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Image of the Earth from a NASA satellite.
The sky appears black from out in space

because there are so few molecules
to reflect light. (Why the sky

appears blue to us on 
Earth has to do with 

scattering of light by 
molecules of the 

atmosphere, as 
discussed in 
Chapter 24.) 
Note the 
storm off 
the coast 
of Mexico.

CHAPTER-OPENING QUESTIONS—Guess now!
1. How many are in 

(a) 10. (b) 100. (c) 1000. (d) 10,000. (e) 100,000. (f) 1,000,000.

2. Suppose you wanted to actually measure the radius of the Earth, at least
roughly, rather than taking other people’s word for what it is. Which response
below describes the best approach?

(a) Use an extremely long measuring tape.
(b) It is only possible by flying high enough to see the actual curvature of the Earth.
(c) Use a standard measuring tape, a step ladder, and a large smooth lake.
(d) Use a laser and a mirror on the Moon or on a satellite.
(e) Give up; it is impossible using ordinary means.

[We start each Chapter with a Question—sometimes two. Try to answer right away. Don’t worry about
getting the right answer now—the idea is to get your preconceived notions out on the table. If they 
are misconceptions, we expect them to be cleared up as you read the Chapter. You will usually get
another chance at the Question(s) later in the Chapter when the appropriate material has been covered.
These Chapter-Opening Questions will also help you see the power and usefulness of physics.]
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P hysics is the most basic of the sciences. It deals with the behavior and
structure of matter. The field of physics is usually divided into classical
physics which includes motion, fluids, heat, sound, light, electricity, and

magnetism; and modern physics which includes the topics of relativity, atomic
structure, quantum theory, condensed matter, nuclear physics, elementary particles, and
cosmology and astrophysics. We will cover all these topics in this book, beginning
with motion (or mechanics, as it is often called) and ending with the most recent
results in fundamental particles and the cosmos. But before we begin on the
physics itself, we take a brief look at how this overall activity called “science,”
including physics, is actually practiced.

1–1 The Nature of Science
The principal aim of all sciences, including physics, is generally considered to be
the search for order in our observations of the world around us. Many people
think that science is a mechanical process of collecting facts and devising
theories. But it is not so simple. Science is a creative activity that in many
respects resembles other creative activities of the human mind.

One important aspect of science is observation of events, which includes
the design and carrying out of experiments. But observation and experiments
require imagination, because scientists can never include everything in a
description of what they observe. Hence, scientists must make judgments about
what is relevant in their observations and experiments.

Consider, for example, how two great minds, Aristotle (384–322 B.C.;
Fig. 1–1) and Galileo (1564–1642; Fig. 2–18), interpreted motion along a hori-
zontal surface. Aristotle noted that objects given an initial push along the ground
(or on a tabletop) always slow down and stop. Consequently, Aristotle argued,
the natural state of an object is to be at rest. Galileo, the first true experimen-
talist, reexamined horizontal motion in the 1600s. He imagined that if friction
could be eliminated, an object given an initial push along a horizontal surface
would continue to move indefinitely without stopping. He concluded that for an
object to be in motion was just as natural as for it to be at rest. By inventing a
new way of thinking about the same data, Galileo founded our modern view of
motion (Chapters 2, 3, and 4), and he did so with a leap of the imagination.
Galileo made this leap conceptually, without actually eliminating friction.
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FIGURE 1;1 Aristotle is the central
figure (dressed in blue) at the top of
the stairs (the figure next to him is
Plato) in this famous Renaissance
portrayal of The School of Athens,
painted by Raphael around 1510.
Also in this painting, considered
one of the great masterpieces in art,
are Euclid (drawing a circle at the
lower right), Ptolemy (extreme
right with globe), Pythagoras,
Socrates, and Diogenes.



Observation, with careful experimentation and measurement, is one side of
the scientific process. The other side is the invention or creation of theories to
explain and order the observations. Theories are never derived directly from
observations. Observations may help inspire a theory, and theories are accepted
or rejected based on the results of observation and experiment.

Theories are inspirations that come from the minds of human beings. For
example, the idea that matter is made up of atoms (the atomic theory) was not
arrived at by direct observation of atoms—we can’t see atoms directly. Rather,
the idea sprang from creative minds. The theory of relativity, the electromag-
netic theory of light, and Newton’s law of universal gravitation were likewise
the result of human imagination.

The great theories of science may be compared, as creative achievements,
with great works of art or literature. But how does science differ from these
other creative activities? One important difference is that science requires
testing of its ideas or theories to see if their predictions are borne out by exper-
iment. But theories are not “proved” by testing. First of all, no measuring
instrument is perfect, so exact confirmation is not possible. Furthermore, it is
not possible to test a theory for every possible set of circumstances. Hence a
theory cannot be absolutely verified. Indeed, the history of science tells us that
long-held theories can sometimes be replaced by new ones, particularly when
new experimental techniques provide new or contradictory data.

A new theory is accepted by scientists in some cases because its predictions
are quantitatively in better agreement with experiment than those of the older
theory. But in many cases, a new theory is accepted only if it explains a greater
range of phenomena than does the older one. Copernicus’s Sun-centered theory
of the universe (Fig. 1–2b), for example, was originally no more accurate than
Ptolemy’s Earth-centered theory (Fig. 1–2a) for predicting the motion of heav-
enly bodies (Sun, Moon, planets). But Copernicus’s theory had consequences
that Ptolemy’s did not, such as predicting the moonlike phases of Venus. A
simpler and richer theory, one which unifies and explains a greater variety of
phenomena, is more useful and beautiful to a scientist. And this aspect, as well
as quantitative agreement, plays a major role in the acceptance of a theory.
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FIGURE 1;2 (a) Ptolemy’s geocentric view of the universe. Note at the center the four elements of the 
ancients: Earth, water, air (clouds around the Earth), and fire; then the circles, with symbols, for the Moon,
Mercury, Venus, Sun, Mars, Jupiter, Saturn, the fixed stars, and the signs of the zodiac. (b) An early 
representation of Copernicus’s heliocentric view of the universe with the Sun at the center. (See Chapter 5.)



An important aspect of any theory is how well it can quantitatively predict
phenomena, and from this point of view a new theory may often seem to be only
a minor advance over the old one. For example, Einstein’s theory of relativity
gives predictions that differ very little from the older theories of Galileo and
Newton in nearly all everyday situations. Its predictions are better mainly in the
extreme case of very high speeds close to the speed of light. But quantitative
prediction is not the only important outcome of a theory. Our view of the world
is affected as well. As a result of Einstein’s theory of relativity, for example, our
concepts of space and time have been completely altered, and we have come to
see mass and energy as a single entity (via the famous equation ).

1–2 Physics and its Relation to
Other Fields

For a long time science was more or less a united whole known as natural
philosophy. Not until a century or two ago did the distinctions between physics
and chemistry and even the life sciences become prominent. Indeed, the sharp
distinction we now see between the arts and the sciences is itself only a few
centuries old. It is no wonder then that the development of physics has both
influenced and been influenced by other fields. For example, the notebooks
(Fig. 1–3) of Leonardo da Vinci, the great Renaissance artist, researcher, and
engineer, contain the first references to the forces acting within a structure, a
subject we consider as physics today; but then, as now, it has great relevance to
architecture and building.

Early work in electricity that led to the discovery of the electric battery and
electric current was done by an eighteenth-century physiologist, Luigi Galvani
(1737–1798). He noticed the twitching of frogs’ legs in response to an electric spark
and later that the muscles twitched when in contact with two dissimilar metals
(Chapter 18). At first this phenomenon was known as “animal electricity,” but it
shortly became clear that electric current itself could exist in the absence of an animal.

Physics is used in many fields. A zoologist, for example, may find physics useful
in understanding how prairie dogs and other animals can live underground without
suffocating. A physical therapist will be more effective if aware of the principles
of center of gravity and the action of forces within the human body. A know-
ledge of the operating principles of optical and electronic equipment is helpful in a
variety of fields. Life scientists and architects alike will be interested in the nature
of heat loss and gain in human beings and the resulting comfort or discomfort.
Architects may have to calculate the dimensions of the pipes in a heating system
or the forces involved in a given structure to determine if it will remain standing
(Fig. 1–4). They must know physics principles in order to make realistic designs
and to communicate effectively with engineering consultants and other specialists.

