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Fluids
CHAPTER-OPENING QUESTIONS—Guess now!
1. Which container has the largest pressure at the bottom? Assume each con-
tainer holds the same volume of water.

2. Two balloons are tied and hang with their nearest edges
about 3 cm apart. If you blow between the balloons (not at
the balloons, but at the opening between them), what will
happen?

(a) Nothing.
(b) The balloons will move closer together.
(c) The balloons will move farther apart.

I n previous Chapters we considered objects that were solid and assumed to
maintain their shape except for a small amount of elastic deformation. We
sometimes treated objects as point particles. Now we are going to shift our

attention to materials that are very deformable and can flow. Such “fluids” include
liquids and gases. We will examine fluids both at rest (fluid statics) and in motion
(fluid dynamics).

10
(a) (b) (c) (d) (e)

The
pressures

are
equal.

We start our study with fluids at rest, such as water in a glass or a lake. Pressure in a fluid
increases with depth, a fact that allows less dense objects to float—the pressure
underneath is higher than on top. When fluids flow, such as water or air, interesting
effects occur because the pressure in the fluid is lower where the fluid velocity is higher
(Bernoulli’s principle).

The great mass of a glacier’s ice (photos here) moves slowly, like a viscous liquid. The
dark lines are “moraines,” made up of rock broken off mountain walls by the moving ice,
and represent streamlines. The two photos, taken in 1929 and 2009 by Italian expeditions
to the mountain K2 (on the right in the distance), show the same glacier has become less
thick, presumably due to global warming.

2009

1929
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TABLE 10–1

Densities of Substances‡

Density,
Substance

Solids

Aluminum
Iron and steel
Copper
Lead
Gold
Concrete
Granite
Wood (typical)
Glass, common
Ice
Bone

Liquids

Water (4°C)
Sea water
Blood, plasma
Blood, whole
Mercury
Alcohol, ethyl
Gasoline

Gases

Air
Helium
Carbon dioxide
Water (steam)
(100°C)

‡Densities are given at 0°C and 1 atm
pressure unless otherwise specified.

0.598
1.98
0.179
1.29

0.7–0.8 * 103
0.79 * 103

13.6 * 103
1.05 * 103
1.03 * 103
1.025 * 103
1.000 * 103

1.7 – 2.0 * 103
0.917 * 103(H2O)

2.4 – 2.8 * 103
0.3 – 0.9 * 103

2.7 * 103
2.3 * 103

19.3 * 103
11.3 * 103
8.9 * 103
7.8 * 103
2.70 * 103

R (kg�m3)

10–1 Phases of Matter
The three common phases, or states, of matter are solid, liquid, and gas. A simple
way to distinguish these three phases is as follows. A solid maintains a generally
fixed size and shape; usually it requires a large force to change the volume or
shape of a solid† (although a thin object might bend). A liquid does not maintain
a fixed shape—it takes on the shape of its container, and it can flow; but like a solid
it is not readily compressible, and its volume can be changed significantly only by a
very large force. A gas has neither a fixed shape nor a fixed volume—it will expand
to fill its container. For example, when air is pumped into an automobile tire, the
air does not all run to the bottom of the tire as a liquid would; it spreads out to fill
the whole volume of the tire.

Because liquids and gases do not maintain a fixed shape, they both have the
ability to flow. They are thus referred to collectively as fluids.

The division of matter into three phases is not always simple. How, for example,
should butter be classified? Furthermore, a fourth phase of matter can be distin-
guished, the plasma phase, which occurs only at very high temperatures and consists
of ionized atoms (electrons separated from the nuclei). Some scientists believe that
colloids (suspensions of tiny particles in a liquid) should also be considered a separate
phase of matter. Liquid crystals, used in TV, cell phone, and computer screens,
can be considered a phase of matter in between solids and liquids. For now, we
will be interested in the three ordinary phases of matter.

10–2 Density and Specific Gravity
It is sometimes said that iron is “heavier” than wood. This cannot really be true
since a large log clearly weighs more than an iron nail. What we should say is that
iron is more dense than wood.

The density, of a substance ( is the lowercase Greek letter rho) is defined
as its mass per unit volume:

(10;1)

where m is the mass of a sample of the substance and V its volume. Density is a char-
acteristic property of any pure substance. Objects made of a particular pure substance,
such as pure gold, can have any size or mass, but the density will be the same for each.

We can use the concept of density, Eq. 10–1, to write the mass of an object as

and the weight of an object as

The SI unit for density is Sometimes densities are given in 
Note that a density given in must be multiplied by 1000 to give the result
in For 
example, the density of aluminum is which equals 
The densities of various substances are given in Table 10–1. The Table specifies
temperature and atmospheric pressure because they affect density (the effect is
slight for liquids and solids). Note that air is about 1000 times less dense than water.

2700 kg�m3.r = 2.70 g�cm3,
C1 kg�m3 = 1000 g�(100 cm)3 = 103 g�106 cm3 = 10–3 g�cm3 D .kg�m3

g�cm3
g�cm3.kg�m3.

mg = rVg.

m = rV,

r =
m

V
,

rr,

Mass, given volume and density. What is the mass of a
solid iron wrecking ball of radius 18 cm?

APPROACH First we use the standard formula (see inside rear cover)
to obtain the sphere’s volume. Then Eq. 10–1 and Table 10–1 give us the mass m.

SOLUTION The volume of the sphere is

From Table 10–1, the density of iron is so Eq. 10–1 gives
m = rV = A7800 kg�m3B A0.024 m3B = 190 kg.

r = 7800 kg�m3,
V = 4

3pr3 = 4
3 (3.14)(0.18 m)3 = 0.024 m3.

V = 4
3pr3

EXAMPLE 10;1

†Section 9–5.



The specific gravity of a substance is defined as the ratio of the density 
of that substance to the density of water at 4.0°C. Because specific gravity 
(abbreviated SG) is a ratio, it is a simple number without dimensions or 
units. For example (see Table 10–1), the specific gravity of lead is 11.3

The SG of alcohol is 0.79.
The concepts of density and specific gravity are especially helpful in the study

of fluids because we are not always dealing with a fixed volume or mass.

10–3 Pressure in Fluids
Pressure and force are related, but they are not the same thing. Pressure is defined
as force per unit area, where the force F is understood to be the magnitude of 
the force acting perpendicular to the surface area A:

(10;2)

Although force is a vector, pressure is a scalar. Pressure has magnitude only. The
SI unit of pressure is This unit has the official name pascal (Pa), in honor
of Blaise Pascal (see Section 10–5); that is, However, for sim-
plicity, we will often use Other units sometimes used are and

(pounds per square inch, abbreviated “psi”). Several other units for pressure
are discussed in Sections 10–4 and 10–6, along with conversions between them
(see also the Table inside the front cover).

Calculating pressure. A 60-kg person’s two feet cover 
an area of (a) Determine the pressure exerted by the two feet on the
ground. (b) If the person stands on one foot, what will be the pressure under
that foot?

APPROACH Assume the person is at rest. Then the ground pushes up on her
with a force equal to her weight mg, and she exerts a force mg on the ground
where her feet (or foot) contact it. Because then

SOLUTION (a) The pressure on the ground exerted by the two feet is

(b) If the person stands on one foot, the force is still equal to the person’s
weight, but the area will be half as much, so the pressure will be twice as much:

Pressure is particularly useful for dealing with fluids. It is an experimental
observation that a fluid exerts pressure in every direction. This is well known to
swimmers and divers who feel the water pressure on all parts of their bodies. At
any depth in a fluid at rest, the pressure is the same in all directions at that given
depth. To see why, consider a tiny cube of the fluid (Fig. 10–1) which is so small
that we can consider it a point and can ignore the force of gravity on it. The pres-
sure on one side of it must equal the pressure on the opposite side. If this weren’t
true, there would be a net force on the cube and it would start moving. If the fluid
is not flowing, then the pressures must be equal.

For a fluid at rest, the force due to fluid pressure always acts perpendicular
to any solid surface it touches. If there were a component of the force parallel 
to the surface, as shown in Fig. 10–2, then according to Newton’s third law the
solid surface would exert a force back on the fluid, which would cause the fluid to
flow—in contradiction to our assumption that the fluid is at rest. Thus the force
due to the pressure in a fluid at rest is always perpendicular to the surface.

24 * 103 N�m2.

P =
F

A
=

mg

A
=

(60 kg)(9.8 m�s2)

(0.050 m2)
= 12 * 103 N�m2.

500 cm2 = 0.050 m2.
1 cm2 = (10–2 m)2 = 10–4 m2,

500 cm2.
EXAMPLE 10;2

lb�in.2
dynes�cm2,N�m2.

1 Pa = 1 N�m2.
N�m2.

pressure = P =
F

A
.

[A11.3 * 103 kg�m3B�A1.00 * 103 kg�m3B].
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C A U T I O N

Pressure is a scalar, not a vector

FIGURE 10–1 Pressure is the same
in every direction in a nonmoving
fluid at a given depth. If this weren’t
true, the fluid would be in motion.

F

F

FIGURE 10–2 If there were a
component of force parallel to the
solid surface of the container, the
liquid would move in response to it.
For a liquid at rest, F∑∑ = 0.
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We now calculate quantitatively how the pressure in a liquid of uniform
density varies with depth. Let us look at a depth h below the surface of the liquid
as shown in Fig. 10–3 (that is, the liquid’s top surface is a height h above this level).
The pressure due to the liquid at this depth h is due to the weight of the column
of liquid above it. Thus the force due to the weight of liquid acting on the area A
is where Ah is the volume of the column of liquid,

is the density of the liquid (assumed to be constant), and g is the acceleration 
of gravity. The pressure P due to the weight of liquid is then

[liquid] (10;3a)

Note that the area A doesn’t affect the pressure at a given depth. The fluid pres-
sure is directly proportional to the density of the liquid and to the depth within the
liquid. In general, the pressure at equal depths within a uniform liquid is the same.

P = rgh.

P =
F

A
=
rAhg

A

r

F = mg = (rV)g = rAhg,

P H Y S I C S  A P P L I E D

Water supply

A

h

FIGURE 10–3 Calculating the
pressure at a depth h in a liquid, due
to the weight of the liquid above.

Δh =
30 m

FIGURE 10–4 Example 10–3.

EXERCISE A Return to Chapter-Opening Question 1, page 260, and answer it again
now. Try to explain why you may have answered differently the first time.

Equation 10–3a is extremely useful. It is valid for fluids whose density is 
constant and does not change with depth—that is, if the fluid is incompressible.
This is usually a good approximation for liquids (although at great depths in the
ocean, the density of water is increased some by compression due to the 
great weight of water above).

If the density of a fluid does vary, a useful relation can be found by considering a
thin horizontal slab of the fluid of thickness The pressure on the
top of the slab, at depth is The pressure on the bottom of the slab
(pushing upward), at depth is The difference in pressure is

or
(10;3b)

Equation 10–3b tells us how the pressure changes over a small change in depth 
within a fluid, even if compressible.

Gases are very compressible, and density can vary significantly with depth.
For this more general case, in which may vary, we need to use Eq. 10–3b where

should be small if varies significantly with depth (or height).r¢h
r

(¢h)

[r L constant over ¢h]¢P = rg ¢h.

¢P = P2 - P1 = rgAh2 - h1B
P2 = rgh2 .h2 ,

P1 = rgh1 .h1 ,
¢h = h2 - h1 .

Pressure at a faucet. The surface of the water in a storage
tank is 30 m above a water faucet in the kitchen of a house, Fig. 10–4. Calcu-
late the difference in water pressure between the faucet and the surface of the
water in the tank.

APPROACH Water is practically incompressible, so is constant even for a
when used in Eq. 10–3b. Only matters; we can ignore the

“route” of the pipe and its bends.

SOLUTION We assume the atmospheric pressure at the surface of the water in
the storage tank is the same as at the faucet. So, the water pressure difference
between the faucet and the surface of the water in the tank is

NOTE The height is sometimes called the pressure head. In this Example,
the head of water is 30 m at the faucet. The very different diameters of the tank
and faucet don’t affect the result—only height does.

¢h

= 2.9 * 105 N�m2.¢P = rg ¢h = A1.0 * 103 kg�m3B A9.8 m�s2B A30 mB

¢h¢h = 30 m
r

EXAMPLE 10;3

EXERCISE B A dam holds back a lake that is 85 m deep at the dam. If the lake is 20 km
long, how much thicker should the dam be than if the lake were smaller, only 1.0 km long?



10–4 Atmospheric Pressure 
and Gauge Pressure

Atmospheric Pressure
The pressure of the Earth’s atmosphere, as in any fluid, changes with depth. But
the Earth’s atmosphere is somewhat complicated: not only does the density of air
vary greatly with altitude but there is no distinct top surface to the atmosphere
from which h (in Eq. 10–3a) could be measured. We can, however, calculate the
approximate difference in pressure between two altitudes above Earth’s surface
using Eq. 10–3b.

The pressure of the air at a given place varies slightly according to the weather.
At sea level, the pressure of the atmosphere on average is 
(or ). This value lets us define a commonly used unit of pressure, the
atmosphere (abbreviated atm):

Another unit of pressure sometimes used (in meteorology and on weather maps)
is the bar, which is defined as

Thus standard atmospheric pressure is slightly more than 1 bar.
The pressure due to the weight of the atmosphere is exerted on all objects

immersed in this great sea of air, including our bodies. How does a human body
withstand the enormous pressure on its surface? The answer is that living cells
maintain an internal pressure that closely equals the external pressure, just as 
the pressure inside a balloon closely matches the outside pressure of the atmos-
phere. An automobile tire, because of its rigidity, can maintain internal pressures
much greater than the external pressure.

Finger holds water in a straw. You insert
a straw of length into a tall glass of water. You place your finger over the top
of the straw, capturing some air above the water but preventing any additional air
from getting in or out, and then you lift the straw from the water. You find that
the straw retains most of the water (Fig. 10–5a). Does the air in the space between
your finger and the top of the water have a pressure P that is greater than, equal
to, or less than, the atmospheric pressure outside the straw?

