distance x by a force F, Fig. 6–45, and then released.
The spring pulls the mass to the left, towards its natural
equilibrium length. Assuming there is no friction, determine
the speed of the mass m when the spring returns: (a) to its
normal length (b) to half its original extension
(x�2).

(x = 0);

General Problems

m

x
x � 0

F
B

FIGURE 6–45 Problem 75.
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76. An elevator cable breaks when a 925-kg elevator is 28.5 m
above the top of a huge spring  at the
bottom of the shaft. Calculate (a) the work done by gravity
on the elevator before it hits the spring; (b) the speed of the
elevator just before striking the spring; (c) the amount the
spring compresses (note that here work is done by both 
the spring and gravity).

77. (a) A 3.0-g locust reaches a speed of during its
jump. What is its kinetic energy at this speed? (b) If the
locust transforms energy with 35% efficiency, how much
energy is required for the jump?

3.0 m�s

Ak = 8.00 * 104 N�mB
73. A 36.0-kg crate, starting from rest, is pulled across a floor

with a constant horizontal force of 225 N. For the first
11.0 m the floor is frictionless, and for the next 10.0 m the
coefficient of friction is 0.20. What is the final speed of 
the crate after being pulled these 21.0 m?

74. How high will a 1.85-kg rock go from the point of release if
thrown straight up by someone who does 80.0 J of work on
it? Neglect air resistance.



91. An 18-kg sled starts up a 28° incline with a speed of
The coefficient of kinetic friction is

(a) How far up the incline does the sled travel? (b) What
condition must you put on the coefficient of static friction
if the sled is not to get stuck at the point determined in 
part (a)? (c) If the sled slides back down, what is its speed
when it returns to its starting point?

mk = 0.25.2.3 m�s.

79. An airplane pilot fell 370 m after jumping from an aircraft
without his parachute opening. He landed in a snowbank,
creating a crater 1.1 m deep, but survived with only minor
injuries. Assuming the pilot’s mass was 88 kg and his speed
at impact was estimate: (a) the work done by the
snow in bringing him to rest; (b) the average force exerted
on him by the snow to stop him; and (c) the work done on
him by air resistance as he fell. Model him as a particle.

80. Many cars have “ bumpers”that are designed
to compress and rebound elastically without any physical
damage at speeds below If the material of the
bumpers permanently deforms after a compression of
1.5 cm, but remains like an elastic spring up to that point,
what must be the effective spring constant of the bumper
material, assuming the car has a mass of 1050 kg and is
tested by ramming into a solid wall?

81. In climbing up a rope, a 62-kg athlete climbs a vertical dis-
tance of 5.0 m in 9.0 s. What minimum power output was
used to accomplish this feat?

82. If a 1300-kg car can accelerate from to in
3.8 s, how long will it take to accelerate from to

Assume the power stays the same, and neglect
frictional losses.

83. A cyclist starts from rest and coasts down a 4.0° hill. The
mass of the cyclist plus bicycle is 85 kg. After the cyclist
has traveled 180 m, (a) what was the net work done by
gravity on the cyclist? (b) How fast is the cyclist going?
Ignore air resistance and friction.

84. A film of Jesse Owens’s famous long jump (Fig. 6–47) in
the 1936 Olympics shows that his center of mass rose 1.1 m
from launch point to the top of
the arc. What minimum speed
did he need at launch if he was
traveling at at the top
of the arc?

6.5 m�s

95 km�h?
55 km�h
65 km�h35 km�h

8 km�h.

A8 km�hB5 mi�h

45 m�s,
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78. In a common test for cardiac function (the “stress test”),
the patient walks on an inclined treadmill (Fig. 6–46).
Estimate the power required from a 75-kg patient when
the treadmill is sloping at an angle of 12° and the velocity
is (How does this power compare to the power
rating of a lightbulb?)

3.1 km�h.

FIGURE 6–47

Problem 84.

FIGURE 6–46 Problem 78.

A

B

C

45.0 m

4.4 m

30.0°

B

s

vB

FIGURE 6–48

Problem 86.

85. Water flows over a dam at the rate of and falls
vertically 88 m before striking the turbine blades. Calculate
(a) the speed of the water just before striking the turbine
blades (neglect air resistance), and (b) the rate at which
mechanical energy is transferred to the turbine blades,
assuming 55% efficiency.

86. A 55-kg skier starts from rest at the top of a ski jump,
point A in Fig. 6–48, and travels down the ramp. If fric-
tion and air resistance can be neglected, (a) determine her
speed when she reaches the horizontal end of the ramp
at B. (b) Determine the distance s to where she strikes the
ground at C.

vB

680 kg�s

87. Electric energy units are often expressed in “kilowatt-hours.”
(a) Show that one kilowatt-hour (kWh) is equal to 
(b) If a typical family of four uses electric energy at 
an average rate of 580 W, how many kWh would their
electric bill show for one month, and (c) how many joules
would this be? (d) At a cost of $0.12 per kWh, what would
their monthly bill be in dollars? Does the monthly bill
depend on the rate at which they use the electric energy?