E = mc2
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FIGURE 1;3 Studies on the forces
in structures by Leonardo da Vinci
(1452–1519).

(a) (b)

FIGURE 1;4 (a) This bridge over the River Tiber in Rome was built 2000 years ago and still stands.
(b) The 2007 collapse of a Mississippi River highway bridge built only 40 years before.



From the aesthetic or psychological point of view, too, architects must be 
aware of the forces involved in a structure—for example instability, even if only
illusory, can be discomforting to those who must live or work in the structure.

The list of ways in which physics relates to other fields is extensive. In the
Chapters that follow we will discuss many such applications as we carry out our
principal aim of explaining basic physics.

1–3 Models, Theories, and Laws
When scientists are trying to understand a particular set of phenomena, they often
make use of a model. A model, in the scientific sense, is a kind of analogy or
mental image of the phenomena in terms of something else we are already familiar
with. One example is the wave model of light. We cannot see waves of light as we
can water waves. But it is valuable to think of light as made up of waves, because
experiments indicate that light behaves in many respects as water waves do.

The purpose of a model is to give us an approximate mental or visual
picture—something to hold on to—when we cannot see what actually is
happening. Models often give us a deeper understanding: the analogy to a known
system (for instance, the water waves above) can suggest new experiments to
perform and can provide ideas about what other related phenomena might
occur.

You may wonder what the difference is between a theory and a model.
Usually a model is relatively simple and provides a structural similarity to the
phenomena being studied. A theory is broader, more detailed, and can give
quantitatively testable predictions, often with great precision. It is important, how-
ever, not to confuse a model or a theory with the real system or the phenomena
themselves.

Scientists have given the title law to certain concise but general statements
about how nature behaves (that electric charge is conserved, for example).
Often the statement takes the form of a relationship or equation between
quantities (such as Newton’s second law, ).

Statements that we call laws are usually experimentally valid over a wide
range of observed phenomena. For less general statements, the term principle
is often used (such as Archimedes’ principle). We use “theory” for a more
general picture of the phenomena dealt with.

Scientific laws are different from political laws in that the latter are prescrip-
tive: they tell us how we ought to behave. Scientific laws are descriptive: they do
not say how nature should behave, but rather are meant to describe how nature
does behave. As with theories, laws cannot be tested in the infinite variety of
cases possible. So we cannot be sure that any law is absolutely true. We use the
term “law” when its validity has been tested over a wide range of cases, and
when any limitations and the range of validity are clearly understood.

Scientists normally do their research as if the accepted laws and theories
were true. But they are obliged to keep an open mind in case new information
should alter the validity of any given law or theory.

1–4 Measurement and Uncertainty;
Significant Figures

In the quest to understand the world around us, scientists seek to find relation-
ships among physical quantities that can be measured.

Uncertainty
Reliable measurements are an important part of physics. But no measurement is
absolutely precise. There is an uncertainty associated with every measurement.

F = ma
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Among the most important sources of uncertainty, other than blunders, are the
limited accuracy of every measuring instrument and the inability to read an
instrument beyond some fraction of the smallest division shown. For example,
if you were to use a centimeter ruler to measure the width of a board (Fig. 1–5),
the result could be claimed to be precise to about 0.1 cm (1 mm), the smallest
division on the ruler, although half of this value might be a valid claim as well.
The reason is that it is difficult for the observer to estimate (or “interpolate”)
between the smallest divisions. Furthermore, the ruler itself may not have been
manufactured to an accuracy very much better than this.

When giving the result of a measurement, it is important to state the
estimated uncertainty in the measurement. For example, the width of a board
might be written as The (“plus or minus 0.1 cm”) repre-
sents the estimated uncertainty in the measurement, so that the actual width
most likely lies between 8.7 and 8.9 cm. The percent uncertainty is the ratio of
the uncertainty to the measured value, multiplied by 100. For example, if the
measurement is 8.8 cm and the uncertainty about 0.1 cm, the percent uncertainty is

“is approximately equal to.”
Often the uncertainty in a measured value is not specified explicitly. In such

cases, the

uncertainty in a numerical value is assumed to be one or a few units in the
last digit specified.

For example, if a length is given as 8.8 cm, the uncertainty is assumed to be
about 0.1 cm or 0.2 cm. It is important in this case that you do not write 8.80 cm,
because this implies an uncertainty on the order of 0.01 cm; it assumes that the
length is probably between 8.79 cm and 8.81 cm, when actually you believe it is
between 8.7 and 8.9 cm.

Is the diamond yours? A friend asks to
borrow your precious diamond for a day to show her family. You are a bit 
worried, so you carefully have your diamond weighed on a scale which reads
8.17 grams. The scale’s accuracy is claimed to be The next day you
weigh the returned diamond again, getting 8.09 grams. Is this your diamond?

RESPONSE The scale readings are measurements and are not perfect. They
do not necessarily give the “true” value of the mass. Each measurement could
have been high or low by up to 0.05 gram or so. The actual mass of your
diamond lies most likely between 8.12 grams and 8.22 grams. The actual mass
of the returned diamond is most likely between 8.04 grams and 8.14 grams.
These two ranges overlap, so the data do not give you a strong reason to
doubt that the returned diamond is yours.

Significant Figures
The number of reliably known digits in a number is called the number of
significant figures. Thus there are four significant figures in the number 23.21 cm
and two in the number 0.062 cm (the zeros in the latter are merely place holders
that show where the decimal point goes). The number of significant figures may not
always be clear. Take, for example, the number 80. Are there one or two signifi-
cant figures? We need words here: If we say it is roughly 80 km between two
cities, there is only one significant figure (the 8) since the zero is merely a place
holder. If there is no suggestion that the 80 is a rough approximation, then we
can often assume (as we will in this book) that it is 80 km within an accuracy of
about 1 or 2 km, and then the 80 has two significant figures. If it is precisely
80 km, to within then we write 80.0 km (three significant figures).&0.1 km,

&0.05 gram.

CONCEPTUAL EXAMPLE 1;1

where L means

0.1
8.8
* 100% L  1%,

&0.1 cm8.860.1 cm.
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FIGURE 1;5 Measuring the width
of a board with a centimeter ruler.
Accuracy is about &1 mm.



When making measurements, or when doing calculations, you should avoid
the temptation to keep more digits in the final answer than is justified: see boldface
statement on previous page. For example, to calculate the area of a rectangle 11.3 cm
by 6.8 cm, the result of multiplication would be But this answer can not
be accurate to the implied uncertainty, because (using the outer limits
of the assumed uncertainty for each measurement) the result could be between

and At best, we can
quote the answer as which implies an uncertainty of about 1 or 
The other two digits (in the number ) must be dropped (rounded off)
because they are not significant. As a rough general rule we can say that 

the final result of a multiplication or division should have no more digits than
the numerical value with the fewest significant figures.

In our example, 6.8 cm has the least number of significant figures, namely two. Thus
the result needs to be rounded off to 

EXERCISE A The area of a rectangle 4.5 cm by 3.25 cm is correctly given by (a)
(b) (c) (d)

When adding or subtracting numbers, the final result should contain no more
decimal places than the number with the fewest decimal places. For example, the
result of subtracting 0.57 from 3.6 is 3.0 (not 3.03). Similarly not 44.2.

Be careful not to confuse significant figures with the number of decimal places.

EXERCISE B For each of the following numbers, state the number of significant
figures and the number of decimal places: (a) 1.23; (b) 0.123; (c) 0.0123.

Keep in mind when you use a calculator that all the digits it produces may
not be significant. When you divide 2.0 by 3.0, the proper answer is 0.67, and
not 0.666666666 as calculators give (Fig. 1–6a). Digits should not be quoted in a
result unless they are truly significant figures. However, to obtain the most
accurate result, you should normally keep one or more extra significant figures
throughout a calculation, and round off only in the final result. (With a calcu-
lator, you can keep all its digits in intermediate results.) Note also that
calculators sometimes give too few significant figures. For example, when you
multiply a calculator may give the answer as simply 8. But the answer is
accurate to two significant figures, so the proper answer is 8.0. See Fig. 1–6b.

Significant figures. Using a protractor 
(Fig. 1–7), you measure an angle to be 30°. (a) How many significant figures
should you quote in this measurement? (b) Use a calculator to find the cosine
of the angle you measured.