RESPONSE Consider the forces on the column of water (Fig. 10–5b). Atmospheric
pressure outside the straw pushes upward on the water at the bottom of the straw,
gravity pulls the water downward, and the air pressure inside the top of the
straw pushes downward on the water. Since the water is in equilibrium, the
upward force due to atmospheric pressure must balance the two downward
forces. The only way this is possible is for the air pressure P inside the straw at the
top to be less than the atmosphere pressure outside the straw. (When you initially
remove the straw from the water glass, a little water may leave the bottom of
the straw, thus increasing the volume of trapped air and reducing its density 
and pressure.)

Gauge Pressure
It is important to note that tire gauges, and most other pressure gauges, register the
pressure above and beyond atmospheric pressure. This is called gauge pressure.
Thus, to get the absolute pressure, P, we must add the atmospheric pressure,
to the gauge pressure,

If a tire gauge registers 220 kPa, the absolute pressure within the tire is
equivalent to about 3.2 atm (2.2 atm gauge

pressure).
220 kPa + 101 kPa = 321 kPa,

P = PG + P0 .

PG :
P0 ,

P0

P0

l

CONCEPTUAL EXAMPLE 10;4

1 bar = 1.000 * 105 N�m2.

1 atm = 1.013 * 105 N�m2 = 101.3 kPa.

14.7 lb�in.2
1.013 * 105 N�m2

P H Y S I C S  A P P L I E D

Pressure on living cells

(a) (b)

P0

P=?

mg =
rgAh

P0A

PA

r
l

h

FIGURE 10–5 Example 10–4.
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(a) (b)

Pedal

Disk,
attached to wheel

Brake
pads

Brake
cylinder

Master
cylinder

   out

Pout
Aout

   in

AinPin

F
B

F
B

FIGURE 10–6 Applications of Pascal’s principle: (a) hydraulic lift;
(b) hydraulic brakes in a car.

10–5 Pascal’s Principle
The Earth’s atmosphere exerts a pressure on all objects with which it is in con-
tact, including other fluids. External pressure acting on a fluid is transmitted
throughout that fluid. For instance, according to Eq. 10–3a, the pressure due to
the water at a depth of 100 m below the surface of a lake is 

or 9.7 atm. However, the
total pressure at this point is due to the pressure of water plus the pressure of 
the air above it. Hence the total pressure (if the lake is near sea level) is

This is just one example of a general principle
attributed to the French philosopher and scientist Blaise Pascal (1623–1662).
Pascal’s principle states that if an external pressure is applied to a confined fluid,
the pressure at every point within the fluid increases by that amount.

A number of practical devices make use of Pascal’s principle. One example is
the hydraulic lift, illustrated in Fig. 10–6a, in which a small input force is used to
exert a large output force by making the area of the output piston larger than the area
of the input piston. To see how this works, we assume the input and output
pistons are at the same height (at least approximately). Then the external input
force by Pascal’s principle, increases the pressure equally throughout.
Therefore, at the same level (see Fig. 10–6a),

where the input quantities are represented by the subscript “in” and the output
by “out.” Since we write the above equality as

or

The quantity is called the mechanical advantage of the hydraulic lift, and
it is equal to the ratio of the areas. For example, if the area of the output piston 
is 20 times that of the input cylinder, the force is multiplied by a factor of 20.
Thus a force of 200 lb could lift a 4000-lb car.

Fout�Fin

Fout

Fin
=

Aout

Ain

.

Fout

Aout
=

Fin

Ain

,

P = F�A,

Pout = Pin

Fin ,

9.7 atm + 1.0 atm = 10.7 atm.

A1000 kg�m3B A9.8 m�s2B(100 m) = 9.8 * 105 N�m2,
P = rg ¢h =

P H Y S I C S  A P P L I E D

Hydraulic lift

P H Y S I C S  A P P L I E D

Hydraulic brakes
Figure 10–6b illustrates the brake system of a car. When the driver presses

the brake pedal, the pressure in the master cylinder increases. This pressure
increase occurs throughout the brake fluid, thus pushing the brake pads against
the disk attached to the car’s wheel.



10–6 Measurement of Pressure;
Gauges and the Barometer

Many devices have been invented to measure pressure, some of which are shown
in Fig. 10–7. The simplest is the open-tube manometer (Fig. 10–7a) which is a

tube partially filled with a liquid, usually mercury or water. The pres-
sure P being measured is related (by Eq. 10–3b) to the difference in height 
of the two levels of the liquid by the relation

[manometer] (10;3c)

where is atmospheric pressure (acting on the top of the liquid in the left-hand
tube), and is the density of the liquid. Note that the quantity is the gauge
pressure—the amount by which P exceeds atmospheric pressure If the liquid
in the left-hand column were lower than that in the right-hand column, P would
have to be less than atmospheric pressure (and would be negative).

Instead of calculating the product sometimes only the change in height 
is specified. In fact, pressures are sometimes specified as so many “millimeters 
of mercury” (mm-Hg) or “mm of water” The unit mm-Hg is equivalent
to a pressure of because for of mercury
gives

The unit mm-Hg is also called the torr in honor of Evangelista Torricelli
(1608–1647), a student of Galileo’s who invented the barometer (see top of next
page). Conversion factors among the various units of pressure (an incredible
nuisance!) are given in Table 10–2. It is important that only the
proper SI unit, be used in calculations involving other quantities specified in 
SI units.

Another type of pressure gauge is the aneroid gauge (Fig. 10–7b) in which
the pointer is linked to the flexible ends of an evacuated thin metal chamber. In
electronic gauges, the pressure may be applied to a thin metal diaphragm 
whose resulting deformation is translated into an electrical signal by a transducer.
A common tire gauge uses a spring, as shown in Fig. 10–7c.

N�m2 = Pa,

= 1.33 * 102 N�m2.

rg ¢h = A13.6 * 103 kg�m3B A9.80 m�s2B A1.00 * 10–3 mB

(= 1.0 * 10–3 m)1 mmrg ¢h133 N�m2,
(mm-H2O).

¢hrg ¢h,
¢h

P0 .
rg ¢hr

P0

P = P0 + rg ¢h,

¢h
U-shaped

266 CHAPTER 10 Fluids

P R O B L E M  S O L V I N G

Use SI unit in calculations:
1 Pa = 1 N�m2

(b) Aneroid gauge (used mainly
for air pressure, and then
called an aneroid barometer)

Flexible
chamber

Air pressure

P
Δh

(a) Open-tube manometer

P0

(Pressure being
measured)

Atmospheric
pressure

Spring

Pressure of
air in tire

(c) Tire gauge

Scale reading,
gauge pressure

FIGURE 10–7 Pressure gauges: (a) open-tube manometer, (b) aneroid gauge, and
(c) common tire pressure gauge.
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TABLE 10–2 Conversion Factors Between Different Units of Pressure

In Terms of 1 atm in Different Units

L 10 m of water
 1 atm = 1.03 * 104 mm-H2O (4°C) 1 mm-H2O (4°C) = 9.80 N�m2
1 atm = 760 torr 1 torr = 133 N�m2
1 atm = 760 mm-Hg 1 mm-Hg = 133 N�m2
1 atm = 76.0 cm-Hg 1 cm-Hg = 1.33 * 103 N�m2
1 atm = 2.12 * 103 lb�ft2 1 lb�ft2 = 47.9 N�m2
1 atm = 14.7 lb�in.2 1 lb�in.2 = 6.90 * 103 N�m2
1 atm = 1.013 * 106 dyne�cm2 1 dyne�cm2 = 0.1 N�m2
1 atm = 1.013 bar 1 bar = 1.000 * 105 N�m2

= 1.013 * 105 Pa = 101.3 kPa
1 atm = 1.013 * 105 N�m2 1 atm = 1.013 * 105 N�m2

1 Pa � 1 N�m2

Atmospheric pressure can be measured by a modified kind of mercury
manometer with one end closed, called a mercury barometer (Fig. 10–8). The
glass tube is completely filled with mercury and then inverted into the bowl of
mercury. If the tube is long enough, the level of the mercury will drop, leaving a
vacuum at the top of the tube, since atmospheric pressure can support a column
of mercury only about 76 cm high (exactly 76.0 cm at standard atmospheric pres-
sure). That is, a column of mercury 76 cm high exerts the same pressure as the
atmosphere†:

Household barometers are usually of the aneroid type (Fig. 10–7b), either mechan-
ical (with dial) or electronic.

A calculation similar to that just done will show that atmospheric pressure
can maintain a column of water 10.3 m high in a tube whose top is under vacuum
(Fig. 10–9). No matter how good a vacuum pump is, water cannot be made to 
rise more than about 10 m under normal atmospheric pressure. To pump water
out of deep mine shafts with a vacuum pump requires multiple stages for depths
greater than 10 m. Galileo studied this problem, and his student Torricelli was
the first to explain it. The point is that a pump does not really suck water up a
tube—it merely reduces the pressure at the top of the tube. Atmospheric air
pressure pushes the water up the tube if the top end is at low pressure (under a
vacuum), just as it is air pressure that pushes (or maintains) the mercury 76 cm
high in a barometer. [Force pumps, Section 10–14, can push higher.]

= 1.00 atm.= 1.013 * 105 N�m2= A13.6 * 103 kg�m3B A9.80 m�s2B(0.760 m)

P = rg ¢h

†This calculation confirms the entry in Table 10–2, 1 atm = 76.0 cm-Hg.

FIGURE 10–9 A water barometer:
a full tube of water (longer than 10 m),
closed at the top, is inserted into a
tub of water. When the submerged
bottom end of the tube is unplugged,
some water flows out of the tube
into the tub, leaving a vacuum at the
top of the tube above the water’s
upper surface. Why? Because air
pressure can support a column of
water only 10 m high.

P = 0

P = 1 atm

76.0 cm

FIGURE 10–8 A mercury barometer,
invented by Torricelli, is shown here
when the air pressure is standard
atmospheric, 76.0 cm-Hg.

Suction. A novice engineer proposes suc-
tion cup shoes for space shuttle astronauts working on the exterior of a spacecraft.
Having just studied this Chapter, you gently remind him of the fallacy of this
plan. What is it?

RESPONSE Suction cups work by pushing out the air underneath the cup.
What holds the suction cup in place is the air pressure outside it. (This can be 
a substantial force when on Earth. For example, a 10-cm-diameter suction 
cup has an area of The force of the atmosphere on it is

about 180 lbs!) But in outer space,
there is no air pressure to push the suction cup onto the spacecraft.
A7.9 * 10–3 m2B A1.0 * 105 N�m2B L 800 N,

7.9 * 10–3 m2.

CONCEPTUAL EXAMPLE 10;5

We sometimes mistakenly think of suction as something we actively do. For
example, we intuitively think that we pull the soda up through a straw. Instead,
what we do is lower the pressure at the top of the straw, and the atmosphere pushes
the soda up the straw.



10–7 Buoyancy and 
Archimedes’ Principle

Objects submerged in a fluid appear to weigh less than they do when outside the
fluid. For example, a large rock that you would have difficulty lifting off the
ground can often be easily lifted from the bottom of a stream. When you lift 
the rock through the surface of the water, it suddenly seems to be much heavier.
Many objects, such as wood, float on the surface of water. These are two exam-
ples of buoyancy. In each example, the force of gravity is acting downward. But
in addition, an upward buoyant force is exerted by the liquid. The buoyant 
force on fish and underwater divers almost exactly balances the force of gravity
downward, and allows them to “hover” in equilibrium.

The buoyant force occurs because the pressure in a fluid increases with depth.
Thus the upward pressure on the bottom surface of a submerged object is greater
than the downward pressure on its top surface. To see this effect, consider a
cylinder of height whose top and bottom ends have an area A and which is
completely submerged in a fluid of density as shown in Fig. 10–10. The 
fluid exerts a pressure at the top surface of the cylinder (Eq. 10–3a).P1 = rF gh1

rF ,
¢h
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The force due to this pressure on top of the cylinder is 
and it is directed downward. Similarly, the fluid exerts an upward force on the
bottom of the cylinder equal to The net force on the cylin-
der exerted by the fluid pressure, which is the buoyant force, acts upward and
has the magnitude

where is the volume of the cylinder; the product is the mass of
the fluid displaced, and is the weight of fluid which takes up a
volume equal to the volume of the cylinder. Thus the buoyant force on the
cylinder is equal to the weight of fluid displaced by the cylinder.

This result is valid no matter what the shape of the object. Its discovery is
credited to Archimedes (287?–212 B.C.), and it is called Archimedes’ principle:

the buoyant force on an object immersed in a fluid is equal to the weight of
the fluid displaced by that object.

By “fluid displaced,” we mean a volume of fluid equal to the submerged
volume of the object (or that part of the object that is submerged). If the object is
placed in a glass or tub initially filled to the brim with water, the water that flows
over the top represents the water displaced by the object.

rF Vg = mF g
rF VV = A ¢h

= mF g,

= rF Vg

= rF gA ¢h

FB = F2 - F1 = rF gAAh2 - h1B

F
B

B ,
F2 = P2 A = rF gh2 A.

F1 = P1 A = rF gh1 A,

Δh = h2 − h1

h2

h1

A   1

   2
F

�

F
B

F
B

FIGURE 10–10 Determination of
the buoyant force.
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We can derive Archimedes’ principle in general by the following simple but
elegant argument. The irregularly shaped object D shown in Fig. 10–11a is acted
on by the force of gravity (its weight, downward) and the buoyant force,
upward. We wish to determine To do so, we next consider a body ( in 
Fig. 10–11b), this time made of the fluid itself, with the same shape and size as the
original object, and located at the same depth. You might think of this body of
fluid as being separated from the rest of the fluid by an imaginary membrane.
The buoyant force on this body of fluid will be exactly the same as that on the
original object since the surrounding fluid, which exerts is in exactly the same
configuration. This body of fluid is in equilibrium (the fluid as a whole is at rest).
Therefore, where is the weight of the body of fluid Hence the
buoyant force is equal to the weight of the body of fluid whose volume equals
the volume of the original submerged object, which is Archimedes’ principle.

Archimedes’ discovery was made by experiment. What we have done is show
that Archimedes’ principle can be derived from Newton’s laws.

Two pails of water. Consider two iden-
tical pails of water filled to the brim. One pail contains only water, the other has
a piece of wood floating in it. Which pail has the greater weight?

RESPONSE Both pails weigh the same. Recall Archimedes’ principle: the wood
displaces a volume of water with weight equal to the weight of the wood. Some
water will overflow the pail, but Archimedes’ principle tells us the spilled water
has weight equal to the weight of the wood; so the pails have the same weight.