88. If you stand on a bathroom scale, the spring inside the
scale compresses 0.60 mm, and it tells you your weight is
760 N. Now if you jump on the scale from a height of
1.0 m, what does the scale read at its peak?

89. A 65-kg hiker climbs to the top of a mountain 4200 m high.
The climb is made in 4.6 h starting at an elevation of
2800 m. Calculate (a) the work done by the hiker against
gravity, (b) the average power output in watts and in
horsepower, and (c) assuming the body is 15% efficient,
what rate of energy input was required.

90. A ball is attached to a horizontal cord of length whose
other end is fixed, Fig. 6–49. (a) If the ball is released,
what will be its speed at the lowest point of its path? (b)A peg
is located a distance h
directly below the point of
attachment of the cord. If

what will be the
speed of the ball when it
reaches the top of its circular
path about the peg?

h = 0.80l,

l

3.6 * 106 J.

h

l

Peg
FIGURE 6–49

Problem 90.



92. A 56-kg student runs at grabs a hanging 10.0-m-long
rope, and swings out over a lake (Fig. 6–50). He releases
the rope when his velocity is zero. (a) What is the angle 
when he releases the
rope? (b) What is the
tension in the rope just
before he releases it?
(c) What is the maxi-
mum tension in the
rope during the swing?

u

6.0 m�s,

θ
10.0 m

FIGURE 6–50

Problem 92.

93. Some electric power companies use water to store energy.
Water is pumped from a low reservoir to a high reservoir.
To store the energy produced in 1.0 hour by a 180-MW
electric power plant, how many cubic meters of water will
have to be pumped from the lower to the upper reservoir?
Assume the upper reservoir is an average of 380 m above
the lower one. Water has a mass of for every

94. A softball having a mass of 0.25 kg is pitched horizontally
at By the time it reaches the plate, it may have
slowed by 10%. Neglecting gravity, estimate the average
force of air resistance during a pitch. The distance between
the plate and the pitcher is about 15 m.

120 km�h.

1.0 m3.
1.00 * 103 kg

1. We studied forces earlier and used them to solve Problems.
Now we are using energy to solve Problems, even some that
could be solved with forces. (a) Give at least three advan-
tages of using energy to solve a Problem. (b) When must
you use energy to solve a Problem? (c) When must you use
forces to solve a Problem? (d) What information is not
available when solving Problems with energy? Look at the
Examples in Chapters 6 and 4.

2. The brakes on a truck can overheat and catch on fire if the
truck goes down a long steep hill without shifting into a lower
gear. (a) Explain why this happens in terms of energy and
power. (b) Would it matter if the same elevation change was
made going down a steep hill or a gradual hill? Explain
your reasoning. [Hint: Read Sections 6–4, 6–9, and 6–10
carefully.] (c) Why does shifting into a lower gear help?
[Hint: Use your own experience, downshifting in a car.]
(d) Calculate the thermal energy dissipated from the brakes
in an 8000-kg truck that descends a 12° hill. The truck
begins braking when its speed is and slows to a
speed of in a distance of 0.36 km measured along
the road.

3. (a) Only two conservative forces are discussed in this Chap-
ter. What are they, and how are they accounted for when you
are dealing with conservation of energy? (b) Not mentioned
is the force of water on a swimmer. Is it conservative or
nonconservative?

4. Give at least two examples of friction doing positive work.
Reread parts of Chapters 4 and 6.

35 km�h
95 km�h

5. Show that on a roller coaster with a circular vertical loop
(Fig. 6–51), the difference in your apparent weight at the top
of the loop and the bottom of the loop is 6.0 times your
weight. Ignore friction. Show also that as long as your speed
is above the minimum needed (so the car holds the track), this
answer doesn’t depend on the size of the loop or how fast you
go through it. [Reread Sections 6–6, 5–2, and 4–6.]

Search and Learn

6. Suppose that the track in Fig. 6–51 is not frictionless and
the values of h and R are given. (See Sections 6–9 and 6–1.)
(a) If you measure the velocity of the roller coaster at the
top of the hill (of height h) and at the top of the circle (of
height 2R), can you determine the work done by friction
during the time the roller coaster moves between those two
points? Why or why not? (b) Can you determine the aver-
age force of friction between those two points? Why or why
not? If not, what additional information do you need?

A: (c).
B: (a) Less, because ;

(b) .
C: No, because the speed v would be the square root of a 

negative number, which is not real.

2.0 * 105 J
A20B2 = 400 6 A30B2 - A20B2 = 500

D: (a) (b) 4.
E: Yes. It is nonconservative, because for a conservative

force  in a round trip.
F: (e), (e); (e), (c).

W = 0

12 ;

A N S W E R S  TO  E X E R C I S E S
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h
R

FIGURE 6–51

Search and Learn 5 
and 6.