RESPONSE (a) If you look at a protractor, you will see that the precision
with which you can measure an angle is about one degree (certainly not 0.1°).
So you can quote two significant figures, namely 30° (not 30.0°). (b) If you
enter cos 30° in your calculator, you will get a number like 0.866025403.
But the angle you entered is known only to two significant figures, so its cosine
is correctly given by 0.87; you must round your answer to two significant figures.

NOTE Trigonometric functions, like cosine, are reviewed in Chapter 3 and Appendix A.

Scientific Notation
We commonly write numbers in “powers of ten,” or “scientific” notation—for
instance 36,900 as or 0.0021 as One advantage of
scientific notation (reviewed in Appendix A) is that it allows the number of
significant figures to be clearly expressed. For example, it is not clear whether
36,900 has three, four, or five significant figures. With powers of 10 notation 
the ambiguity can be avoided: if the number is known to three significant
figures, we write but if it is known to four, we write

EXERCISE C Write each of the following in scientific notation and state the number of
significant figures for each: (a) 0.0258; (b) 42,300; (c) 344.50.

3.690 * 104.3.69 * 104,

2.1 * 10–3.3.69 * 104,

CONCEPTUAL EXAMPLE 1;2

2.5 * 3.2,

36 + 8.2 = 44,

15 cm2.14.6 cm2;14.63 cm2;
14.625 cm2;

77 cm2.76.84 cm2

76.84 cm2
2 cm2.77 cm2,

11.4 cm * 6.9 cm = 78.66 cm2.11.2 cm * 6.7 cm = 75.04 cm2

0.01 cm2
76.84 cm2.
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P R O B L E M  S O L V I N G

Report only the proper number of
significant figures in the final result. But
keep extra digits during the calculation

FIGURE 1;7 Example 1–2.
A protractor used to measure an
angle.

(a)

(b)
FIGURE 1;6 These two calculations
show the wrong number of significant
figures. In (a), 2.0 was divided by 3.0.
The correct final result would be
0.67. In (b), 2.5 was multiplied by 3.2.
The correct result is 8.0.



Percent Uncertainty vs. Significant Figures
The significant figures rule is only approximate, and in some cases may under-
estimate the accuracy (or uncertainty) of the answer. Suppose for example we
divide 97 by 92:

Both 97 and 92 have two significant figures, so the rule says to give the answer
as 1.1. Yet the numbers 97 and 92 both imply an uncertainty of if no other
uncertainty is stated. Both and imply an uncertainty of 
about 1% But the final result to two significant figures 
is 1.1, with an implied uncertainty of which is an uncertainty of about 10%

It is better in this case to give the answer as 1.05 (which
is three significant figures). Why? Because 1.05 implies an uncertainty of 
which is just like the uncertainty in the original
numbers 92 and 97.

SUGGESTION: Use the significant figures rule, but consider the % uncertainty
too, and add an extra digit if it gives a more realistic estimate of uncertainty.

Approximations
Much of physics involves approximations, often because we do not have the
means to solve a problem precisely. For example, we may choose to ignore air
resistance or friction in doing a Problem even though they are present in the
real world, and then our calculation is only an approximation. In doing Problems,
we should be aware of what approximations we are making, and be aware 
that the precision of our answer may not be nearly as good as the number of
significant figures given in the result.

Accuracy vs.Precision
There is a technical difference between “precision” and “accuracy.” Precision in
a strict sense refers to the repeatability of the measurement using a given instru-
ment. For example, if you measure the width of a board many times, getting
results like 8.81 cm, 8.85 cm, 8.78 cm, 8.82 cm (interpolating between the 0.1 cm
marks as best as possible each time), you could say the measurements give a
precision a bit better than 0.1 cm. Accuracy refers to how close a measurement
is to the true value. For example, if the ruler shown in Fig. 1–5 was manufac-
tured with a 2% error, the accuracy of its measurement of the board’s width
(about 8.8 cm) would be about 2% of 8.8 cm or about Estimated
uncertainty is meant to take both accuracy and precision into account.

1–5 Units, Standards, and 
the SI System

The measurement of any quantity is made relative to a particular standard or unit,
and this unit must be specified along with the numerical value of the quantity.
For example, we can measure length in British units such as inches,
feet, or miles, or in the metric system in centimeters, meters, or kilometers. To
specify that the length of a particular object is 18.6 is insufficient. The unit
must be given, because 18.6 meters is very different from 18.6 inches or 
18.6 millimeters.

For any unit we use, such as the meter for distance or the second for time,
we need to define a standard which defines exactly how long one meter or one
second is. It is important that standards be chosen that are readily reproducible
so that anyone needing to make a very accurate measurement can refer to the
standard in the laboratory and communicate with other people.

&0.2 cm.

0.01�1.05 L 0.01 L 1%,
&0.01

(0.1�1.1 L 0.1 L 10%).
&0.1,

(1�92 L 0.01 = 1%).
97619261

&1

97
92

= 1.05 L 1.1.

*
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Length
The first truly international standard was the meter (abbreviated m) established
as the standard of length by the French Academy of Sciences in the 1790s. The
standard meter was originally chosen to be one ten-millionth of the distance
from the Earth’s equator to either pole,† and a platinum rod to represent this
length was made. (One meter is, very roughly, the distance from the tip of your
nose to the tip of your finger, with arm and hand stretched out horizontally.) In
1889, the meter was defined more precisely as the distance between two finely
engraved marks on a particular bar of platinum–iridium alloy. In 1960, to
provide even greater precision and reproducibility, the meter was redefined as
1,650,763.73 wavelengths of a particular orange light emitted by the gas
krypton-86. In 1983 the meter was again redefined, this time in terms of the
speed of light (whose best measured value in terms of the older definition of the
meter was with an uncertainty of ). The new definition
reads: “The meter is the length of path traveled by light in vacuum during a
time interval of of a second.”‡

British units of length (inch, foot, mile) are now defined in terms of the
meter. The inch (in.) is defined as exactly 2.54 centimeters (cm; ).
Other conversion factors are given in the Table on the inside of the front cover
of this book. Table 1–1 presents some typical lengths, from very small to very
large, rounded off to the nearest power of 10. See also Fig. 1–8. [Note that the
abbreviation for inches (in.) is the only one with a period, to distinguish it from
the word “in”.]

Time
The standard unit of time is the second (s). For many years, the second was
defined as of a mean solar day

The standard second is now defined more precisely in terms of
the frequency of radiation emitted by cesium atoms when they pass between
two particular states. [Specifically, one second is defined as the time required
for 9,192,631,770 oscillations of this radiation.] There are, by definition, 60 s in
one minute (min) and 60 minutes in one hour (h). Table 1–2 presents a range of
measured time intervals, rounded off to the nearest power of 10.

86,400 s�day).
=(24 h�day * 60 min�h * 60 s�min1�86,400

1 cm = 0.01 m

1�299,792,458

1 m�s299,792,458 m�s,
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(a)

(b)

FIGURE 1;8 Some lengths:
(a) viruses (about long) 
attacking a cell; (b) Mt. Everest’s 
height is on the order of 
(8850 m above sea level, to be precise).

104 m

10–7 m

†Modern measurements of the Earth’s circumference reveal that the intended length is off by about
one-fiftieth of 1%. Not bad!
‡The new definition of the meter has the effect of giving the speed of light the exact value of
299,792,458 m�s.

TABLE 1;1 Some Typical Lengths or Distances 
(order of magnitude)

Length (or Distance) Meters (approximate)

Neutron or proton (diameter) m
Atom (diameter) m
Virus [see Fig. 1–8a] m
Sheet of paper (thickness) m
Finger width m
Football field length m
Height of Mt. Everest [see Fig. 1–8b] m
Earth diameter m
Earth to Sun m
Earth to nearest star m
Earth to nearest galaxy m
Earth to farthest galaxy visible m1026 

1022 

1016 

1011 

107 

104 

102 

10–2 

10–4 

10–7 

10–10 

10–15 

TABLE 1;2 Some Typical Time Intervals
(order of magnitude)

Time Interval Seconds (approximate)

Lifetime of very unstable 
subatomic particle

Lifetime of radioactive elements to

Lifetime of muon

Time between human heartbeats

One day

One year

Human life span

Length of recorded history

Humans on Earth

Age of Earth

Age of Universe 4 * 1017  s

1017  s

1013  s

1011  s

2 * 109  s

3 * 107  s

105  s

(= 1 s)100  s

10–6  s

1028 s10–22 s

10–23 s



Mass
The standard unit of mass is the kilogram (kg). The standard mass is a partic-
ular platinum–iridium cylinder, kept at the International Bureau of Weights
and Measures near Paris, France, whose mass is defined as exactly 1 kg. A range
of masses is presented in Table 1–3. [For practical purposes, 1 kg weighs about
2.2 pounds on Earth.]