Recovering a submerged statue. A 70-kg ancient statue
lies at the bottom of the sea. Its volume is How much force is
needed to lift it (without acceleration)?

APPROACH The force F needed to lift the statue is equal to the statue’s 
weight mg minus the buoyant force Figure 10–12 is the free-body diagram.

SOLUTION We apply Newton’s second law, which gives
or

The buoyant force on the statue due to the water is equal to the weight of
of water (for seawater,

where we use the chemical symbol for water, , as a subscript. The weight of
the statue is Hence the force F needed
to lift it is It is as if the statue had a mass of only

NOTE Here is the force needed to lift the statue without accelera-
tion when it is under water. As the statue comes out of the water, the force F
increases, reaching 690 N when the statue is fully out of the water.

F = 390 N

(390 N)�A9.8 m�s2B = 40 kg.
690 N - 300 N = 390 N.
mg = (70 kg)A9.8 m�s2B = 6.9 * 102 N.

H2O

= 3.0 * 102 N,

FB = mH2O g = rH2O Vg = A1.025 * 103 kg�m3B A3.0 * 10–2 m3B A9.8 m�s2B
r = 1.025 * 103 kg�m3):3.0 * 104 cm3 = 3.0 * 10–2 m3

F = mg - FB .

F + FB - mg = 0
©F = ma = 0,

FB .

3.0 * 104 cm3.
EXAMPLE 10;7

CONCEPTUAL EXAMPLE 10;6

FB

D¿.m¿gFB = m¿g,
D¿

FB ,
FB

D¿FB .
F
B

B ,mgB,

(a) (b)m m′gB gB

D′D

   BF
B

   BF
B

FIGURE 10–11

Archimedes’ principle.

ARCHIMEDESARCHIMEDESARCHIMEDESARCHIMEDES

F
B

   BF
B

mgB

FIGURE 10–12 Example 10–7. The
force needed to lift the statue is F

B

.



Archimedes is said to have discovered his principle in his bath while thinking
how he might determine whether the king’s new crown was pure gold or a fake.
Gold has a specific gravity of 19.3, somewhat higher than that of most metals, but
a determination of specific gravity or density is not readily done directly because,
even if the mass is known, the volume of an irregularly shaped object is not easily
calculated. However, if the object is weighed in air and also “weighed”
while it is under water the density can be determined using Archimedes’
principle, as the following Example shows. The quantity is called the apparent
weight in water, and is what a scale reads when the object is submerged in water
(see Fig. 10–13); equals the true weight minus the buoyant force.(w = mg)w¿

w¿
(= w¿),

(= w)
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Archimedes: Is the crown gold? When a crown of mass
14.7 kg is submerged in water, an accurate scale reads only 13.4 kg. Is the crown
made of gold?

APPROACH If the crown is gold, its density and specific gravity must be very high,
(see Section 10–2 and Table 10–1). We determine the specific gravity

using Archimedes’ principle and the two free-body diagrams shown in Fig. 10–13.

SOLUTION The apparent weight of the submerged object (the crown) is 
(what the scale reads), and is the force pulling down on the scale hook. By
Newton’s third law, equals the force that the scale exerts on the crown in
Fig. 10–13b. The sum of the forces on the crown is zero, so equals the actual
weight minus the buoyant force 

so

Let V be the volume of the completely submerged object and the object’s
density (so is its mass), and let be the density of the fluid (water). Then

is the weight of fluid displaced Now we can write

We divide these two equations and obtain

We see that is equal to the specific gravity of the object (the crown)
if the fluid in which it is submerged is water Thus

This corresponds to a density of The crown is not gold, but seems
to be made of lead (see Table 10–1).

11,300 kg�m3.

rO

rH2O
=

w

w - w¿
=

(14.7 kg)g

(14.7 kg - 13.4 kg)g
=

14.7 kg
1.3 kg

= 11.3.

ArF = 1.00 * 103 kg�m3B.w�(w - w¿)

w

w - w¿
=
rO Vg

rF Vg
=
rO

rF
.

w - w¿ = FB = rF Vg.
w = mg = rO Vg

(= FB).(rF V)g
rFrO V

rO

w - w¿ = FB .

w¿ = FT
œ = w - FB

FB :w (= mg)
w¿

FT
œw¿

w¿

SG = 19.3

EXAMPLE 10;8

w �
(14.7 kg)g

w� �
(13.4 kg)g

( T = −m )F
B

gB

mgB

scale scale

(b)(a)

   ′TF
B

   BF
B

mgBwB �

FIGURE 10–13 (a) A scale reads the mass of an 
object in air—in this case the crown of Example 10–8.
All objects are at rest, so the tension in the 
connecting cord equals the weight w of the object:

We show the free-body diagram of the 
crown, and is what causes the scale reading (it is 
equal to the net downward force on the scale, by 
Newton’s third law). (b) Submerged, the crown has 
an additional force on it, the buoyant force The 
net force is zero, so The scale
now reads where is related to the 
effective weight by Thus
FT
œ = w¿ = w - FB .

w¿ = m¿g.
m¿m¿ = 13.4 kg,

FT
œ + FB = mg (= w).

FB .

FT

FT = mg.

FT
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Archimedes’ principle applies equally well to objects that float, such as wood. In
general, an object floats on a fluid if its density is less than that of the fluid
This is readily seen from Fig. 10–14a, where a submerged log of mass will
experience a net upward force and float to the surface if ; that is, if

or At equilibrium—that is, when floating—the buoyant
force on an object has magnitude equal to the weight of the object. For example,
a log whose specific gravity is 0.60 and whose volume is has a mass

If the log is fully submerged, it will displace a mass of water

Hence the buoyant force on the log will be greater than its weight, and it will
float upward to the surface (Fig. 10–14). The log will come to equilibrium 
when it displaces 1200 kg of water, which means that of its volume 
will be submerged. This corresponds to 60% of the volume of the log

so 60% of the log is submerged.
In general when an object floats, we have which we can write as

(see Fig. 10–15)

where is the full volume of the object and is the volume of fluid it 
displaces ( volume submerged). Thus

That is, the fraction of the object submerged is given by the ratio of the object’s
density to that of the fluid. If the fluid is water, this fraction equals the specific
gravity of the object.

Vdispl

VO
=
rO

rF
.

=
VdisplVO

rF Vdispl g = rO VO g,
FB = mO g

FB = mO g,
(= 1.2�2.0 = 0.60),

1.2 m3
1.2 m3

2000 kg.=mF = rF V = A1000 kg�m3B A2.0 m3B

mO = rO V = A0.60 * 103 kg�m3B A2.0 m3B = 1200 kg.

2.0 m3

rF 7 rO .rF Vg 7 rO Vg
FB 7 mO g

mO

ArFB.ArOB

25.0
cm

x

1.000

FIGURE 10–16 A hydrometer.
Example 10–9.

(a)

(b)

mOg = (1200 kg)g

   B = (2000 kg)g

   V = 2.0 m3
mO = 1200 kg

aB

F

mOg

B = (1200 kg)gF

FIGURE 10–14 (a) The fully 
submerged log accelerates upward 
because It comes to 
equilibrium (b) when so 

Then 1200 kg,
or of water is displaced.1.2 m3,
FB = mO g = (1200 kg)g.

©F = 0,
FB 7 mO g.

FB =   FVdispl g

mOg = OVOg�

�

FIGURE 10–15 An object floating
in equilibrium: FB = mO g.

Hydrometer calibration. A hydrometer is a simple instru-
ment used to measure the specific gravity of a liquid by indicating how deeply
the instrument sinks in the liquid. A particular hydrometer (Fig. 10–16) consists
of a glass tube, weighted at the bottom, which is 25.0 cm long and in
cross-sectional area, and has a mass of 45.0 g. How far from the weighted end
should the 1.000 mark be placed?

APPROACH The hydrometer will float in water if its density is less than
the density of water. The fraction of the hydrometer sub-

merged is equal to the density ratio 

SOLUTION The hydrometer has an overall density

Thus, when placed in water, it will come to equilibrium when 0.900 of its volume
is submerged. Since it is of uniform cross section,
of its length will be submerged. The specific gravity of water is defined to be
1.000, so the mark should be placed 22.5 cm from the weighted end.

NOTE Hydrometers can be used to measure the density of liquids like car
antifreeze coolant, car battery acid (a measure of its charge), wine fermenting
in casks, and many others.

(0.900)(25.0 cm) = 22.5 cm

r =
m

V
=

45.0 g

A2.00 cm2B(25.0 cm)
= 0.900 g�cm3.

r�rH2O .AVdisplaced�VtotalB
rH2O = 1.000 g�cm3,

r

2.00 cm2

EXAMPLE 10;9

EXERCISE C Which of the following objects, submerged in water, experiences the largest
magnitude of the buoyant force? (a) A 1-kg helium balloon; (b) 1 kg of wood; (c) 1 kg 
of ice; (d) 1 kg of iron; (e) all the same.

EXERCISE D Which of the following objects, submerged in water, experiences the largest
magnitude of the buoyant force? (a) A helium balloon; (b) of wood; (c)
of ice; (d) of iron; (e) all the same.1 m3

1 m31 m31-m3



Archimedes’ principle is also useful in geology. According to the theories of
plate tectonics and continental drift, the continents float on a fluid “sea” of slightly
deformable rock (mantle rock). Some interesting calculations can be done using
very simple models, which we consider in the Problems at the end of the Chapter.

Air is a fluid, and it too exerts a buoyant force. Ordinary objects weigh less 
in air than they do in a vacuum. Because the density of air is so small, the effect for
ordinary solids is slight. There are objects, however, that float in air—helium-filled
balloons, for example, because the density of helium is less than the density of air.
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   B

mHe

mload

F
B

gB

gB

FIGURE 10–17 Example 10–10.

Helium balloon. What volume V of helium is needed if a
balloon is to lift a load of 180 kg (including the weight of the empty balloon)?

APPROACH The buoyant force on the helium balloon, which is equal to the
weight of displaced air, must be at least equal to the weight of the helium plus
the weight of the balloon and load (Fig. 10–17). Table 10–1 gives the density 
of helium as 

SOLUTION The buoyant force must have a minimum value of

This equation can be written in terms of density using Archimedes’ principle:

Solving now for V, we find

NOTE This is the minimum volume needed near the Earth’s surface, where
To reach a high altitude, a greater volume would be needed

since the density of air decreases with altitude.
rair = 1.29 kg�m3.

V =
180 kg
rair - rHe

=
180 kg

A1.29 kg�m3 - 0.179 kg�m3B = 160 m3.

rair Vg = ArHe V + 180 kgBg.

FB = AmHe + 180 kgBg.

0.179 kg�m3.

FB ,

EXAMPLE 10;10

Throwing a rock overboard. A rowboat
carrying a large granite rock floats in a small lake. If the rock (SG , Table 10–1)
is thrown overboard and sinks, does the lake level drop, rise, or stay the same?

RESPONSE Together the boat and rock float, so the buoyant force on them
equals their total weight. The boat and rock displace a mass of water whose
weight is equal to the weight of boat plus rock. When the rock is thrown into the
lake, it displaces only its own volume, which is smaller than the volume of water
the rock displaced when in the boat ( as much because the rock’s density is

times greater than water). So less lake water is displaced and the water level
of the lake drops when the rock is in the lake.

Maybe numbers can help. Suppose the boat and the rock each has a mass of
60 kg. Then the boat carrying the rock displaces 120 kg of water, which is a volume
of 0.12 m3 ( for water, Table 10–1). When the rock is thrown 
into the lake, the boat alone now displaces 0.06 m3. The rock displaces only its
own volume of 0.02 m3 ( so ). Thus a total of 0.08 m3

of water is displaced. Less water is displaced so the water level of the lake drops.
V L 0.06 m3�3r = m�V L 3

r = 1000 kg�m3

L 3
L 1

3

L 3
CONCEPTUAL EXAMPLE 10;11

EXERCISE E If you throw a flat 60-kg aluminum plate into water, the plate sinks. But if
that aluminum is shaped into a rowboat, it floats. Explain.

10–8 Fluids in Motion; Flow Rate
and the Equation of Continuity

We now turn to the subject of fluids in motion, which is called fluid dynamics, or
(especially if the fluid is water) hydrodynamics.

We can distinguish two main types of fluid flow. If the flow is smooth, such that
neighboring layers of the fluid slide by each other smoothly, the flow is said to be
streamline or laminar flow.† In streamline flow, each particle of the fluid follows a
smooth path, called a streamline, and these paths do not cross one another (Fig.10–18a).
†The word laminar means “in layers.”

P H Y S I C S  A P P L I E D

Continental drift—plate tectonics
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Above a certain speed, the flow becomes turbulent. Turbulent flow is characterized
by erratic, small, whirlpool-like circles called eddy currents or eddies (Fig. 10–18b).
Eddies absorb a great deal of energy, and although a certain amount of internal
friction called viscosity is present even during streamline flow, it is much greater
when the flow is turbulent. A few tiny drops of ink or food coloring dropped into a
moving liquid can quickly reveal whether the flow is streamline or turbulent.

Let us consider the steady laminar flow of a fluid through an enclosed tube
or pipe as shown in Fig. 10–19. First we determine how the speed of the fluid
changes when the diameter of the tube changes. The mass flow rate is defined as the
mass of fluid that passes a given point per unit time 

In Fig. 10–19, the volume of fluid passing point 1 (through area ) in a time 
is where is the distance the fluid moves in time The velocity† of fluid
(density ) passing point 1 is . Then the mass flow rate 
through area is

where is the volume of mass Similarly, at point 2 (through
area ), the flow rate is Since no fluid flows in or out the sides of the
tube, the flow rates through and must be equal. Thus

and
(10;4a)

This is called the equation of continuity.
If the fluid is incompressible ( doesn’t change with pressure), which is an

excellent approximation for liquids under most circumstances (and sometimes
for gases as well), then and the equation of continuity becomes

(10;4b)

The product Av represents the volume rate of flow (volume of fluid passing a given
point per second), since which in SI units is 
Equation 10–4b tells us that where the cross-sectional area is large, the velocity 
is small, and where the area is small, the velocity is large. That this is reasonable
can be seen by looking at a river. A river flows slowly through a meadow where it
is broad, but speeds up to torrential speed when passing through a narrow gorge.

m3�s.¢V�¢t = A ¢l�¢t = Av,

[r = constant]A1 v1 = A2 v2 .

r1 = r2 ,

r

r1 A1 v1 = r2 A2 v2 .

¢m1

¢t
=
¢m2

¢t
,

A2A1

r2 A2 v2 .A2

¢m1 .¢V1 = A1¢l1

¢m1

¢t
=
r1¢V1

¢t
=
r1 A1¢l1
¢t

= r1 A1 v1 ,

A1

¢m1�¢tv1 = ¢l1�¢tr1

¢t.¢l1A1¢l1 ,
¢tA1

mass flow rate =
¢m

¢t
.

¢t:¢m

†If there were no viscosity, the velocity would be the same across a cross section of the tube. Real
fluids have viscosity, and this internal friction causes different layers of the fluid to flow at different
speeds. In this case and represent the average speeds at each cross section.v2v1

(b)

(a)
FIGURE 10–18 (a) Streamline,
or laminar, flow; (b) turbulent
flow. The photos show airflow
around an airfoil or airplane
wing (more in Section 10–10).

Δl2
Δl1

A2A1

  1   2vB vB

FIGURE 10–19 Fluid flow through a
pipe of varying diameter.
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Blood flow
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FIGURE 10–20 Human circulatory
system.
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FIGURE 10–21 Example 10–13.

Δl2
Δl1

A2A1

  1   2vB vB

FIGURE 10–19 (Repeated.)
Fluid flow through a pipe of varying
diameter.

Blood flow. In humans, blood flows from
the heart into the aorta, from which it passes into the major arteries, Fig. 10–20.
These branch into the small arteries (arterioles), which in turn branch into myriads
of tiny capillaries. The blood returns to the heart via the veins. The radius of the
aorta is about 1.2 cm, and the blood passing through it has a speed of about

A typical capillary has a radius of about and blood flows
through it at a speed of about Estimate the number of capillaries
that are in the body.

APPROACH We assume the density of blood doesn’t vary significantly from the
aorta to the capillaries. By the equation of continuity, the volume flow rate in
the aorta must equal the volume flow rate through all the capillaries. The total
area of all the capillaries is given by the area of a typical capillary multiplied by the
total number N of capillaries.

SOLUTION Let be the area of the aorta and be the area of all the capil-
laries through which blood flows. Then where
is the estimated average radius of one capillary. From the equation of continuity
(Eq. 10–4b), we have

so

or on the order of 10 billion capillaries.

N =
v1

v2

raorta
2

rcap
2

= a 0.40 m�s

5 * 10–4 m�s
b a 1.2 * 10–2 m

4 * 10–6 m
b 2

L 7 * 109,

v2 Nprcap
2 = v1praorta

2

v2 A2 = v1 A1

rcap L 4 * 10–4 cmA2 = Nprcap
2 ,
A2A1

5 * 10–4 m�s.
4 * 10–4 cm,40 cm�s.

EXAMPLE 10;12 ESTIMATE

Heating duct to a room. What area must a heating duct
have if air moving along it can replenish the air every 15 minutes in a
room of volume Assume the air’s density remains constant.

APPROACH We apply the equation of continuity at constant density, Eq. 10–4b,
to the air that flows through the duct (point 1 in Fig. 10–21) and then into the
room (point 2). The volume flow rate in the room equals the volume of the
room divided by the 15-min replenishing time.

SOLUTION Consider the room as a large section of the duct, Fig. 10–21, and
think of air equal to the volume of the room as passing by point 2 in

Reasoning in the same way we did to obtain Eq. 10–4a
(changing to ), we write so where 
is the volume of the room. Then the equation of continuity becomes

and

NOTE If the duct is square, then each side has length or
33 cm. A rectangular duct will also do.20 cm * 55 cm

l = 1A = 0.33 m,

A1 =
V2

v1 t
=

300 m3

(3.0 m�s)(900 s)
= 0.11 m2.

A1 v1 = A2 v2 = V2�t

V2A2 v2 = A2 l2�t = V2�t,v2 = l2�tt¢t
t = 15 min = 900 s.

300 m3?
3.0 m�s

EXAMPLE 10;13

10–9 Bernoulli’s Equation
Have you ever wondered why an airplane can fly, or how a sailboat can move
against the wind? These are examples of a principle worked out by Daniel
Bernoulli (1700–1782) concerning fluids in motion. In essence, Bernoulli’s principle
states that where the velocity of a fluid is high, the pressure is low, and where the
velocity is low, the pressure is high. For example, if the pressure in the fluid is
measured at points 1 and 2 of Fig. 10–19, it will be found that the pressure is
lower at point 2, where the velocity is greater, than it is at point 1, where the
velocity is smaller. At first glance, this might seem strange; you might expect that
the greater speed at point 2 would imply a higher pressure. But this cannot be the case:
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if the pressure in the fluid at point 2 were higher than at point 1, this higher 
pressure would slow the fluid down, whereas in fact it has sped up in going from
point 1 to point 2. Thus the pressure at point 2 must be less than at point 1, to be
consistent with the fact that the fluid accelerates.

To help clarify any misconceptions, a faster fluid might indeed exert a greater
force bouncing off an obstacle placed in its path. But that is not what we mean 
by the pressure in a fluid. We are examining smooth streamline flow, with no
obstacles that interrupt the flow. The fluid pressure is exerted on the walls of a
tube or pipe, or on the surface of a material the fluid passes over.

Bernoulli developed an equation that expresses this principle quantitatively.
To derive Bernoulli’s equation, we assume the flow is steady and laminar, the
fluid is incompressible, and the viscosity is small enough to be ignored. To be
general, we assume the fluid is flowing in a tube of nonuniform cross section that
varies in height above some reference level, Fig. 10–22. We will consider the
volume of fluid shown in color and calculate the work done to move it from the
position shown in Fig. 10–22a to that shown in Fig. 10–22b. In this process, fluid
entering area flows a distance and forces the fluid at area to move a
distance The fluid to the left of area exerts a pressure on our section 
of fluid and does an amount of work

(since ). At point 2, the work done on our section of fluid is

The negative sign is present because the force exerted on the fluid is opposite to
the displacement. Work is also done on the fluid by the force of gravity. The net
effect of the process shown in Fig. 10–22 is to move a mass m of volume 
( since the fluid is incompressible) from point 1 to point 2, so the work
done by gravity is

where and are heights of the center of the tube above some (arbitrary) refer-
ence level. In the case shown in Fig. 10–22, this term is negative since the motion
is uphill against the force of gravity. The net work W done on the fluid is thus

According to the work-energy principle (Section 6–3), the net work done on a
system is equal to its change in kinetic energy. Hence

The mass m has volume for an incompressible fluid. Thus we can
substitute and then divide through by 
to obtain

which we rearrange to get

(10;5)

This is Bernoulli’s equation. Since points 1 and 2 can be any two points along a
tube of flow, Bernoulli’s equation can be written as

at every point in the fluid, where y is the height of the center of the tube above a
fixed reference level. [Note that if there is no flow then Eq. 10–5
reduces to the hydrostatic equation, Eq. 10–3b or c: ]P1 - P2 = rgAy2 - y1B.

Av1 = v2 = 0B,

P + 1
2 rv

2 + rgy = constant

P2 + 1
2 rv2

2 + rgy2 = P1 + 1
2 rv1

2 + rgy1 .

1
2 rv2

2 - 1
2 rv1

2 = P1 - P2 - rgy2 + rgy1 ,

A1¢l1 = A2¢l2 ,m = rA1¢l1 = rA2¢l2 ,
A1¢l1 = A2¢l2

1
2 mv2

2 - 1
2 mv1

2 = P1 A1¢l1 - P2 A2¢l2 - mgy2 + mgy1 .

W = P1 A1¢l1 - P2 A2¢l2 - mgy2 + mgy1 .

W = W1 + W2 + W3

y2y1

W3 = –mgAy2 - y1B,

= A2¢l2 ,
A1¢l1

W2 = –P2 A2¢l2 .

P = F�A

W1 = F1¢l1 = P1 A1¢l1 ,

P1A1¢l2 .
A2¢l1A1

Δl2
Δl1

A2

P2

  2

  1

(a)

y2

Δl1
Δl2

(b)

A1

P1
y1

vB

vB

FIGURE 10–22 Fluid flow: for
derivation of Bernoulli’s equation.

Bernoulli’s equation



Bernoulli’s equation is an expression of the law of energy conservation, since
we derived it from the work-energy principle.
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Hot-water heating system

v1

v2 ≈ 0

y2 − y1

FIGURE 10–23 Torricelli’s theorem:
v1 = 22gAy2 - y1B .

EXERCISE F As water in a level pipe passes from a narrow cross section of pipe to a wider
cross section, how does the pressure against the walls change?

Flow and pressure in a hot-water heating system.

Water circulates throughout a house in a hot-water heating system. If the water
is pumped at a speed of through a 4.0-cm-diameter pipe in the base-
ment under a pressure of 3.0 atm, what will be the flow speed and pressure in a
2.6-cm-diameter pipe on the second floor 5.0 m above? Assume the pipes do not
divide into branches.

APPROACH We use the equation of continuity at constant density to determine
the flow speed on the second floor, and then Bernoulli’s equation to find the
pressure.

SOLUTION We take in the equation of continuity, Eq. 10–4, as the flow speed
on the second floor, and as the flow speed in the basement. Noting that the
areas are proportional to the radii squared we obtain

To find the pressure on the second floor, we use Bernoulli’s equation (Eq. 10–5):

NOTE The velocity term contributes very little in this case.

= 2.5 * 105 N�m2 = 2.5 atm.

= A3.0 * 105 N�m2B - A4.9 * 104 N�m2B - A6.0 * 102 N�m2B
± 1

2 A1.0 * 103 kg�m3B C A0.50 m�sB2 - A1.2 m�sB2 D
= A3.0 * 105 N�m2B + A1.0 * 103 kg�m3B A9.8 m�s2B(–5.0 m)

P2 = P1 + rgAy1 - y2B + 1
2 rAv1

2 - v2
2B

v2 =
v1 A1

A2
=

v1pr1
2

pr2
2

= (0.50 m�s)
(0.020 m)2

(0.013 m)2
= 1.2 m�s.

AA = pr2B,v1

v2

0.50 m�s

EXAMPLE 10;14

10–10 Applications of Bernoulli’s Principle:
Torricelli, Airplanes, Baseballs, Blood Flow

Bernoulli’s equation can be applied to many situations. One example is to calculate
the velocity, of a liquid flowing out of a spigot at the bottom of a reservoir,
Fig. 10–23. We choose point 2 in Eq. 10–5 to be the top surface of the liquid.
Assuming the diameter of the reservoir is large compared to that of the spigot,

will be almost zero. Points 1 (the spigot) and 2 (top surface) are open to the
atmosphere, so the pressure at both points is equal to atmospheric pressure:

Then Bernoulli’s equation becomes

or

(10;6)

This result is called Torricelli’s theorem. Although it is seen to be a special case of
Bernoulli’s equation, it was discovered a century earlier by Evangelista Torricelli.
Equation 10–6 tells us that the liquid leaves the spigot with the same speed that 
a freely falling object would attain if falling from the same height. This should 
not be too surprising since the derivation of Bernoulli’s equation relies on the
conservation of energy.

v1 = 22gAy2 - y1B .

1
2 rv1

2 + rgy1 = rgy2

P1 = P2 .

v2

v1 ,
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Another special case of Bernoulli’s equation arises when a fluid is flowing
horizontally with no appreciable change in height; that is, Then Eq. 10–5
becomes

(10;7)

which tells us quantitatively that the speed is high where the pressure is low, and
vice versa. It explains many common phenomena, some of which are illustrated
in Figs. 10–24 to 10–30. The pressure in the air blown at high speed across the 
top of the vertical tube of a perfume atomizer (Fig. 10–24a) is less than the normal
air pressure acting on the surface of the liquid in the bowl. Thus atmospheric
pressure in the bowl pushes the perfume up the tube because of the lower pres-
sure at the top. A Ping-Pong ball can be made to float above a blowing jet of air
(a hair dryer or a vacuum cleaner that can also blow air), Fig. 10–24b; if the ball
begins to leave the jet of air, the higher pressure in the still air outside the jet
pushes the ball back in.

EXERCISE G Return to Chapter-Opening Question 2, page 260, and answer it again now.
Try to explain why you may have answered differently the first time. Try it and see.

Airplane Wings and Dynamic Lift
Airplanes experience a “lift” force on their wings, keeping them up in the air, if
they are moving at a sufficiently high speed relative to the air and the wing is
tilted upward at a small angle (the “attack angle”). See Fig. 10–25, where stream-
lines of air are shown rushing by the wing (we are in the reference frame of the
wing, as if sitting on the wing). The upward tilt, as well as the rounded upper
surface of the wing, causes the streamlines to be forced upward and to be crowded
together above the wing. The area of air flowing between any two streamlines is
smaller as the streamlines get closer together, so from the equation of contin-
uity the air speed increases above the wing where the streamlines
are squished together. (Recall also how the crowded streamlines in a pipe
constriction, Fig. 10–19, indicate the velocity is higher in the constriction.)
Thus the air speed is greater above the wing than below it, so the pressure above
the wing is less than the pressure below the wing (Bernoulli’s principle). Hence
there is a net upward force on the wing called dynamic lift. Experiments show
that the speed of air above the wing can even be double the speed of the air
below it. (Friction between the air and wing exerts a drag force, toward the rear,
which must be overcome by the plane’s engines.)

A flat wing, or one with symmetric cross section, will experience lift as long as
the front of the wing is tilted upward (attack angle). The wing shown in Fig. 10–25
can experience lift even if the attack angle is zero, because the rounded upper
surface deflects air up, squeezing the streamlines together. Airplanes can fly upside
down, experiencing lift, if the attack angle is sufficient to deflect streamlines up
and closer together.

Our picture considers streamlines; but if the attack angle is larger than about
15°, turbulence sets in (Fig. 10–18b) leading to greater drag and less lift, causing
the plane to “stall” and then to drop.

From another point of view, the upward tilt of a wing means the air moving
horizontally in front of the wing is deflected downward; the change in momentum
of the rebounding air molecules results in an upward force on the wing (Newton’s
third law).