When dealing with atoms and molecules, we usually use the unified atomic
mass unit (u or amu). In terms of the kilogram,

The definitions of other standard units for other quantities will be given as
we encounter them in later Chapters. (Precise values of this and other useful
numbers are given inside the front cover.)

Unit Prefixes
In the metric system, the larger and smaller units are defined in multiples of 10
from the standard unit, and this makes calculation particularly easy. Thus 
1 kilometer (km) is 1000 m, 1 centimeter is 1 millimeter (mm) is or 
and so on. The prefixes “centi-,” “kilo-,” and others are listed in Table 1–4 and
can be applied not only to units of length but to units of volume, mass, or any
other unit. For example, a centiliter (cL) is (L), and a kilogram (kg) is
1000 grams (g). An 8.2-megapixel camera has a detector with 8,200,000 pixels
(individual “picture elements”).

In common usage, is called 1 micron.

Systems of Units
When dealing with the laws and equations of physics it is very important to use a
consistent set of units. Several systems of units have been in use over the years.
Today the most important is the Système International (French for International
System), which is abbreviated SI. In SI units, the standard of length is the meter,
the standard for time is the second, and the standard for mass is the kilogram.
This system used to be called the MKS (meter-kilogram-second) system.

A second metric system is the cgs system, in which the centimeter, gram, and
second are the standard units of length, mass, and time, as abbreviated in the title.
The British engineering system (although more used in the U.S. than Britain) has 
as its standards the foot for length, the pound for force, and the second for time.

We use SI units almost exclusively in this book.

Base vs. Derived Quantities
Physical quantities can be divided into two categories: base quantities and
derived quantities. The corresponding units for these quantities are called base
units and derived units. A base quantity must be defined in terms of a standard.
Scientists, in the interest of simplicity, want the smallest number of base quanti-
ties possible consistent with a full description of the physical world. This
number turns out to be seven, and those used in the SI are given in Table 1–5.

*

1 mm (= 10–6 m)

1
100 liter

1
10 cm,1

1000 m1
100 m,

1 u = 1.6605 * 10–27 kg.
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TABLE 1;3 Some Masses

Kilograms
Object (approximate)

Electron kg
Proton, neutron kg
DNA molecule kg
Bacterium kg
Mosquito kg
Plum kg
Human kg
Ship kg
Earth kg
Sun kg 
Galaxy kg1041 

2 * 1030 

6 * 1024 

108 

102 

10–1 

10–5 

10–15 

10–17 

10–27 

10–30 

TABLE 1;4 Metric (SI) Prefixes

Prefix Abbreviation Value

yotta Y
zetta Z
exa E
peta P
tera T
giga G
mega M
kilo k
hecto h
deka da
deci d
centi c
milli m
micro†

nano n
pico p
femto f
atto a
zepto z
yocto y
† is the Greek letter “mu.”m

10–24
10–21
10–18
10–15
10–12
10–9
10–6m

10–3
10–2
10–1
101
102
103
106
109
1012
1015
1018
1021
1024

TABLE 1–5 SI Base Quantities and Units

Quantity Unit Unit Abbreviation

Length meter m
Time second s
Mass kilogram kg
Electric current ampere A
Temperature kelvin K
Amount of substance mole mol
Luminous intensity candela cd

P R O B L E M  S O L V I N G

Always use a consistent set of units



All other quantities can be defined in terms of these seven base quantities,† and
hence are referred to as derived quantities. An example of a derived quantity is
speed, which is defined as distance divided by the time it takes to travel that
distance. A Table inside the front cover lists many derived quantities and their
units in terms of base units. To define any quantity, whether base or derived,
we can specify a rule or procedure, and this is called an operational definition.

1–6 Converting Units
Any quantity we measure, such as a length, a speed, or an electric current,
consists of a number and a unit. Often we are given a quantity in one set of
units, but we want it expressed in another set of units. For example, suppose we
measure that a shelf is 21.5 inches wide, and we want to express this in centi-
meters. We must use a conversion factor, which in this case is, by definition, exactly

or, written another way,

Since multiplying by the number one does not change anything, the width of our
shelf, in cm, is

Note how the units (inches in this case) cancelled out (thin red lines). A Table
containing many unit conversions is found inside the front cover of this book.
Let’s consider some Examples.

The 8000-m peaks. There are only 14 peaks whose sum-
mits are over 8000 m above sea level. They are the tallest peaks in the 
world (Fig. 1–9 and Table 1–6) and are referred to as “eight-thousanders.”
What is the elevation, in feet, of an elevation of 8000 m?

APPROACH We need to convert meters to feet, and we can start with the
conversion factor which is exact. That is,
to any number of significant figures, because it is defined to be.

SOLUTION One foot is 12 in., so we can write

which is exact. Note how the units cancel (colored slashes). We can rewrite
this equation to find the number of feet in 1 meter:

(We could carry the result to 6 significant figures because 0.3048 is exact,
0.304800... .) We multiply this equation by 8000.0 (to have five significant figures):

An elevation of 8000 m is 26,247 ft above sea level.

NOTE We could have done the conversion all in one line:

The key is to multiply conversion factors, each equal to one and
to make sure which units cancel.

(= 1.0000),

8000.0 m = (8000.0 m ) ¢ 100 cm
1 m

≤ ¢ 1 in.
2.54 cm

≤ ¢ 1 ft
12 in.

≤ = 26,247 ft.

8000.0 m = (8000.0 m ) ¢3.28084
ft
m
≤ = 26,247 ft.

1 m =
1 ft

0.3048
= 3.28084 ft.

1 ft = (12 in. ) ¢2.54
cm
in.
≤ = 30.48 cm = 0.3048 m,

1 in. = 2.5400 cm1 in. = 2.54 cm,

EXAMPLE 1;3

21.5 inches = (21.5 in. ) * a2.54
cm
in.
b = 54.6 cm.

1 = 2.54 cm�in.

1 in. = 2.54 cm

SECTION 1–6 Converting Units 11

†Some exceptions are for angle (radians—see Chapter 8), solid angle (steradian), and sound level 
(bel or decibel, Chapter 12). No general agreement has been reached as to whether these are base
or derived quantities.

P H Y S I C S  A P P L I E D

The world’s tallest peaks

TABLE 1;6 The 8000-m Peaks

Peak Height (m)

Mt. Everest 8850
K2 8611
Kangchenjunga 8586
Lhotse 8516
Makalu 8462
Cho Oyu 8201
Dhaulagiri 8167
Manaslu 8156
Nanga Parbat 8125
Annapurna 8091
Gasherbrum I 8068
Broad Peak 8047
Gasherbrum II 8035
Shisha Pangma 8013

FIGURE 1;9 The world’s second
highest peak, K2, whose summit is
considered the most difficult of the
“8000-ers.” K2 is seen here from the
south (Pakistan). Example 1–3.



Apartment area. You have seen a nice apartment whose
floor area is 880 square feet What is its area in square meters?

APPROACH We use the same conversion factor, but this time
we have to use it twice.

SOLUTION Because then

So

NOTE As a rule of thumb, an area given in is roughly 10 times the number
of square meters (more precisely, about ).10.8 *

ft2

880 ft2 = A880 ft2B A0.0929 m2�ft2B L 82 m2.

1 ft2 = (12 in.)2(0.0254 m�in.)2 = 0.0929 m2.

1 in. = 2.54 cm = 0.0254 m,

1 in. = 2.54 cm,

Aft2B.EXAMPLE 1;4
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P R O B L E M  S O L V I N G

Conversion factors = 1

P R O B L E M  S O L V I N G

Unit conversion is wrong if 
units do not cancel

Speeds. Where the posted speed limit is 55 miles per hour
( or mph), what is this speed (a) in meters per second and (b) in 
kilometers per hour 

APPROACH We again use the conversion factor and we
recall that there are 5280 ft in a mile and 12 inches in a foot; also, one hour
contains

SOLUTION (a) We can write 1 mile as

We also know that 1 hour contains 3600 s, so

where we rounded off to two significant figures.
(b) Now we use then

NOTE Each conversion factor is equal to one. You can look up most conver-
sion factors in the Table inside the front cover.