Sailboats
A sailboat can move “against” the wind, with the aid of the Bernoulli effect, by 
setting the sails at an angle, as shown in Fig. 10–26. The air traveling rapidly over 
the bulging front surface of the mainsail exerts a smaller pressure than the relatively
still air behind the sail. The result is a net force on the sail, as shown in 
Fig. 10–26b. This force would tend to make the boat move sideways if it weren’t
for the keel that extends vertically downward beneath the water: the water exerts
a force on the keel nearly perpendicular to the keel. The resultant of
these two forces is almost directly forward as shown.AFBRB

AFBwaterB

F
B

wind ,

AA1v1 = A2v2B,

P1 + 1
2 rv1

2 = P2 + 1
2 rv2

2 ,

y1 = y2 .
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Airplanes and dynamic lift
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FIGURE 10–24 Examples of
Bernoulli’s principle: (a) atomizer,
(b) Ping-Pong ball in jet of air.
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FIGURE 10–25 Lift on an airplane
wing. We are in the reference frame
of the wing, seeing the air flow by.
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FIGURE 10–26 Sailboat (a) sailing
against the wind with (b) analysis.



Baseball Curve
Why a spinning pitched baseball (or tennis ball) curves can also be explained
using Bernoulli’s principle. It is simplest if we put ourselves in the reference
frame of the ball, with the air rushing by, just as we did for the airplane wing.
Suppose the ball is rotating counterclockwise as seen from above, Fig. 10–27.
A thin layer of air (“boundary layer”) is being dragged around by the ball. We are
looking down on the ball, and at point A in Fig. 10–27, this boundary layer tends
to slow down the oncoming air. At point B, the air rotating with the ball adds 
its speed to that of the oncoming air, so the air speed is higher at B than at A.
The higher speed at B means the pressure is lower at B than at A, resulting in a
net force toward B. The ball’s path curves toward the left (as seen by the pitcher).

Lack of Blood to the Brain—TIA
In medicine, one of many applications of Bernoulli’s principle is to explain a TIA,
a transient ischemic attack (meaning a temporary lack of blood supply to the brain).
A person suffering a TIA may experience symptoms such as dizziness, double
vision, headache, and weakness of the limbs. A TIA can occur as follows. Blood
normally flows up to the brain at the back of the head via the two vertebral
arteries—one going up each side of the neck—which meet to form the basilar
artery just below the brain, as shown in Fig. 10–28. Each vertebral artery connects
to the subclavian artery, as shown, before the blood passes to the arms. When 
an arm is exercised vigorously, blood flow increases to meet the needs of the
arm’s muscles. If the subclavian artery on one side of the body is partially blocked,
however, as in arteriosclerosis (hardening of the arteries), the blood velocity 
will have to be higher on that side to supply the needed blood. (Recall the equa-
tion of continuity: smaller area means larger velocity for the same flow rate,
Eqs. 10–4.) The increased blood velocity past the opening to the vertebral artery
results in lower pressure (Bernoulli’s principle). Thus, blood rising in the verte-
bral artery on the “good” side at normal pressure can be diverted down into the
other vertebral artery because of the low pressure on that side, instead of passing
upward to the brain. Hence the blood supply to the brain is reduced.

Other Applications
A venturi tube is essentially a pipe with a narrow constriction (the throat). The
flowing fluid speeds up as it passes through this constriction, so the pressure is
lower in the throat. A venturi meter, Fig. 10–29, is used to measure the flow speed
of gases and liquids, including blood velocity in arteries. The velocity can be
determined by measuring the pressure and the areas and as well as
the density of the fluid. (The formula is given in Problem 56.)

A2 ,A1P2 ,P1

v1
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Home plate

AB

FIGURE 10–27 Looking down on a
pitched baseball heading toward
home plate. We are in the reference
frame of the baseball, with the air
flowing by.

Subclavian
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vertebral
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Right
vertebral
artery
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(to brain)

Subclavian
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Aorta

FIGURE 10–28 Rear of the head and
shoulders showing arteries leading to
the brain and to the arms. High blood
velocity past the constriction in the
left subclavian artery causes low
pressure in the left vertebral artery,
in which a reverse (downward) blood
flow can then occur, resulting in a
TIA, a loss of blood to the brain.
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Smoke up a chimney 

Underground air circulation
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FIGURE 10–29 Venturi meter.

FIGURE 10–30 Bernoulli’s principle
explains air flow in underground
burrows.

Why does smoke go up a chimney? It’s partly because hot air rises (it’s less
dense and therefore buoyant). But Bernoulli’s principle also plays a role. When wind
blows across the top of a chimney, the pressure is less there than inside the house.
Hence, air and smoke are pushed up the chimney by the higher indoor pressure.
Even on an apparently still night there is usually enough ambient air flow at the
top of a chimney to assist upward flow of smoke.

If gophers, prairie dogs, rabbits, and other animals that live underground are
to avoid suffocation, the air must circulate in their burrows. The burrows always
have at least two entrances (Fig. 10–30). The speed of air flow across different
holes will usually be slightly different. This results in a slight pressure difference,
which forces a flow of air through the burrow via Bernoulli’s principle. The flow
of air is enhanced if one hole is higher than the other (animals often build mounds)
since wind speed tends to increase with height.
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Bernoulli’s equation ignores the effects of friction (viscosity) and the com-
pressibility of the fluid. The energy that is transformed to internal (or potential)
energy due to compression and to thermal energy by friction can be taken into
account by adding terms to Eq. 10–5. These terms are difficult to calculate
theoretically and are normally determined empirically for given situations. They
do not significantly alter the explanations for the phenomena described above.

10–11 Viscosity
Real fluids have a certain amount of internal friction called viscosity, as men-
tioned in Section 10–8. Viscosity exists in both liquids and gases, and is essentially
a frictional force between adjacent layers of fluid as the layers move past one
another. In liquids, viscosity is due to the electrical cohesive forces between the
molecules. In gases, it arises from collisions between the molecules.

The viscosity of different fluids can be expressed quantitatively by a coeffi-
cient of viscosity, (the Greek lowercase letter eta), which is defined in the
following way. A thin layer of fluid is placed between two flat plates. One plate 
is stationary and the other is made to move, Fig. 10–31. The fluid directly in 
contact with each plate is held to the surface by the adhesive force between the
molecules of the liquid and those of the plate. Thus the upper surface of the 
fluid moves with the same speed v as the upper plate, whereas the fluid in contact
with the stationary plate remains stationary. The stationary layer of fluid retards
the flow of the layer just above it, which in turn retards the flow of the next layer,
and so on. Thus the velocity varies continuously from 0 to v, as shown. The
increase in velocity divided by the distance over which this change is made—equal
to —is called the velocity gradient. To move the upper plate requires a force,
which you can verify by moving a flat plate across a puddle of syrup on a table.
For a given fluid, it is found that the force required, F, is proportional to the 
area of fluid in contact with each plate, A, and to the speed, v, and is inversely
proportional to the separation, of the plates: For different fluids,
the more viscous the fluid, the greater is the required force. The proportionality
constant for this equation is defined as the coefficient of viscosity,

(10;8)

Solving for we find The SI unit for is
In the cgs system, the unit is which is called a

poise (P). Viscosities are often given in centipoise 
Table 10–3 lists the coefficient of viscosity for various fluids. The temperature 
is also specified, since it has a strong effect; the viscosity of liquids such as motor
oil, for example, decreases rapidly as temperature increases.‡

10–12 Flow in Tubes: Poiseuille’s
Equation, Blood Flow

If a fluid had no viscosity, it could flow through a level tube or pipe without a
force being applied. Viscosity acts like a sort of friction (between fluid layers
moving at slightly different speeds), so a pressure difference between the ends of
a level tube is necessary for the steady flow of any real fluid, be it water or oil in a
pipe, or blood in the circulatory system of a human.
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FIGURE 10–31 Determination of
viscosity.

TABLE 10–3

Coefficients of Viscosity

Fluid Coefficient
(temperature of Viscosity,

in °C) †

Water (0°)
(20°)
(100°)

Whole blood (37°)
Blood plasma (37°)
Ethyl alcohol (20°)
Engine oil (30°) 
(SAE 10)

Glycerine (20°)
Air (20°)
Hydrogen (0°)
Water vapor (100°)
†1 Pa # s = 10 poise (P) = 1000 cP.

0.013 * 10–3
0.009 * 10–3
0.018 * 10–3
1500 * 10–3
200 * 10–3

1.2 * 10–3
L 1.5 * 10–3
L 4 * 10–3
0.3 * 10–3
1.0 * 10–3
1.8 * 10–3

H (Pa # s)

‡The Society of Automotive Engineers assigns numbers to represent the viscosity of oils: 30-weight
(SAE 30) is more viscous than 10-weight. Multigrade oils, such as 20–50, are designed to maintain
viscosity as temperature increases; 20–50 means the oil acts like 20-weight when cool and is like 
50-weight when it is hot (engine running temperature). In other words, the viscosity does not 
drop precipitously as the oil warms up, as a simple 20-weight oil would.



The French scientist J. L. Poiseuille (1799–1869), who was interested in the
physics of blood circulation (and after whom the “poise” is named), determined how
the variables affect the flow rate of an incompressible fluid undergoing laminar
flow in a cylindrical tube. His result, known as Poiseuille’s equation, is:

(10;9)

where R is the inside radius of the tube, is the tube length, is the pressure
difference between the ends, is the coefficient of viscosity, and Q is the volume
rate of flow (volume of fluid flowing past a given point per unit time which in SI
has units of ). Equation 10–9 applies only to laminar (streamline) flow.

Poiseuille’s equation tells us that the flow rate Q is directly proportional to
the “pressure gradient,” and it is inversely proportional to the viscos-
ity of the fluid. This is just what we might expect. It may be surprising, however,
that Q also depends on the fourth power of the tube’s radius. This means that for
the same pressure gradient, if the tube radius is halved, the flow rate is decreased
by a factor of 16! Thus the rate of flow, or alternately the pressure required to
maintain a given flow rate, is greatly affected by only a small change in tube radius.

An interesting example of this dependence is blood flow in the human
body. Poiseuille’s equation is valid only for the streamline flow of an incompres-
sible fluid. So it cannot be precisely accurate for blood whose flow is not without
turbulence and that contains blood cells (whose diameter is almost equal to that
of a capillary). Nonetheless, Poiseuille’s equation does give a reasonable first
approximation. Because the radius of arteries is reduced as a result of arterioscle-
rosis (thickening and hardening of artery walls, Fig. 10–32) and by cholesterol
buildup, the pressure gradient must be increased to maintain the same flow rate.
If the radius is reduced by half, the heart would have to increase the pressure 
by a factor of about in order to maintain the same blood-flow rate.
The heart must work much harder under these conditions, but usually cannot
maintain the original flow rate. Thus, high blood pressure is an indication both
that the heart is working harder and that the blood-flow rate is reduced.

10–13 Surface Tension and Capillarity
The surface of a liquid at rest behaves in an interesting way, almost as if it were 
a stretched membrane under tension. For example, a drop of water on the end 
of a dripping faucet, or hanging from a thin branch in the early morning dew 
(Fig. 10–33), forms into a nearly spherical shape as if it were a tiny balloon filled
with water. A steel needle can be made to float on the surface of water even though
it is denser than the water. The surface of a liquid acts like it is under tension,
and this tension, acting along the surface, arises from the attractive forces between
the molecules. This effect is called surface tension. More specifically, a quantity
called the surface tension, (the Greek letter gamma), is defined as the force F
per unit length that acts perpendicular to any line or cut in a liquid surface,
tending to pull the surface closed:

(10;10)

To understand this, consider the apparatus shown in Fig. 10–34 which
encloses a thin film of liquid (such as a liquid soap film). Because of surface tension,
a force F is required to pull the movable wire and thus increase the surface area of
the liquid. The liquid contained by the wire apparatus is a thin film having both a
top and a bottom surface. Hence the total length of the surface being increased is 
and the surface tension is A delicate apparatus of this type can be used
to measure the surface tension of various liquids. The surface tension of water is

at 20°C. Table 10–4 (next page) gives the values for several substances.
Note that temperature has a considerable effect on the surface tension.
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FIGURE 10–34 wire
apparatus holding a film of liquid to 
measure surface tension (g = F�2l).
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FIGURE 10–33 Spherical water
droplets, dew on a blade of grass.
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FIGURE 10–32 A cross section of a
human artery that (a) is healthy,
(b) is partly blocked as a result of
arteriosclerosis.
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Because of surface tension, some insects (Fig. 10–35a) can walk on water, and
objects more dense than water, such as a paper clip (Fig. 10–35b), can float on the
surface. Figure 10–36a shows how the surface tension can support the weight w of an
object. Actually, the object sinks slightly into the fluid, so w is the “effective weight”
of that object—its true weight less the buoyant force.

TABLE 10–4 Surface Tension 
of Some Substances

Surface
Tension 

Substance (N m)

Mercury (20°C) 0.44
Blood, whole (37°C) 0.058
Blood, plasma (37°C) 0.073
Alcohol, ethyl (20°C) 0.023
Water (0°C) 0.076

(20°C) 0.072
(100°C) 0.059

Benzene (20°C) 0.029
Soap solution (20°C) 0.025
Oxygen 0.016 (–193°C)

L

�

(b)(a)

FIGURE 10–35 (a) Water strider. (b) Paper clip (light coming through window blinds).

Insect walks on water. The base of an insect’s
leg is approximately spherical in shape, with a radius of about 
The 0.0030-g mass of the insect is supported equally by its six legs. Estimate the
angle (see Fig. 10–36) for an insect on the surface of water. Assume the water
temperature is 20°C.

APPROACH Since the insect is in equilibrium, the upward surface tension force
is equal to the pull of gravity downward on each leg. We ignore buoyant forces
for this estimate.

SOLUTION For each leg, we assume the surface tension force acts all around a
circle of radius r, at an angle as shown in Fig. 10–36a. Only the vertical compo-
nent, acts to balance the weight mg. We set the length in Eq. 10–10
equal to the circumference of the circle, Then the net upward force
due to surface tension is We set this surface tension
force equal to one-sixth the weight of the insect since it has six legs:

So If had come out greater than 1, the surface tension would not
have been great enough to support the insect’s weight.

NOTE Our estimate ignored the buoyant force and ignored any difference
between the radius of the insect’s “foot” and the radius of the surface depression.

cos uu L 57°.

 cos u L  0.54.

(6.28)(2.0 * 10–5 m)(0.072 N�m) cos u L 1
6 A3.0 * 10–6 kgB A9.8 m�s2B

 2prg cos u L 1
6 mg

Fy L (g cos uB l L 2prg cos u.
l L 2pr.

lg cos u,
u,

u

2.0 * 10–5 m.
EXAMPLE 10;15 ESTIMATE

Soaps and detergents lower the surface tension of water. This is desirable for
washing and cleaning since the high surface tension of pure water prevents it
from penetrating easily between the fibers of material and into tiny crevices.
Substances that reduce the surface tension of a liquid are called surfactants.

Capillarity
Surface tension plays a role in another interesting phenomenon, capillarity. It is a
common observation that water in a glass container rises up slightly where it
touches the glass, Fig. 10–37a. The water is said to “wet” the glass. Mercury, on
the other hand, is depressed when it touches the glass, Fig. 10–37b; the mercury
does not wet the glass. Whether a liquid wets a solid surface is determined by the
relative strength of the cohesive forces between the molecules of the liquid 
compared to the adhesive forces between the molecules of the liquid and those 
of the container. Cohesion refers to the force between molecules of the same type,
whereas adhesion refers to the force between molecules of different types. Water
wets glass because the water molecules are more strongly attracted to the glass
molecules than they are to other water molecules. The opposite is true for
mercury: the cohesive forces are stronger than the adhesive forces.
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FIGURE 10–36 Surface tension 
acting on (a) a sphere, and (b) an 
insect leg. Example 10–15.
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FIGURE 10–37 (a) Water “wets” the
surface of glass, whereas (b) mercury
does not “wet” the glass.



In tubes having very small diameters, liquids are observed to rise or fall rela-
tive to the level of the surrounding liquid. This phenomenon is called capillarity, and
such thin tubes are called capillaries. Whether the liquid rises or falls (Fig. 10–38)
depends on the relative strengths of the adhesive and cohesive forces. Thus water
rises in a glass tube, whereas mercury falls. The actual amount of rise (or fall)
depends on the surface tension—which is what keeps the liquid surface from
breaking apart.

10–14 Pumps, and the Heart
We conclude this Chapter with a brief discussion of pumps, including the heart.
Pumps can be classified into categories according to their function. A vacuum pump
is designed to reduce the pressure (usually of air) in a given vessel. A force pump,
on the other hand, is a pump that is intended to increase the pressure—for
example, to lift a liquid (such as water from a well) or to push a fluid through a
pipe. Figure 10–39 illustrates the principle behind a simple reciprocating pump.
It could be a vacuum pump, in which case the intake is connected to the vessel 
to be evacuated. A similar mechanism is used in some force pumps, and in this
case the fluid is forced under increased pressure through the outlet.

Another type of pump is the centrifugal pump, shown in Fig. 10–40. It, or any
force pump, can be used as a circulating pump—that is, to circulate a fluid around a
closed path, such as the cooling water or lubricating oil in an automobile.

*
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FIGURE 10–39 One kind of pump
(reciprocating type): the intake
valve opens and air (or fluid that is
being pumped) fills the empty space
when the piston moves to the left.
When the piston moves to the right
(not shown), the outlet valve opens
and fluid is forced out.
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FIGURE 10–41 Pumping human heart. (a) In
the diastole phase, the heart relaxes between
beats. Blood moves into the heart; both atria
fill rapidly. (b) When the atria contract, the
systole or pumping phase begins. The
contraction pushes the blood through the
mitral and tricuspid valves into the ventricles.
(c) The contraction of the ventricles forces
the blood through the semilunar valves into
the pulmonary artery, which leads to the
lungs, and to the aorta (the body’s largest
artery), which leads to the arteries serving all
the body. (d) When the heart relaxes, the
semilunar valves close; blood fills the atria,
beginning the cycle again.

Rotor

Intake OutletFIGURE 10–40 Centrifugal pump:
the rotating blades force fluid
through the outlet pipe; this kind of
pump is used in vacuum cleaners
and as a water pump in automobiles.
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FIGURE 10–38 Capillarity.

The heart of a human (and of other animals as well) is essentially a circulating
pump. The action of a human heart is shown in Fig. 10–41. There are actually 
two separate paths for blood flow. The longer path takes blood to the parts of 
the body, via the arteries, bringing oxygen to body tissues and picking up carbon
dioxide, which it carries back to the heart via veins. This blood is then pumped 
to the lungs (the second path), where the carbon dioxide is released and oxygen
is taken up. The oxygen-laden blood is returned to the heart, where it is again
pumped to the tissues of the body.

P H Y S I C S  A P P L I E D

Heart as a pump



Blood pressure is measured using one of the types of gauge mentioned earlier
(Section 10–6), and it is usually calibrated in mm-Hg. The gauge is attached to 
a closed, air-filled cuff that is wrapped around the upper arm at the level of the
heart, Fig. 10–42. Two values of blood pressure are measured: the maximum pres-
sure when the heart is pumping, called systolic pressure; and the pressure when the
heart is in the resting part of the cycle, called diastolic pressure. Initially, the air
pressure in the cuff is increased high above the systolic pressure by a pump,
compressing the main (brachial) artery in the arm and briefly cutting off the flow
of blood. The air pressure is then reduced slowly until blood again begins to flow
into the arm; it can be detected by listening with a stethoscope to the characteristic
tapping sound† of the blood returning to the forearm. At this point, systolic pressure
is just equal to the air pressure in the arm cuff which can be read off the gauge.
The air pressure is subsequently reduced further, and the tapping sound disappears
when blood at low pressure can enter the artery. At this point, the gauge indicates
the diastolic pressure. Normal systolic pressure is around 120 mm-Hg, whereas
normal diastolic pressure is around 70 or 80 mm-Hg. Blood pressure is reported
in the form 120 70.�
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Cuff

Hand
pump

Gauge

FIGURE 10–42 Device for
measuring blood pressure.

The three common phases of matter are solid, liquid, and gas.
Liquids and gases are collectively called fluids, meaning they
have the ability to flow. The density of a material is defined as
its mass per unit volume:

(10;1)

Specific gravity (SG) is the ratio of the density of the material to
the density of water (at 4°C).

Pressure is defined as force per unit area:

(10;2)

The pressure P at a depth h in a liquid of constant density , due
to the weight of the liquid, is given by

(10;3a)

where g is the acceleration due to gravity.
Pascal’s principle says that an external pressure applied to

a confined fluid is transmitted throughout the fluid.
Pressure is measured using a manometer or other type of

gauge. A barometer is used to measure atmospheric pressure.
Standard atmospheric pressure (average at sea level) is

Gauge pressure is the total (absolute) pres-
sure minus atmospheric pressure.

Archimedes’ principle states that an object submerged
wholly or partially in a fluid is buoyed up by a force equal to
the weight of fluid it displaces (FB = mF g = rF Vdispl g).

1.013 * 105 N�m2.

P = rgh,

r

P =
F

A
.

r =
m

V
.

Fluid flow can be characterized either as streamline
(also called laminar), in which the layers of fluid move
smoothly and regularly along paths called streamlines, or as
turbulent, in which case the flow is not smooth and regular but
is characterized by irregularly shaped whirlpools.

Fluid flow rate is the mass or volume of fluid that passes a
given point per unit time. The equation of continuity states
that for an incompressible fluid flowing in an enclosed tube,
the product of the velocity of flow and the cross-sectional area
of the tube remains constant:

(10;4)

Bernoulli’s principle tells us that where the velocity of a
fluid is high, the pressure in it is low, and where the velocity is
low, the pressure is high. For steady laminar flow of an incom-
pressible and nonviscous fluid, Bernoulli’s equation, which is
based on the law of conservation of energy, is

(10;5)

for two points along the flow.
[*Viscosity refers to friction within a fluid and is essentially

a frictional force between adjacent layers of fluid as they move
past one another.]

[*Liquid surfaces hold together as if under tension 
(surface tension), allowing drops to form and objects like needles
and insects to stay on the surface.]

P2 + 1
2 rv2

2 + rgy2 = P1 + 1
2 rv1

2 + rgy1 ,

Av = constant.

Summary

†When the blood starts flowing through the constriction caused by the tight cuff, its velocity is high
and the flow is turbulent. It is the turbulence that causes the tapping sound.

1. If one material has a higher density than another, must the
molecules of the first be heavier than those of the second?
Explain.

2. Consider what happens when you push both a pin and the
blunt end of a pen against your skin with the same force.
Decide what determines whether your skin is cut—the net
force applied to it or the pressure.

3. A small amount of water is boiled in a 1-gallon metal can.
The can is removed from the heat and the lid put on. As
the can cools, it collapses and looks crushed. Explain.

4. An ice cube floats in a glass of water filled to the brim.
What can you say about the density of ice? As the ice melts,
will the water overflow? Explain.

5. Will an ice cube float in a glass of alcohol? Why or why not?

Questions

P H Y S I C S  A P P L I E D

Blood pressure
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6. A submerged can of Coke® will sink, but a can of Diet
Coke® will float. (Try it!) Explain.

7. Why don’t ships made of iron sink?

8. A barge filled high with sand approaches a low bridge over
the river and cannot quite pass under it. Should sand be
added to, or removed from, the barge? [Hint: Consider
Archimedes’ principle.]

9. Explain why helium weather balloons, which are used to
measure atmospheric conditions at high altitudes, are nor-
mally released while filled to only 10–20% of their maximum
volume.

10. Will an empty balloon have precisely the same apparent
weight on a scale as a balloon filled with air? Explain.

11. Why do you float higher in salt water than in fresh water?

12. Why does the stream of water from a faucet become
narrower as it falls (Fig. 10–43)?

A B CFIGURE 10–46

MisConceptual Question 2.

FIGURE 10–43 Question 12.
Water coming from a faucet.

13. Children are told to avoid standing too close to a rapidly
moving train because they might get sucked under it. Is
this possible? Explain.

14. A tall Styrofoam cup is filled with water. Two holes are
punched in the cup near the bottom, and water begins
rushing out. If the cup is dropped so it falls freely, will the
water continue to flow from the holes? Explain.

15. Why do airplanes normally take off into the wind?

16. Two ships moving in parallel paths close to one another
risk colliding. Why?

17. If you dangle two pieces of paper vertically, a few inches
apart (Fig. 10–44), and blow
between them, how do you
think the papers will move?
Try it and see. Explain.

18. Why does the canvas top of a convertible bulge out when
the car is traveling at high speed? [Hint: The windshield
deflects air upward, pushing streamlines closer together.]

19. Roofs of houses are sometimes “blown” off (or are they
pushed off?) during a tornado or hurricane. Explain using
Bernoulli’s principle.

20. Explain how the tube in Fig. 10–45, known as a siphon, can
transfer liquid from one container to a lower one even
though the liquid must flow uphill for part of its journey.
(Note that the tube must be filled with liquid to start with.)

1. You hold a piece of wood in one hand and a piece of iron in
the other. Both pieces have the same volume, and you hold
them fully under water at the same depth. At the moment
you let go of them, which one experiences the greater buoy-
ancy force?
(a) The piece of wood.
(b) The piece of iron.
(c) They experience the same buoyancy force.
(d) More information is needed.

2. Three containers are filled with water to the same height
and have the same surface area at the base, but the total
weight of water is different for each (Fig. 10–46). In which
container does the water exert the greatest force on the
bottom of the container?
(a) Container A.
(b) Container B.
(c) Container C.
(d) All three are equal.

3. Beaker A is filled to the brim with water. Beaker B is the
same size and contains a small block of wood which floats
when the beaker is filled with water to the brim. Which
beaker weighs more?
(a) Beaker A.
(b) Beaker B.
(c) The same for both.

4. Why does an ocean liner float?
(a) It is made of steel, which floats.
(b) Its very big size changes the way water supports it.
(c) It is held up in the water by large Styrofoam 

compartments.
(d) The average density of the ocean liner is less than that

of seawater.
(e) Remember the Titanic—ocean liners do not float.

5. A rowboat floats in a swimming pool, and the level of the
water at the edge of the pool is marked. Consider the fol-
lowing situations. (i) The boat is removed from the water.
(ii) The boat in the water holds an iron anchor which is
removed from the boat and placed on the shore. For each
situation, the level of the water will
(a) rise. (b) fall. (c) stay the same.

MisConceptual Questions

FIGURE 10–44

Question 17.

*21. When blood pressure is measured, why must the arm cuff
be held at the level of the heart?

FIGURE 10–45

Question 20.
A siphon.
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6. You put two ice cubes in a glass and fill the glass to the rim
with water. As the ice melts, the water level
(a) drops below the rim.
(b) rises and water spills out of the glass.
(c) remains the same.
(d) drops at first, then rises until a little water spills out.

7. Hot air is less dense than cold air. Could a hot-air balloon
be flown on the Moon, where there is no atmosphere?
(a) No, there is no cold air to displace, so no buoyancy

force would exist.
(b) Yes, warm air always rises, especially in a weak

gravitational field like that of the Moon.
(c) Yes, but the balloon would have to be filled with

helium instead of hot air.

8. An object that can float in both water and in oil (whose den-
sity is less than that of water) experiences a buoyant force
that is
(a) greater when it is floating in oil than when floating in

water.
(b) greater when it is floating in water than when floating

in oil.
(c) the same when it is floating in water or in oil.

9. As water flows from a low elevation to a higher elevation
through a pipe that changes in diameter,
(a) the water pressure will increase.
(b) the water pressure will decrease.
(c) the water pressure will stay the same.
(d) Need more information to determine how the water

pressure changes.

10. Water flows in a horizontal pipe that is narrow but then widens
and the speed of the water becomes less. The pressure in
the water moving in the pipe is
(a) greater in the wide part.
(b) greater in the narrow part.
(c) the same in both parts.
(d) greater where the speed is higher.
(e) greater where the speed is lower.

11. When a baseball curves to the right (a curveball), air is
flowing
(a) faster over the left side than over the right side.
(b) faster over the right side than over the left side.
(c) faster over the top than underneath.
(d) at the same speed all around the baseball, but the ball

curves as a result of the way the wind is blowing on the
field.