= 88
km
h

.

 55 
mi
h

= ¢55
mi
h
≤ ¢1.609

km
mi
≤

1 mi = 1609 m = 1.609 km;

= 25
m
s

,

 55 
mi
h

= ¢55
mi
h
≤ ¢1609

m
mi
≤ ¢ 1 h

3600 s
≤

= 1609 m.

 1 mi = (5280 ft ) ¢12
in.
ft
≤ ¢2.54

cm
in.
≤ ¢ 1 m

100 cm
≤

(60 min�h) * (60 s�min) = 3600 s�h.

1 in. = 2.54 cm,

(km�h)?
(m�s)mi�h

EXAMPLE 1;5

EXERCISE D Return to the first Chapter-Opening Question, page 1, and answer it
again now. Try to explain why you may have answered differently the first time.

EXERCISE E Would a driver traveling at in a zone be exceeding the
speed limit? Why or why not?

35 mi�h15 m�s

When changing units, you can avoid making an error in the use of conver-
sion factors by checking that units cancel out properly. For example, in our
conversion of 1 mi to 1609 m in Example 1–5(a), if we had incorrectly used the
factor instead of the centimeter units would not have cancelled
out; we would not have ended up with meters.

A 1 m
100 cmB,A100 cm

1 m B



Volume of a lake. Estimate how much water
there is in a particular lake, Fig. 1–10a, which is roughly circular, about 1 km
across, and you guess it has an average depth of about 10 m.

APPROACH No lake is a perfect circle, nor can lakes be expected to have a
perfectly flat bottom. We are only estimating here. To estimate the volume,
we can use a simple model of the lake as a cylinder: we multiply the average
depth of the lake times its roughly circular surface area, as if the lake were a
cylinder (Fig. 1–10b).

SOLUTION The volume V of a cylinder is the product of its height h times
the area of its base: where r is the radius of the circular base.† The
radius r is so the volume is approximately

where was rounded off to 3. So the volume is on the order of 
ten million cubic meters. Because of all the estimates that went into this
calculation, the order-of-magnitude estimate is probably better to
quote than the figure.

NOTE To express our result in U.S. gallons, we see in the Table on the inside
front cover that Hence, the lake contains

of water.A8 * 106 m3B A1 gallon�4 * 10–3 m3B L 2 * 109 gallons
1 liter = 10–3 m3 L 1

4 gallon.

8 * 106 m3
A107 m3B

107 m3,p

V = hpr2 L (10 m) * (3) * A5 * 102 mB2 L 8 * 106 m3 L 107 m3,

1
2 km = 500 m,

V = hpr2,

EXAMPLE 1;6 ESTIMATE

SECTION 1–7 Order of Magnitude: Rapid Estimating 13

P R O B L E M  S O L V I N G

How to make a rough estimate

P H Y S I C S  A P P L I E D

Estimating the volume (or mass) of 
a lake; see also Fig. 1–10

†Formulas like this for volume, area, etc., are found inside the back cover of this book.

(b)

(a)

10 m

r = 500 m

FIGURE 1;10 Example 1–6. (a) How much water is in this 
lake? (Photo is one of the Rae Lakes in the Sierra Nevada
of California.) (b) Model of the lake as a cylinder. [We could 
go one step further and estimate the mass or weight of this 
lake. We will see later that water has a density of 
so this lake has a mass of about 
which is about 10 billion kg or 10 million metric tons.
(A metric ton is 1000 kg, about 2200 lb, slightly larger than a 
British ton, 2000 lb.)]

A103 kg�m3B A107 m3B L 1010 kg,
1000 kg�m3,

1–7 Order of Magnitude:
Rapid Estimating

We are sometimes interested only in an approximate value for a quantity. This
might be because an accurate calculation would take more time than it is worth
or would require additional data that are not available. In other cases, we may
want to make a rough estimate in order to check a calculation made on a calcu-
lator, to make sure that no blunders were made when the numbers were entered.

A rough estimate can be made by rounding off all numbers to one significant
figure and its power of 10, and after the calculation is made, again keeping only
one significant figure. Such an estimate is called an order-of-magnitude estimate
and can be accurate within a factor of 10, and often better. In fact, the phrase
“order of magnitude” is sometimes used to refer simply to the power of 10.

Let’s do some Examples.



16 m
18 m

2 m
1.5 m

(b)

x = ?

1.5 m

3 m

(a)

1.5 m

?

2 m

It cannot be emphasized enough how important it is to draw a diagram
when solving a physics Problem, as the next Example shows.
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FIGURE 1;12 Example 1–8.
Diagrams are really useful!

FIGURE 1;13 Enrico Fermi. Fermi
contributed significantly to both
theoretical and experimental physics,
a feat almost unique in modern times.

FIGURE 1;11 Example 1–7.
Micrometer used for measuring
small thicknesses.

Thickness of a sheet of paper. Estimate the
thickness of a page of this book.

APPROACH At first you might think that a special measuring device, a
micrometer (Fig. 1–11), is needed to measure the thickness of one page since
an ordinary ruler can not be read so finely. But we can use a trick or, to put it in
physics terms, make use of a symmetry: we can make the reasonable assump-
tion that all the pages of this book are equal in thickness.

SOLUTION We can use a ruler to measure hundreds of pages at once. If you
measure the thickness of the first 500 pages of this book (page 1 to page 500),
you might get something like 1.5 cm. Note that 500 numbered pages, counted
front and back, is 250 separate pieces of paper. So one sheet must have a
thickness of about

or less than a tenth of a millimeter (0.1 mm).

1.5 cm
250 sheets

L  6 * 10–3 cm = 6 * 10–2 mm,

EXAMPLE 1;7 ESTIMATE

Height by triangulation. Estimate the height
of the building shown in Fig. 1–12, by “triangulation,” with the help of a bus-stop
pole and a friend.

APPROACH By standing your friend next to the pole, you estimate the height
of the pole to be 3 m. You next step away from the pole until the top of the
pole is in line with the top of the building, Fig. 1–12a. You are 5 ft 6 in. tall, so
your eyes are about 1.5 m above the ground. Your friend is taller, and when
she stretches out her arms, one hand touches you, and the other touches the
pole, so you estimate that distance as 2 m (Fig. 1–12a). You then pace off the
distance from the pole to the base of the building with big, 1-m-long steps, and
you get a total of 16 steps or 16 m.

SOLUTION Now you draw, to scale, the diagram shown in Fig. 1–12b using
these measurements. You can measure, right on the diagram, the last side of
the triangle to be about Alternatively, you can use similar triangles
to obtain the height x:

so

Finally you add in your eye height of 1.5 m above the ground to get your final
result: the building is about 15 m tall.

x L  13 1
2 m.

1.5 m
2 m

=
x

18 m
,

x = 13 m.

EXAMPLE 1;8 ESTIMATE

Another approach, this one made famous by Enrico Fermi (1901–1954,
Fig. 1–13), was to show his students how to estimate the number of piano tuners in
a city, say, Chicago or San Francisco. To get a rough order-of-magnitude estimate
of the number of piano tuners today in San Francisco, a city of about 800,000
inhabitants, we can proceed by estimating the number of functioning pianos,
how often each piano is tuned, and how many pianos each tuner can tune. To
estimate the number of pianos in San Francisco, we note that certainly not
everyone has a piano. A guess of 1 family in 3 having a piano would corre-
spond to 1 piano per 12 persons, assuming an average family of 4 persons.
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†A check of the San Francisco Yellow Pages (done after this calculation) reveals about 60 listings.
Each of these listings may employ more than one tuner, but on the other hand, each may also do
repairs as well as tuning. In any case, our estimate is reasonable.

P R O B L E M  S O L V I N G

Estimating how many piano tuners
there are in a city

As an order of magnitude, let’s say 1 piano per 10 people. This is certainly 
more reasonable than 1 per 100 people, or 1 per every person, so let’s 
proceed with the estimate that 1 person in 10 has a piano, or about 
80,000 pianos in San Francisco. Now a piano tuner needs an hour or two to 
tune a piano. So let’s estimate that a tuner can tune 4 or 5 pianos a day. A piano
ought to be tuned every 6 months or a year—let’s say once each year.
A piano tuner tuning 4 pianos a day, 5 days a week, 50 weeks a year can tune about
1000 pianos a year. So San Francisco, with its (very) roughly 80,000 pianos,
needs about 80 piano tuners. This is, of course, only a rough estimate.† It tells 
us that there must be many more than 10 piano tuners, and surely not as many
as 1000.

A Harder Example—But Powerful

Estimating the radius of Earth. Believe it or
not, you can estimate the radius of the Earth without having to go into space
(see the photograph on page 1). If you have ever been on the shore of a large
lake, you may have noticed that you cannot see the beaches, piers, or rocks at
water level across the lake on the opposite shore. The lake seems to bulge out
between you and the opposite shore—a good clue that the Earth is round.
Suppose you climb a stepladder and discover that when your eyes are 10 ft (3.0 m)
above the water, you can just see the rocks at water level on the opposite shore.
From a map, you estimate the distance to the opposite shore as Use
Fig. 1–14 with to estimate the radius R of the Earth.

APPROACH We use simple geometry, including the theorem of Pythagoras,

where c is the length of the hypotenuse of any right triangle, and a and b are
the lengths of the other two sides.

SOLUTION For the right triangle of Fig. 1–14, the two sides are the radius of
the Earth R and the distance The hypotenuse is approx-
imately the length where By the Pythagorean theorem,

We solve algebraically for R, after cancelling on both sides:

NOTE Precise measurements give 6380 km. But look at your achievement!
With a few simple rough measurements and simple geometry, you made a
good estimate of the Earth’s radius. You did not need to go out in space, nor
did you need a very long measuring tape.

= 6200 km.

= 6.2 * 106 m

R L
d2 - h2

2h
=

(6100 m)2 - (3.0 m)2

6.0 m

R2

L R2 + 2hR + h2.

R2 + d2 L (R + h)2

h = 3.0 m.R + h,
d = 6.1 km = 6100 m.

c2 = a2 + b2,

h = 3.0 m
d L 6.1 km.

EXAMPLE 1;9 ESTIMATE

EXERCISE F Return to the second Chapter-Opening Question, page 1, and answer it
again now. Try to explain why you may have answered differently the first time.

Earth

Center
of Earth

Lake

R R

d

h

FIGURE 1;14 Example 1–9, but
not to scale. You can just barely see
rocks at water level on the opposite
shore of a lake 6.1 km wide if you
stand on a stepladder.
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*Some Sections of this book, such as this one, may be considered optional at the discretion of the
instructor, and they are marked with an asterisk See the Preface for more details.(*).

1–8 Dimensions and 
Dimensional Analysis

When we speak of the dimensions of a quantity, we are referring to the type of
base units or base quantities that make it up. The dimensions of area, for
example, are always length squared, abbreviated using square brackets;
the units can be square meters, square feet, and so on. Velocity, on the
other hand, can be measured in units of or but the dimen-
sions are always a length [L] divided by a time [T]: that is,

The formula for a quantity may be different in different cases, but the dimen-
sions remain the same. For example, the area of a triangle of base b and height h
is whereas the area of a circle of radius r is The formulas
are different in the two cases, but the dimensions of area are always 

Dimensions can be used as a help in working out relationships, a procedure
referred to as dimensional analysis. One useful technique is the use of dimen-
sions to check if a relationship is incorrect. Note that we add or subtract
quantities only if they have the same dimensions (we don’t add centimeters 
and hours); and the quantities on each side of an equals sign must have the
same dimensions. (In numerical calculations, the units must also be the same on
both sides of an equation.)

For example, suppose you derived the equation where is
the speed of an object after a time , is the object’s initial speed, and the
object undergoes an acceleration a. Let’s do a dimensional check to see if this
equation could be correct or is surely incorrect. Note that numerical factors,
like the here, do not affect dimensional checks. We write a dimensional
equation as follows, remembering that the dimensions of speed are and
(as we shall see in Chapter 2) the dimensions of acceleration are 

The dimensions are incorrect: on the right side, we have the sum of quantities
whose dimensions are not the same. Thus we conclude that an error was made
in the derivation of the original equation.

A dimensional check can only tell you when a relationship is wrong. It can’t
tell you if it is completely right. For example, a dimensionless numerical factor
(such as or ) could be missing.

Dimensional analysis can also be used as a quick check on an equation you
are not sure about. For example, consider a simple pendulum of length . Suppose
that you can’t remember whether the equation for the period T (the time to make
one back-and-forth swing) is or where g is the
acceleration due to gravity and, like all accelerations, has dimensions 
(Do not worry about these formulas—the correct one will be derived in 
Chapter 11; what we are concerned about here is a person’s recalling whether it
contains or ) A dimensional check shows that the former is correct:

whereas the latter is not:

The constant has no dimensions and so can’t be checked using dimensions.2p

[T] Z D
CL�T2 D

[L]
= C

1

CT2 D
=

1
[T]

.

(g�l)

[T] = C
[L]
CL�T2 D

= 3 CT2 D = [T],

(l�g)g�l.l�g

CL�T2 D .
T = 2p1g�l ,T = 2p1l�g

l

2p1
2
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T
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T
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T
R + B L
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2
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MisConceptual Questions 17

[The Summary that appears at the end of each Chapter in this book
gives a brief overview of the main ideas of the Chapter. The Summary
cannot serve to give an understanding of the material, which can be
accomplished only by a detailed reading of the Chapter.]

Physics, like other sciences, is a creative endeavor. It is
not simply a collection of facts. Important theories are
created with the idea of explaining observations. To be
accepted, theories are “tested” by comparing their predictions
with the results of actual experiments. Note that, in general,
a theory cannot be “proved” in an absolute sense.

Scientists often devise models of physical phenomena.
A model is a kind of picture or analogy that helps to describe
the phenomena in terms of something we already know.
A theory, often developed from a model, is usually deeper
and more complex than a simple model.

A scientific law is a concise statement, often expressed in
the form of an equation, which quantitatively describes a
wide range of phenomena.

Measurements play a crucial role in physics, but can
never be perfectly precise. It is important to specify the

uncertainty of a measurement either by stating it directly
using the notation, and/or by keeping only the correct
number of significant figures.

Physical quantities are always specified relative to a
particular standard or unit, and the unit used should always
be stated. The commonly accepted set of units today is the
Système International (SI), in which the standard units of
length, mass, and time are the meter, kilogram, and second.

When converting units, check all conversion factors for
correct cancellation of units.

Making rough, order-of-magnitude estimates is a very
useful technique in science as well as in everyday life.

[*The dimensions of a quantity refer to the combination
of base quantities that comprise it. Velocity, for example, has
dimensions of or Working with only the
dimensions of the various quantities in a given relationship
(this technique is called dimensional analysis) makes it
possible to check a relationship for correct form.]

[L�T].[length�time]

&

Summary

1. What are the merits and drawbacks of using a person’s
foot as a standard? Consider both (a) a particular
person’s foot, and (b) any person’s foot. Keep in mind
that it is advantageous that fundamental standards be
accessible (easy to compare to), invariable (do not
change), indestructible, and reproducible.

2. What is wrong with this road sign:

3. Why is it incorrect to think that the more digits you
include in your answer, the more accurate it is?

Memphis 7 mi (11.263 km)?

4. For an answer to be complete, the units need to be speci-
fied. Why?

5. You measure the radius of a wheel to be 4.16 cm. If you
multiply by 2 to get the diameter, should you write the
result as 8 cm or as 8.32 cm? Justify your answer.

6. Express the sine of 30.0° with the correct number of
significant figures.

7. List assumptions useful to estimate the number of car
mechanics in (a) San Francisco, (b) your hometown, and
then make the estimates.

Questions

1. A student’s weight displayed on a digital scale is 117.2 lb.
This would suggest her weight is 
(a) within 1% of 117.2 lb.
(b) exactly 117.2 lb.
(c) somewhere between 117.18 and 117.22 lb.
(d) somewhere between 117.0 and 117.4 lb.

2. Four students use different instruments to measure the
length of the same pen. Which measurement implies the
greatest precision?
(a) 160.0 mm. (b) 16.0 cm. (c) 0.160 m. (d) 0.00016 km.
(e) Need more information.