12. How is the smoke drawn up a chimney affected when a wind
is blowing outside?
(a) Smoke rises more rapidly in the chimney.
(b) Smoke rises more slowly in the chimney.
(c) Smoke is forced back down the chimney.
(d) Smoke is unaffected.

10–2 Density and Specific Gravity

1. (I) The approximate volume of the granite monolith known
as El Capitan in Yosemite National Park (Fig.10–47) is about

What is its approximate mass?108 m3.

4. (I) State your mass and then estimate your volume. [Hint:
Because you can swim on or just under the surface of the
water in a swimming pool, you have a pretty good idea of
your density.]

5. (II) A bottle has a mass of 35.00 g when empty and 98.44 g
when filled with water. When filled with another fluid, the
mass is 89.22 g. What is the specific gravity of this other fluid?

6. (II) If 4.0 L of antifreeze solution
is added to 5.0 L of water to make a 9.0-L mixture, what is
the specific gravity of the mixture?

7. (III) The Earth is not a uniform sphere, but has regions of
varying density. Consider a simple model of the Earth
divided into three regions—inner core, outer core, and man-
tle. Each region is taken to have a unique constant density
(the average density of that region in the real Earth):

Aspecific gravity = 0.80B

Problems

2. (I) What is the approximate mass of air in a living room

3. (I) If you tried to smuggle gold bricks by filling your back-
pack, whose dimensions are what
would its mass be?

54 cm * 31 cm * 22 cm,

5.6 m * 3.6 m * 2.4 m?

Region Radius (km) Density 

Inner Core 0–1220 13,000
Outer Core 1220–3480 11,100
Mantle 3480–6380 4400

(kg�m3)

(a) Use this model to predict the average density of the
entire Earth. (b) If the radius of the Earth is 6380 km 
and its mass is determine the actual average
density of the Earth and compare it (as a percent difference)
with the one you determined in (a).

5.98 * 1024 kg,

FIGURE 10–47 Problem 1.

For assigned homework and other learning materials, go to the MasteringPhysics website.
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10–3 to 10–6 Pressure; Pascal’s Principle

8. (I) Estimate the pressure needed to raise a column of water
to the same height as a 46-m-tall pine tree.

9. (I) Estimate the pressure exerted on a floor by (a) one pointed
heel of and (b) one wide heel of area

Fig. 10–48. The person wearing the shoes has a mass
of 56 kg.
16 cm2,

area = 0.45 cm2,

Hydraulic
fluid

Small cylinder

2.0 cm

l

Sample
l l

320 N

10.0 cm

FIGURE 10–51 Problem 21.

18. (II) Water and then oil (which don’t mix) are poured into a
tube, open at both ends. They come to equilib-

rium as shown in Fig. 10–50. What is the density of the oil?
[Hint: Pressures at points a and b are equal. Why?]

U-shaped

61°

6.0 m

75 m

FIGURE 10–49 Problem 17.

FIGURE 10–48 Problem 9.

19. (II) How high would the atmosphere extend if it were of
uniform density throughout, equal to half the present
density at sea level?

20. (II) Determine the minimum gauge pressure needed in the
water pipe leading into a building if water is to come out of
a faucet on the fourteenth floor, 44 m above that pipe.

21. (II) A hydraulic press for compacting powdered samples
has a large cylinder which is 10.0 cm in diameter, and a
small cylinder with a diameter of 2.0 cm (Fig. 10–51).
A lever is attached to the small cylinder as shown. The
sample, which is placed on the large cylinder, has an area
of What is the pressure on the sample if 320 N is
applied to the lever?

4.0 cm2.

b
Water

a

Oil 27.2
cm

8.62 cm

FIGURE 10–50

Problem 18.

22. (II) An open-tube mercury manometer is used to measure
the pressure in an oxygen tank. When the atmospheric
pressure is 1040 mbar, what is the absolute pressure (in Pa)
in the tank if the height of the mercury in the open tube is
(a) 18.5 cm higher, (b) 5.6 cm lower, than the mercury in
the tube connected to the tank? See Fig. 10–7a.

10–7 Buoyancy and Archimedes’ Principle

23. (II) What fraction of a piece of iron will be submerged when
it floats in mercury?

24. (II) A geologist finds that a Moon rock whose mass is 9.28 kg
has an apparent mass of 6.18 kg when submerged in water.
What is the density of the rock?

25. (II) A crane lifts the 18,000-kg steel hull of a sunken ship
out of the water. Determine (a) the tension in the crane’s
cable when the hull is fully submerged in the water, and
(b) the tension when the hull is completely out of the water.

26. (II) A spherical balloon has a radius of 7.15 m and is filled
with helium. How large a cargo can it lift, assuming that the
skin and structure of the balloon have a mass of 930 kg?
Neglect the buoyant force on the cargo volume itself.

27. (II) What is the likely identity of a metal (see Table 10–1)
if a sample has a mass of 63.5 g when measured in air and
an apparent mass of 55.4 g when submerged in water?

10. (I) What is the difference in blood pressure (mm-Hg)
between the top of the head and bottom of the feet of a
1.75-m-tall person standing vertically?

11. (I) (a) Calculate the total force of the atmosphere acting on
the top of a table that measures (b) What is
the total force acting upward on the underside of the table?

12. (II) How high would the level be in an alcohol barometer
at normal atmospheric pressure?

13. (II) In a movie, Tarzan evades his captors by hiding under
water for many minutes while breathing through a long,
thin reed. Assuming the maximum pressure difference his
lungs can manage and still breathe is calculate
the deepest he could have been.

14. (II) The maximum gauge pressure in a hydraulic lift is
17.0 atm. What is the largest-size vehicle (kg) it can lift if
the diameter of the output line is 25.5 cm?

15. (II) The gauge pressure in each of the four tires of an auto-
mobile is 240 kPa. If each tire has a “footprint” of 
(area touching the ground), estimate the mass of the car.

16. (II) (a) Determine the total force and the absolute pressure
on the bottom of a swimming pool 28.0 m by 8.5 m whose
uniform depth is 1.8 m. (b) What will be the pressure
against the side of the pool near the bottom?

17. (II) A house at the bottom of a hill is fed by a full tank of
water 6.0 m deep and connected to the house by a pipe
that is 75 m long at an angle of 61° from the horizontal
(Fig. 10–49). (a) Determine the water gauge pressure at
the house. (b) How high could the water shoot if it came
vertically out of a broken pipe in front of the house?

190 cm2

–85 mm-Hg,

1.7 m * 2.6 m.



Problems 287

FIGURE 10–52 Problem 51.

28. (II) Calculate the true mass (in vacuum) of a piece of alu-
minum whose apparent mass is 4.0000 kg when weighed 
in air.

29. (II) Because gasoline is less dense than water, drums con-
taining gasoline will float in water. Suppose a 210-L steel
drum is completely full of gasoline. What total volume of
steel can be used in making the drum if the gasoline-filled
drum is to float in fresh water?

30. (II) A scuba diver and her gear displace a volume of 69.6 L
and have a total mass of 72.8 kg. (a) What is the buoyant
force on the diver in seawater? (b) Will the diver sink or float?

31. (II) The specific gravity of ice is 0.917, whereas that of 
seawater is 1.025. What percent of an iceberg is above the
surface of the water?

32. (II) Archimedes’ principle can be used to determine
the specific gravity of a solid using a known liquid
(Example 10–8). The reverse can be done as well. (a) As
an example, a 3.80-kg aluminum ball has an apparent mass
of 2.10 kg when submerged in a particular liquid: calculate
the density of the liquid. (b) Determine a formula for finding
the density of a liquid using this procedure.

33. (II) A 32-kg child decides to make a raft out of empty 
1.0-L soda bottles and duct tape. Neglecting the mass of the
duct tape and plastic in the bottles, what minimum number
of soda bottles will the child need to be able stay dry on 
the raft?

34. (II) An undersea research chamber is spherical with an
external diameter of 5.20 m. The mass of the chamber, when
occupied, is 74,400 kg. It is anchored to the sea bottom by a
cable. What is (a) the buoyant force on the chamber, and
(b) the tension in the cable?

35. (II) A 0.48-kg piece of wood floats in water but is found 
to sink in alcohol in which it has an appar-
ent mass of 0.047 kg. What is the SG of the wood?

36. (II) A two-component model used to determine percent body
fat in a human body assumes that a fraction of the
body’s total mass m is composed of fat with a density of

and that the remaining mass of the body is
composed of fat-free tissue with a density of 
If the specific gravity of the entire body’s density is X,
show that the percent body fat is given by

37. (II) On dry land, an athlete weighs 70.2 kg. The same
athlete, when submerged in a swimming pool and hanging
from a scale, has an “apparent weight” of 3.4 kg. Using
Example 10–8 as a guide, (a) find the total volume V of the
submerged athlete. (b) Assume that when submerged, the
athlete’s body contains a residual volume
of air (mainly in the lungs). Taking to be the 
actual volume of the athlete’s body, find the body’s specific
gravity, SG. (c) What is the athlete’s percent body fat
assuming it is given by the formula ?

38. (II) How many helium-filled balloons would it take to lift 
a person? Assume the person has a mass of 72 kg and 
that each helium-filled balloon is spherical with a diameter
of 33 cm.

(495�SG) - 450

V - VR

VR = 1.3 * 10–3 m3

% Body fat =
495
X
- 450.

(= f * 100)

1.10 g�cm3.
0.90 g�cm3,

f (6  1)

(SG = 0.79),

39. (III) A scuba tank, when fully submerged, displaces 15.7 L
of seawater. The tank itself has a mass of 14.0 kg and,
when “full,” contains 3.00 kg of air. Assuming only its weight
and the buoyant force act on the tank, determine the net
force (magnitude and direction) on the fully submerged tank
at the beginning of a dive (when it is full of air) and at the end
of a dive (when it no longer contains any air).

40. (III) A 3.65-kg block of wood floats on water.
What minimum mass of lead, hung from the wood by a
string, will cause the block to sink?

10–8 to 10–10 Fluid Flow, Bernoulli’s Equation

41. (I) A 12-cm-radius air duct is used to replenish the air of a
room every 12 min. How fast does
the air flow in the duct?

42. (I) Calculate the average speed of blood flow in the major
arteries of the body, which have a total cross-sectional area
of about Use the data of Example 10–12.

43. (I) How fast does water flow from a hole at the bottom of 
a very wide, 4.7-m-deep storage tank filled with water?
Ignore viscosity.

44. (I) Show that Bernoulli’s equation reduces to the hydro-
static variation of pressure with depth (Eq. 10–3b) when
there is no flow

45. (II) What is the volume rate of flow of water from a
1.85-cm-diameter faucet if the pressure head is 12.0 m?

46. (II) A fish tank has dimensions 36 cm wide by 1.0 m long
by 0.60 m high. If the filter should process all the water in
the tank once every 3.0 h, what should the flow speed be 
in the 3.0-cm-diameter input tube for the filter?

47. (II) What gauge pressure in the water pipes is necessary if
a fire hose is to spray water to a height of 16 m?

48. (II) A (inside) diameter garden hose is used to fill a
round swimming pool 6.1 m in diameter. How long will it
take to fill the pool to a depth of 1.4 m if water flows from
the hose at a speed of 

49. (II) A wind blowing over the flat roof of a
house causes the roof to lift off the house. If the house is

in size, estimate the weight of the roof.
Assume the roof is not nailed down.

50. (II) A 6.0-cm-diameter horizontal pipe gradually narrows
to 4.5 cm. When water flows through this pipe at a certain
rate, the gauge pressure in these two sections is 33.5 kPa
and 22.6 kPa, respectively. What is the volume rate of flow?

51. (II) Estimate the air pressure inside a category 5 hurricane,
where the wind speed is (Fig. 10–52).300 km�h

6.2 m * 12.4 m

180-km�h
0.40 m�s?

5
8-in.

Av1 = v2 = 0B.

2.0 cm2.

8.2 m * 5.0 m * 3.5 m

(SG = 0.50)



h

16 m

P 3.8 atm

Faucet
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52. (II) What is the lift (in newtons) due to Bernoulli’s princi-
ple on a wing of area if the air passes over the top
and bottom surfaces at speeds of and 
respectively?

53. (II) Water at a gauge pressure of 3.8 atm at street level flows
into an office building at a speed of

through a pipe 5.0 cm in diame-
ter. The pipe tapers down to 2.8 cm in
diameter by the top floor, 16 m above
(Fig. 10–53), where the faucet has been
left open. Calculate the flow velocity and
the gauge pressure in the pipe on the top
floor. Assume no branch pipes and ignore
viscosity.

0.78 m�s

150 m�s,280 m�s
88 m2

*10–11 Viscosity

*58. (II) A viscometer consists of two concentric cylinders,
10.20 cm and 10.60 cm in diameter. A liquid fills the space
between them to a depth of 12.0 cm. The outer cylinder is
fixed, and a torque of keeps the inner cylinder
turning at a steady rotational speed of What is
the viscosity of the liquid?

*10–12 Flow in Tubes; Poiseuille’s Equation

*59. (I) Engine oil (assume SAE 10, Table 10–3) passes through
a fine 1.80-mm-diameter tube that is 10.2 cm long. What
pressure difference is needed to maintain a flow rate of

*60. (I) A gardener feels it is taking too long to water a garden
with a hose. By what factor will the time be
cut using a hose instead? Assume nothing
else is changed.

*61. (II) What diameter must a 15.5-m-long air duct have if the
ventilation and heating system is to replenish the air in a
room every 15.0 min? Assume the
pump can exert a gauge pressure of 

*62. (II) What must be the pressure difference between the two
ends of a 1.6-km section of pipe, 29 cm in diameter, if it is
to transport oil at a rate
of

*63. (II) Poiseuille’s equation does not hold if the flow velocity
is high enough that turbulence sets in. The onset of turbu-
lence occurs when the Reynolds number, Re, exceeds
approximately 2000. Re is defined as

where is the average speed of the fluid, is its density, is
its viscosity, and r is the radius of the tube in which the fluid
is flowing. (a) Determine if blood flow through the aorta is
laminar or turbulent when the average speed of blood in the
aorta during the resting part of the heart’s cycle
is about (b) During exercise, the blood-flow speed
approximately doubles. Calculate the Reynolds number in
this case, and determine if the flow is laminar or turbulent.

*64. (II) Assuming a constant pressure gradient, if blood flow 
is reduced by 65%, by what factor is the radius of a blood
vessel decreased?

*65. (II) Calculate the pressure drop per cm along the aorta
using the data of Example 10–12 and Table 10–3.

*66. (III) A patient is to be given a blood transfusion. The blood
is to flow through a tube from a raised bottle to a needle
inserted in the vein (Fig. 10–55). The inside
diameter of the 25-mm-long needle is
0.80 mm, and the required flow rate is

of blood per minute. How high h
should the bottle be placed above the
needle? Obtain and from the
Tables. Assume the blood
pressure is 78 torr above
atmospheric pressure.

hr

2.0 cm3

35 cm�s.
(r = 0.80 cm)

hrv

Re =
2vrr
h

,

650 cm3�s?
Ar = 950 kg�m3, h = 0.20 Pa # sB

0.710 * 10–3 atm.
8.0 m * 14.0 m * 4.0 m

5
8-in.-diameter

3
8-in.-diameter

6.2 mL�min?

57 rev�min.
0.024 m # N

FIGURE 10–54

Problem 55.

FIGURE 10–53

Problem 53.

54. (II) Show that the power needed to drive a fluid through 
a pipe with uniform cross-section is equal to the volume
rate of flow, Q, times the pressure difference, Ignore
viscosity.

55. (III) In Fig. 10–54, take into account the speed of the top
surface of the tank and show that the speed of fluid leaving
an opening near the bottom is

where and and are the areas of the
opening and of the top sur-
face, respectively. Assume

so that the flow
remains nearly steady and
laminar.

A1 V A2

A2A1h = y2 - y1 ,

v1 = B
2gh

A1 - A1
2�A2

2B ,

P1 - P2 .

56. (III) (a) Show that the flow speed measured by a venturi
meter (see Fig. 10–29) is given by the relation

(b) A venturi meter is measuring the flow of water; it has a
main diameter of 3.5 cm tapering down to a throat diam-
eter of 1.0 cm. If the pressure difference is measured to be
18 mm-Hg, what is the speed of the water entering the
venturi throat?

57. (III) A fire hose exerts a force on the person holding it.
This is because the water accelerates as it goes from the
hose through the nozzle. How much force is required to
hold a 7.0-cm-diameter hose delivering through
a 0.75-cm-diameter nozzle?

420 L�min

v1 = A2C
2AP1 - P2B
rAA1

2 - A2
2B .

y2 − y1

  1

  2vB

vB

FIGURE 10–55

Problems 66 and 74.
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*10–13 Surface Tension and Capillarity

*67. (I) If the force F needed to move the wire in Fig. 10–34 is
calculate the surface tension of the enclosed

fluid. Assume

*68. (I) Calculate the force needed to move the wire in Fig. 10–34
if it holds a soapy solution (Table 10–4) and the wire is
21.5 cm long.

*69. (II) The surface tension of a liquid can be determined by
measuring the force F needed to just lift a circular plat-
inum ring of radius r from the surface of the liquid.
(a) Find a formula for in terms of F and r. (b) At 30°C,
if and calculate for the
tested liquid.

gr = 2.9 cm,F = 6.20 * 10–3 N
g

l = 0.070 m.
g3.4 * 10–3 N,

*70. (II) If the base of an insect’s leg has a radius of about
and the insect’s mass is 0.016 g, would you

expect the six-legged insect to remain on top of the water?
Why or why not?

*71. (III) Estimate the diameter of a steel needle that can just
barely remain on top of water due to surface tension.

*10–14 Pumps; the Heart

*72. (II) A physician judges the health of a heart by measuring the
pressure with which it pumps blood. If the physician mis-
takenly attaches the pressurized cuff around a standing
patient’s calf (about 1 m below the heart) instead of the arm
(Fig. 10–42), what error (in Pa) would be introduced in the
heart’s blood pressure measurement?

3.0 * 10–5 m

Mantle rock (density ≈ 3300 kg/m3)

Continent
(density ≈ 2800 kg/m3)

   BF
B

mgB

FIGURE 10–56 Problem 84.

73. A 3.2-N force is applied to the plunger of a hypodermic
needle. If the diameter of the plunger is 1.3 cm and that of
the needle is 0.20 mm, (a) with what force does the fluid
leave the needle? (b) What force on the plunger would be
needed to push fluid into a vein where the gauge pressure
is 75 mm-Hg? Answer for the instant just before the fluid
starts to move.

74. Intravenous transfusions are often made under gravity, as
shown in Fig. 10–55. Assuming the fluid has a density of

at what height h should the bottle be placed so
the liquid pressure is (a) 52 mm-Hg, and (b)
(c) If the blood pressure is 75 mm-Hg above atmospheric
pressure, how high should the bottle be placed so that the
fluid just barely enters the vein?

75. A beaker of water rests on an electronic balance that reads
975.0 g. A 2.6-cm-diameter solid copper ball attached to a
string is submerged in the water, but does not touch the
bottom. What are the tension in the string and the new
balance reading?

76. Estimate the difference in air pressure between the top
and the bottom of the Empire State Building in New York
City. It is 380 m tall and is located at sea level. Express as a
fraction of atmospheric pressure at sea level.

77. A hydraulic lift is used to jack a 960-kg car 42 cm off the
floor. The diameter of the output piston is 18 cm, and the
input force is 380 N. (a) What is the area of the input
piston? (b) What is the work done in lifting the car 42 cm?
(c) If the input piston moves 13 cm in each stroke, how
high does the car move up for each stroke? (d) How many
strokes are required to jack the car up 42 cm? (e) Show
that energy is conserved.

78. When you ascend or descend a great deal when driving in 
a car, your ears “pop,” which means that the pressure
behind the eardrum is being equalized to that outside. If
this did not happen, what would be the approximate force
on an eardrum of area if a change in altitude of
1250 m takes place?

79. Giraffes are a wonder of cardiovascular engineering. Cal-
culate the difference in pressure (in atmospheres) that the
blood vessels in a giraffe’s head must accommodate as the
head is lowered from a full upright position to ground level
for a drink. The height of an average giraffe is about 6 m.

0.20 cm2

680 mm-H2O?
1.00 g�cm3,

80. How high should the pressure head be if water is to come
from a faucet at a speed of Ignore viscosity.

81. Suppose a person can reduce the pressure in his lungs to
gauge pressure. How high can water then be

“sucked” up a straw?

82. A bicycle pump is used to inflate a tire. The initial tire
(gauge) pressure is 210 kPa (30 psi). At the end of the
pumping process, the final pressure is 310 kPa (45 psi). If
the diameter of the plunger in the cylinder of the pump is
2.5 cm, what is the range of the force that needs to be
applied to the pump handle from beginning to end?

83. Estimate the pressure on the mountains underneath the
Antarctic ice sheet, which is typically 2 km thick.

84. A simple model (Fig. 10–56) considers a continent as a
block floating in the mantle rock
around it Assuming the continent
is 35 km thick (the average thickness of the Earth’s conti-
nental crust), estimate the height of the continent above
the surrounding mantle rock.

Adensity L 3300 kg�m3B.
Adensity L 2800 kg�m3B

–75 mm-Hg

9.2 m�s?

General Problems

85. A ship, carrying fresh water to a desert island in the Carib-
bean, has a horizontal cross-sectional area of at
the waterline. When unloaded, the ship rises 8.25 m higher
in the sea. How much water was delivered?

86. A raft is made of 12 logs lashed together. Each is 45 cm in
diameter and has a length of 6.5 m. How many people can
the raft hold before they start getting their feet wet, assuming
the average person has a mass of 68 kg? Do not neglect the
weight of the logs. Assume the specific gravity of wood is
0.60.

87. Estimate the total mass of the Earth’s atmosphere, using
the known value of atmospheric pressure at sea level.

Am3B
2240 m2
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88. During each heartbeat, approximately of blood is
pushed from the heart at an average pressure of 105 mm-Hg.
Calculate the power output of the heart, in watts, assuming
70 beats per minute.

89. Four lawn sprinkler heads are fed by a 1.9-cm-diameter
pipe. The water comes out of the heads at an angle of 35°
above the horizontal and covers a radius of 6.0 m. (a) What is
the velocity of the water coming out of each sprinkler head?
(Assume zero air resistance.) (b) If the output diameter of
each head is 3.0 mm, how many liters of water do the four
heads deliver per second? (c) How fast is the water flowing
inside the 1.9-cm-diameter pipe?

90. One arm of a tube (open at both ends) contains
water, and the other alcohol. If the two fluids meet at
exactly the bottom of the and the alcohol is at a height
of 16.0 cm, at what height will the water be?

91. The contraction of the left ventricle (chamber) of the heart
pumps blood to the body. Assuming that the inner surface
of the left ventricle has an area of and the maxi-
mum pressure in the blood is 120 mm-Hg, estimate the
force exerted by that ventricle at maximum pressure.

92. An airplane has a mass of and the air flows
past the lower surface of the wings at If the wings
have a surface area of how fast must the air flow
over the upper surface of the wing if the plane is to stay 
in the air?

93. A drinking fountain shoots water about 12 cm up in the air
from a nozzle of diameter 0.60 cm (Fig. 10–57). The pump
at the base of the unit (1.1 m below the nozzle) pushes
water into a 1.2-cm-diameter supply pipe that goes up to
the nozzle. What gauge pressure does the pump have to
provide? Ignore the viscosity; your answer will therefore
be an underestimate.

1200 m2,
95 m�s.

1.7 * 106 kg,

82 cm2

U,

U-shaped

70 cm3

98. You need to siphon water from a clogged sink. The sink has
an area of and is filled to a height of 4.0 cm. Your
siphon tube rises 45 cm above the bottom of the sink and
then descends 85 cm to a pail as shown in Fig. 10–59. The
siphon tube has a diameter of 2.3 cm. (a) Assuming that
the water level in the sink has almost zero velocity, use
Bernoulli’s equation to estimate the water velocity when it
enters the pail. (b) Estimate how long it will take to empty
the sink. Ignore viscosity.

0.38 m2

Cu

Wood

FIGURE 10–58 Problem 97.

85 cm

45 cm

4.0 cm

FIGURE 10–59

Problem 98.

95. Blood is placed in a bottle 1.40 m above a 3.8-cm-long
needle, of inside diameter 0.40 mm, from which it flows at a
rate of What is the viscosity of this blood?

96. You are watering your lawn with a hose when you put your
finger over the hose opening to increase the distance the
water reaches. If you are holding the hose horizontally,
and the distance the water reaches increases by a factor
of 4, what fraction of the hose opening did you block?

97. A copper (Cu) weight is placed on top of a 0.40-kg block of
wood floating in water, as
shown in Fig. 10–58. What is the mass of the copper if the
top of the wood block is exactly at the water’s surface?

Adensity = 0.60 * 103 kg�m3B

4.1 cm3�min.

*99. If cholesterol buildup reduces the diameter of an artery 
by 25%, by what % will the blood flow rate be reduced,
assuming the same pressure difference?

Pump

Nozzle

Supply
pipe

1.1 m

12 cm

FIGURE 10–57

Problem 93.

94. A hurricane-force wind of blows across the 
face of a storefront window. Estimate the force on the

window due to the difference in air pres-
sure inside and outside the window. Assume the store is
airtight so the inside pressure remains at 1.0 atm. (This is
why you should not tightly seal a building in preparation
for a hurricane.)

2.0 m * 3.0 m

180 km�h



mgB

BF
B

FIGURE 10–61

Search and Learn 2.

50 N

FIGURE 10–63 Search and Learn 5.
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3. In working out his principle, Pascal showed dramatically
how force can be multiplied with fluid pressure. He placed
a long, thin tube of radius vertically into a
wine barrel of radius Fig. 10–62. He found
that when the barrel was filled
with water and the tube filled to a
height of 12 m, the barrel burst.
Calculate (a) the mass of water in
the tube, and (b) the net force
exerted by the water in the barrel
on the lid just before rupture.

R = 21 cm,
r = 0.30 cm

Search and Learn

A: (d).
B: The same. Pressure depends on depth, not on length.
C: (a).
D: (e).

E: The rowboat is shaped to have a lot of empty, air-filled
space, so its “average” density is much lower than that of
water (unless the boat becomes full of water, in which case it
sinks). Steel ships float for the same reason.

F: Increases.
G: (b).

A N S W E R S  TO  E X E R C I S E S

5.0 kg 4.5 kg

10.0 cm

FIGURE 10–60 Search and Learn 1.

12 m

R = 21 cm

r = 0.30 cm

FIGURE 10–62 Search and
Learn 3 (not to scale).

2. (a) Show that the buoyant force on a partially submerged
object such as a ship acts at the center of gravity of the fluid
before it is displaced, Fig. 10–61. This point is called the
center of buoyancy. (b) To ensure that a ship is in stable
equilibrium, would it be better if its center of buoyancy was
above, below, or at the same point as its center of gravity?
Explain. (See Section 10–7 and Chapter 9.)

FB

4. (a) When submerged in water, two objects with different
volumes have the same apparent weight. When taken out of
water, compare their weights in air. (b) Which object has
the greater density?

5. A tub of water rests on a scale as shown in Fig. 10–63. The
weight of the tub plus water is 100 N. A 50-N concrete brick
is then lowered down from a fixed arm into the water but
does not touch the tub. What does the scale read now? [Hint:
Draw two free-body diagrams, one for the brick and a second
one for the tub + water + brick.]

6. What approximations are made in the derivation of
Bernoulli’s equation? Qualitatively, how do you think
Bernoulli’s equation would change if each of these 
approximations was not made? (See Sections 10–8, 10–9,
10–11, and 10–12.)

*7. Estimate the density of the water 5.4 km deep in the sea.
(See Table 9–1 and Section 9–5 regarding bulk modulus.)
By what fraction does it differ from the density at the 
surface?

1. A 5.0-kg block and 4.0 kg of water in a 0.50-kg container
are placed symmetrically on a board that can balance at
the center (Fig. 10–60). A solid aluminum cube of sides
10.0 cm is lowered into the water. How much of the alu-
minum must be under water to make this system balance?
How would your answer change for a lead cube of the
same size? Explain. (See Sections 10–7 and 9–1.)