3. The number 0.0078 has how many significant figures?
(a) 1. (b) 2. (c) 3. (d) 4.

4. How many significant figures does have?
(a) 2. (b) 3. (c) 4. (d) 5.

5. Accuracy represents 
(a) repeatability of a measurement, using a given instrument.
(b) how close a measurement is to the true value.
(c) an ideal number of measurements to make.
(d) how poorly an instrument is operating.

1.362 + 25.2

6. To convert from to , you should
(a) multiply by 3.
(b) multiply by 1 3.
(c) multiply by 9.
(d) multiply by 1 9.
(e) multiply by 6.
( ) multiply by 1 6.

7. Which is not true about an order-of-magnitude estimation?
(a) It gives you a rough idea of the answer.
(b) It can be done by keeping only one significant figure.
(c) It can be used to check if an exact calculation is

reasonable.
(d) It may require making some reasonable assumptions

in order to calculate the answer.
(e) It will always be accurate to at least two significant figures.

*8. represents the dimensions for which of the following?
(a)
(b) square feet.
(c)
(d) All of the above.

m2.

cm2.
[L2]

�f

�

�

yd2ft2

MisConceptual Questions
[List all answers that are valid.]
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FIGURE 1;15

Problem 29.

30. (II) Estimate the number of gallons of gasoline consumed by
the total of all automobile drivers in the U.S., per year.

31. (II) Estimate the number of dentists (a) in San Francisco
and (b) in your town or city.

32. (III) You are in a hot air balloon, 200 m above the flat
Texas plains. You look out toward the horizon. How far
out can you see—that is, how far is your horizon? The
Earth’s radius is about 6400 km.

[The Problems at the end of each Chapter are ranked I, II, or III
according to estimated difficulty, with (I) Problems being easiest.
Level III are meant as challenges for the best students. The Prob-
lems are arranged by Section, meaning that the reader should 
have read up to and including that Section, but not only that
Section—Problems often depend on earlier material. Next is 
a set of “General Problems” not arranged by Section and not
ranked. Finally, there are “Search and Learn” Problems that require
rereading parts of the Chapter.]

1;4 Measurement, Uncertainty, Significant Figures

(Note: In Problems, assume a number like 6.4 is accurate to
; and 950 is unless 950 is said to be “precisely” or

“very nearly” 950, in which case assume )

1. (I) How many significant figures do each of the following
numbers have: (a) 214, (b) 81.60, (c) 7.03, (d) 0.03,
(e) 0.0086, ( ) 3236, and (g) 8700?

2. (I) Write the following numbers in powers of 10 notation:
(a) 1.156, (b) 21.8, (c) 0.0068, (d) 328.65, (e) 0.219, and ( ) 444.

3. (I) Write out the following numbers in full with the
correct number of zeros: (a) (b)
(c) (d) and (e)

4. (II) The age of the universe is thought to be about 
14 billion years. Assuming two significant figures, write
this in powers of 10 in (a) years, (b) seconds.

5. (II) What is the percent uncertainty in the measurement

6. (II) Time intervals measured with a stopwatch typically have
an uncertainty of about 0.2 s, due to human reaction time at
the start and stop moments. What is the percent uncertainty of
a hand-timed measurement of (a) 5.5 s, (b) 55 s, (c) 5.5 min?

7. (II) Add
8. (II) Multiply by taking into

account significant figures.
9. (II) What, approximately, is the percent uncertainty for

a measurement given as 
10. (III) What, roughly, is the percent uncertainty in the volume

of a spherical beach ball of radius
11. (III) What is the area, and its approximate uncertainty, of

a circle of radius 

1;5 and 1;6 Units, Standards, SI, Converting Units

12. (I) Write the following as full (decimal) numbers without
prefixes on the units: (a) 286.6 mm, (b) (c) 760 mg,
(d) 62.1 ps, (e) 22.5 nm, ( ) 2.50 gigavolts.

13. (I) Express the following using the prefixes of Table 1–4:
(a) (b) (c)
(d) and (e)

14. (I) One hectare is defined as One acre is
How many acres are in one hectare?

15. (II) The Sun, on average, is 93 million miles from Earth.
How many meters is this? Express (a) using powers of 
10, and (b) using a metric prefix (km).

16. (II) Express the following sum with the correct number of
significant figures:

17. (II) A typical atom has a diameter of about
(a) What is this in inches? (b) Approximately how many
atoms are along a 1.0-cm line, assuming they just touch?

1.0 * 10–10 m.
1.80 m + 142.5 cm + 5.34 * 105 mm.

4.356 * 104 ft2.
1.000 * 104 m2.

7 * 10–7 seconds.18 * 102 bucks,
6 * 103 days,2 * 10–6 meters,1 * 106 volts,

f
85 mV,

3.1 * 104 cm?

r = 0.8460.04 m?

1.57 m2?

0.068 * 10–1 m,3.079 * 102 m
A9.2 * 103 sB + A8.3 * 104 sB + A0.008 * 106 sB.

5.4860.25 m?

3.62 * 10–5.4.76 * 102,8.8 * 10–1,
9.1 * 103,8.69 * 104,

f

f

95061.
&10&0.1

18. (II) Determine the conversion factor between (a)
and (b) and  and (c) and 

19. (II) A light-year is the distance light travels in one year (at
speed (a) How many meters are
there in 1.00 light-year? (b) An astronomical unit (AU) is
the average distance from the Sun to Earth,
How many AU are there in 1.00 light-year?

20. (II) How much longer (percentage) is a one-mile race
than a 1500-m race (“the metric mile”)?

21. (II) American football uses a field that is 100.0 yd long,
whereas a soccer field is 100.0 m long. Which field is longer,
and by how much (give yards, meters, and percent)?

22. (II) (a) How many seconds are there in 1.00 year? (b) How
many nanoseconds are there in 1.00 year? (c) How many
years are there in 1.00 second?

23. (II) Use Table 1–3 to estimate the total number of protons
or neutrons in (a) a bacterium, (b) a DNA molecule, (c) the
human body, (d) our Galaxy.

24. (III) A standard baseball has a circumference of approxi-
mately 23 cm. If a baseball had the same mass per unit
volume (see Tables in Section 1–5) as a neutron or a proton,
about what would its mass be?

1–7 Order-of-Magnitude Estimating

(Note: Remember that for rough estimates, only round numbers
are needed both as input to calculations and as final results.)

25. (I) Estimate the order of magnitude (power of 10) of:
(a) 2800, (b) (c) 0.0076, and (d)

26. (II) Estimate how many books can be shelved in a college
library with of floor space. Assume 8 shelves high,
having books on both sides, with corridors 1.5 m wide.
Assume books are about the size of this one, on average.

27. (II) Estimate how many hours it would take to run (at
) across the U.S. from New York to California.

28. (II) Estimate the number of liters of water a human
drinks in a lifetime.

29. (II) Estimate how long it would take one person to mow
a football field using an ordinary home lawn mower
(Fig. 1–15). (State your assumption, such as the mower
moves with a speed, and has a 0.5-m width.)1-km�h

10 km�h

3500 m2

15.0 * 108.86.30 * 103,

1.50 * 108 km.

2.998 * 108 m�s).=

m�s.km�hft�s,m�smi�h,
km�h

Problems
For assigned homework and other learning materials, go to the MasteringPhysics website.



33. (III) I agree to hire you for 30 days. You can decide between
two methods of payment: either (1) $1000 a day, or (2) one
penny on the first day, two pennies on the second day and
continue to double your daily pay each day up to day 30.
Use quick estimation to make your decision, and justify it.

34. (III) Many sailboats are docked at a marina 4.4 km away on
the opposite side of a lake. You stare at one of the sailboats
because, when you are lying flat at the water’s edge, you
can just see its deck but none of the side of the sailboat.
You then go to that sailboat on the other side of the
lake and measure that the deck is 1.5 m above
the level of the water. Using
Fig. 1–16, where 
estimate the radius R of the
Earth.

h = 1.5 m,

General Problems 19

*1;8 Dimensions

*36. (I) What are the dimensions of density, which is mass per
volume?

*37. (II) The speed of an object is given by the equation
where refers to time. (a) What are the

dimensions of A and B? (b) What are the SI units for the
constants A and B?

*38. (II) Three students derive the following equations in
which x refers to distance traveled, the speed, a the
acceleration the time, and the subscript zero 
means a quantity at time . Here are their 
equations: (a) (b) and
(c) Which of these could possibly be
correct according to a dimensional check, and why?

*39. (III) The smallest meaningful measure of length is called the
Planck length, and is defined in terms of three fundamental
constants in nature: the speed of light 
the gravitational constant and
Planck’s constant The Planck
length is given by the following combination of these
three constants:

Show that the dimensions of are length [L], and find the
order of magnitude of [Recent theories (Chapters 32
and 33) suggest that the smallest particles (quarks, leptons)
are “strings” with lengths on the order of the Planck length,

These theories also suggest that the “Big Bang,”
with which the universe is believed to have begun, started
from an initial size on the order of the Planck length.]

10–35 m.

lP .
lP

lP = BGh

c3
.

lP

h = 6.63 * 10–34 kg �m2�s.
G = 6.67 * 10–11 m3�kg �s2,

c = 3.00 * 108 m�s,

x = v0 t + 2at2.
x = v0 t + 1

2 at2,x = vt2 + 2at,
t = 0

A0BtAm�s2B,
v

tv = At3 - Bt,
v

Earth

Earth center

Lake

R R

d

h

40. Global positioning satellites (GPS) can be used to determine
your position with great accuracy. If one of the satellites is
20,000 km from you, and you want to know your position to

what percent uncertainty in the distance is required?
How many significant figures are needed in the distance?

41. Computer chips (Fig. 1–17) are etched on circular silicon
wafers of thickness 0.300 mm that are sliced from a solid
cylindrical silicon crystal of length 25 cm. If each wafer can
hold 400 chips, what is the maximum number of chips
that can be produced from one entire cylinder?

&2 m,

43. If you used only a keyboard to enter data, how many years
would it take to fill up the hard drive in a computer that can
store 1.0 terabytes of data? Assume 40-hour
work weeks, and that you can type 180 characters per minute,
and that one byte is one keyboard character.

44. An average family of four uses roughly 1200 L (about
300 gallons) of water per day How much
depth would a lake lose per year if it covered an area of

with uniform depth and supplied a local town with
a population of 40,000 people? Consider only population
uses, and neglect evaporation, rain, creeks and rivers.

45. Estimate the number of 
jelly beans in the jar of 
Fig. 1–18.

50 km2

A1 L = 1000 cm3B.

(1.0 * 1012 bytes)

General Problems

42. A typical adult human lung contains about 300 million
tiny cavities called alveoli. Estimate the average diameter
of a single alveolus.

FIGURE 1;18

Problem 45. Estimate 
the number of jelly 
beans in the jar.

FIGURE 1;17 Problem 41.
The wafer held by the hand 
is shown below, enlarged 
and illuminated by colored 
light. Visible are rows of 
integrated circuits (chips).

FIGURE 1;16 Problem 34.
You see a sailboat across a 
lake (not to scale). R is the 
radius of the Earth. Because
of the curvature of the Earth,
the water “bulges out” between
you and the boat.

35. (III) You are lying on a beach, your eyes 20 cm above the
sand. Just as the Sun sets, fully disappearing over the horizon,
you immediately jump up, your eyes now 150 cm above the
sand, and you can again just see the top of the Sun. If you count
the number of seconds until the Sun fully disappears
again, you can estimate the Earth’s radius. But for this Prob-
lem, use the known radius of the Earth to calculate the time t.

(= t)



46. How big is a ton? That is, what is the volume of something
that weighs a ton? To be specific, estimate the diameter of
a 1-ton rock, but first make a wild guess: will it be 1 ft
across, 3 ft, or the size of a car? [Hint: Rock has mass per
volume about 3 times that of water, which is 1 kg per liter

or 62 lb per cubic foot.]
47. A certain compact disc (CD) contains 783.216 megabytes

of digital information. Each byte consists of exactly 8 bits.
When played, a CD player reads the CD’s information 
at a constant rate of 1.4 megabits per second. How many
minutes does it take the player to read the entire CD?

48. Hold a pencil in front of your eye at a position where its
blunt end just blocks out the Moon (Fig. 1–19). Make
appropriate measurements
to estimate the diameter
of the Moon, given that the
Earth–Moon distance is
3.8 * 105 km.

A103 cm3B
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49. A storm dumps 1.0 cm of rain on a city 6 km wide and 8 km
long in a 2-h period. How many metric tons 

of water fell on the city? ( of water has a mass
of ) How many gallons of water was this?

50. Estimate how many days it would take to walk around
the Earth, assuming 12 h walking per day at 

51. One liter of oil is spilled onto a smooth lake. If
the oil spreads out uniformly until it makes an oil slick
just one molecule thick, with adjacent molecules just
touching, estimate the diameter of the oil slick. Assume
the oil molecules have a diameter of 

52. A watch manufacturer claims that its watches gain or lose
no more than 8 seconds in a year. How accurate are these
watches, expressed as a percentage?

53. An angstrom (symbol Å) is a unit of length, defined as
which is on the order of the diameter of an atom.

(a) How many nanometers are in 1.0 angstrom? (b) How
many femtometers or fermis (the common unit of length
in nuclear physics) are in 1.0 angstrom? (c) How many
angstroms are in 1.0 m? (d) How many angstroms are in
1.0 light-year (see Problem 19)?

10–10 m,

2 * 10–10 m.

A1000 cm3B
4 km�h.

1 g = 10–3 kg.
1 cm3103 kgB

A1 metric ton =

1. Galileo is to Aristotle as Copernicus is to Ptolemy. See
Section 1–1 and explain this analogy.

2. How many wavelengths of orange krypton-86 light (Section 1–5)
would fit into the thickness of one page of this book?

3. Using the French Academy of Sciences’ original defini-
tion of the meter, determine Earth’s circumference and
radius in those meters.

4. Estimate the ratio (order of magnitude) of the mass of a
human to the mass of a DNA molecule.

5. To the correct number of significant figures, use the infor-
mation inside the front cover of this book to determine
the ratio of (a) the surface area of Earth compared to the
surface area of the Moon; (b) the volume of Earth
compared to the volume of the Moon.

Search and Learn

A: (d).
B: All three have three significant figures; the number of

decimal places is (a) 2, (b) 3, (c) 4.
C: (a) (b)

(c) 5.3.4450 * 102,
4.23 * 104,  3 (probably);2.58 * 10–2,  3;

D: ( ).
E: No:
F: (c).

15 m�s L 34 mi�h.
f

A N S W E R S  TO  E X E R C I S E S

54. Jim stands beside a wide river and wonders how wide it 
is. He spots a large rock on the bank directly across from
him. He then walks upstream
65 strides and judges that
the angle between him and
the rock, which he can still
see, is now at an angle of
30° downstream (Fig. 1–20).
Jim measures his stride
to be about 0.8 m long.
Estimate the width of the
river.

55. Determine the percent uncertainty in and in 
when (a) (b)

56. If you walked north along one of Earth’s lines of longi-
tude until you had changed latitude by 1 minute of arc
(there are 60 minutes per degree), how far would you
have walked (in miles)? This distance is a nautical mile.

57. Make a rough estimate of the volume of your body (in ).
58. The following formula estimates an average person’s lung

capacity V (in liters, where ):

where H and A are the person’s height (in meters) and
age (in years), respectively. In this formula, what are the
units of the numbers 4.1, 0.018, and 2.7?

59. One mole of atoms consists of individual atoms.
If a mole of atoms were spread uniformly over the Earth’s
surface, how many atoms would there be per square meter?

60. The density of an object is defined as its mass divided by its
volume. Suppose a rock’s mass and volume are measured to
be 6 g and To the correct number of significant
figures, determine the rock’s density (mass volume).

61. Recent findings in astrophysics suggest that the observ-
able universe can be modeled as a sphere of radius

light-years with an aver-
age total mass density of about Only
about 4% of total mass is due to “ordinary” matter (such as
protons, neutrons, and electrons). Estimate how much
ordinary matter (in kg) there is in the observable universe.
(For the light-year, see Problem 19.)

1 * 10–26 kg�m3.
= 13.0 * 1025 mR = 13.7 * 109

�
2.8325 cm3.

6.02 * 1023

V = 4.1 H - 0.018 A - 2.7,

1 L = 103 cm3

m3

u = 75.0°60.5°.u = 15.0°60.5°,
sin u,u,

FIGURE 1;19

Problem 48. How big 
is the Moon?

65 Strides

30°

FIGURE 1;20

Problem 54.




